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Abstract—The systematic evaluation of synthetic aperture
radar (SAR) data analysis tools, such as segmentation and clas-
sification algorithms for geographic information systems, is diffi-
cult given the unavailability of ground-truth data in most cases.
Therefore, testing is typically limited to small sets of pseudo-
ground-truth data collected manually by trained experts, or prim-
itive synthetic sets composed of simple geometries. To address
this issue, we investigate the potential of employing an alternative
approach, which involves the synthesis of SAR data and corre-
sponding label fields from real SAR data for use as a reliable
evaluation testbed. Given the scale-dependent nonstationary na-
ture of SAR data, a new modeling approach that combines a
resolution-oriented hierarchical method with a region-oriented
binary tree structure is introduced to synthesize such complex
data in a realistic manner. Experimental results using opera-
tional RADARSAT SAR sea-ice data and SIR-C/X-SAR land-mass
data show that the proposed hierarchical approach can better
model complex nonstationary scale structures than local MRF
approaches and existing nonparametric methods, thus making it
well suited for synthesizing SAR data and the corresponding label
fields for potential use in the systematic evaluation of SAR data
analysis tools.

Index Terms—Data synthesis, hierarchical, Markov random
field (MRF), remote sensing, sea ice, synthetic aperture radar
(SAR).

I. INTRODUCTION

HE USE of aerial and satellite remote sensing data has be-
come an integral part of terrestrial ecological studies and
environmental monitoring, ranging from sea-ice monitoring in
polar regions [1] and land-use and land-cover change analysis
[2], [3] to flood risk and damage assessment [4]. Given the large
volume of high-resolution remote sensing data being acquired
on a daily basis and the time-consuming nature of manual
data manipulation, considerable research effort in the design of
geoscience information systems (GIS) has been spent on the
development of tools for analyzing remote sensing data in an
automated fashion. Two classes of automatic data analysis tools
that have great importance to GIS are automatic segmentation
[1], [5]-[8] and classification algorithms [4], [9]-[12].
A major challenge in the design of automatic segmentation
and classification algorithms for the purpose of remote sensing
data analysis is the reliable systematic evaluation of algorith-
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mic performance. While a plethora of quantitative assessment
metrics are available for evaluating the performance of such
automatic data analysis tools [13], it is very difficult, even
intractable in the case of synthetic aperture radar (SAR) data
analysis of polar regions and mountainous land-mass regions, to
acquire ground-truth segmentation and classification informa-
tion pertaining to the data. As such, the evaluation of automatic
segmentation and classification techniques has been limited to
the use of small sets of pseudo-ground-truth data collected
manually by trained experts in a time-consuming manner, or
primitive synthetic sets composed of simple geometric shapes
[1]. The reliability of performance assessment using pseudo-
ground-truth data is limited not only by the small set of test data
available but also by the limited time and accuracy of trained
experts who are able to produce manual segmentations and clas-
sifications on a per-sample level. The performance assessment
using primitive synthetic sets is more reliable than that using
pseudo-ground-truth data given the large amount of test data
available and per-sample level accurate ground truth. However,
such primitive synthetic tests are a poor representation of real
remote sensing data and, as such, do not provide a realistic
testing scenario for evaluating the operational potential of an
automatic data analysis algorithm.

To address these issues associated with the evaluation of
automatic analysis algorithms, we investigate the potential of
synthesizing realistic looking data, based on models trained
from real data, but with corresponding synthesized ground-truth
label fields. This approach allows for the generation of large test
sets that are representative of real-world operational scenarios
and have known ground truth. Furthermore, the randomness
associated with the synthesis process improves the reliability of
testing by reducing bias toward algorithms tuned to work well
with specific test data.

There is a significant research literature in remote sensing
dealing with model-based texture synthesis [14]-[17]. How-
ever, such methods are designed to capture and generate textural
characteristics only and, as such, are ill suited for generating
realistic looking remote sensing data as they do not capture the
complex structural characteristics found in operational settings.
More recent general nonparametric texture synthesis methods
(e.g., [18]-[20]) are able to better capture both textural and
structural characteristics but exhibit two main limitations. First,
they are ill suited for capturing large-scale structural character-
istics, which will be illustrated later in the experimental results
and, second, they do not provide a corresponding label field
which is the necessary ground truth in evaluation.

One region-based posterior sampling method has been re-
cently proposed [21], which simultaneously samples the data
and corresponding label field for SAR data. While more
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suitable as an evaluation testbed, this approach shares similar
limitations to other patch-based nonparametric methods (e.g.,
[19], [20]) in terms of sensitivity to patch size. Moreover, the
method of [21] emphasizes SAR texture as opposed to the
ground-truth label field, so the synthesized label fields suffer
from artifacts, as will be seen in the experimental results.

In this paper, we aim to address the issues faced by existing
synthesis methods in generating realistic-looking SAR data by
decoupling the synthesis of texture and structure. That is, we
will explicitly synthesize the discrete-state label field, which
contains the complex structural characteristics of the problem,
and separately synthesize the textural characteristics of the data
using a modification of the nonparametric texture synthesis
strategy proposed by Efros and Leung [18]. We introduce a
practical approach to synthesizing multilabel discrete fields
by combining a resolution-oriented hierarchy with a region-
oriented hierarchy [22]-[24]. Indeed, recently, there has been a
growing interest in the generalization of hierarchical partition
fields [25], [26] for the segmentation of hidden hierarchical
fields [27]; however, the idea of using partition trees and
hierarchical models for data synthesis is novel.

This paper is organized as follows. Research literature re-
lated to data synthesis is discussed in Section II. The underly-
ing theory behind hierarchical fields is described in detail in
Section III. The proposed tree-structured hierarchical field
(TSHF) model is introduced in Section IV. The application of
TSHF for SAR data and label-field synthesis is described in
Section V. Synthesis results using operational RADARSAT-1
SAR sea-ice data provided by the Canadian Ice Service (CIS)
and SIR-C/X-SAR land-mass data provided by the National
Aeronautics and Space Administration Jet Propulsion Labora-
tory (NASA JPL) are presented and discussed in Section V1.

II. RELATED WORK

While texture synthesis approaches for remote sensing data
have been proposed in previous research literature [14]-[17],
comparatively little attention has been paid to synthesizing
remote sensing data with complex structural and textural char-
acteristics. One can view the problem of generating structures
for synthetic remote sensing data as a label-synthesis problem,
where a label corresponds to a particular class of structure or
feature (e.g., ice type, vegetation type).

While there is a large research literature [28], [29] on tex-
ture classification and processing, in most cases, the problem
involves comparatively simple labels or lies at a single scale. In
particular, many approaches utilize blob-like priors that enforce
boundary smoothness and, as such, assert little in terms of
subtle structures and complexity in the simulation of the field.
Therefore, for synthesizing complex label fields, such as those
in Fig. 1(c) and (d) illustrating structures in remote sensing
imagery, a more subtle model is required.

The simplest method to improving the modeling of subtle
structures is through the use of a Fourier basis for a Markov
random field (MRF) model kernel [30], [31] method with
threshold. Unfortunately, this approach is able to give only a
stationary binary field and, even more problematic, only at a
single scale. To capture complex scale structures, we have to
get away from single-scale models such as local MRFs, two-
point correlations [32], and local binary patterns [33].
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Fig. 1. [(a) and (b)] RADARSAT-1 SAR sea-ice texture samples and [(c) and
(d) their underlying label maps]. Many SAR textures have underlying label
maps with multiscale structures which can be (c) binary or (d) multilabeled.
The scale-dependent behavior in (c) and (d) will usually not be well captured
by a single random field.

Instead, hierarchical MRF modeling [34]-[36] provides a
more natural and efficient way to deal with multiscale struc-
tures. However, the hierarchical models in [34]-[36] utilize
simple models, like Ising or Potts at each scale, that are too lim-
iting to capture complex structures. A different approach is the
frozen-state hierarchical field (FSHF) model, which has been
proposed for generating binary images with scale-dependent
models and is computationally efficient [37]. Although it is
possible to apply the FSHF to model a binary label map
[Fig. 1(c)], this approach cannot be used directly in cases with
more than two labels or with nonstationary behavior [Fig. 1(d)],
both of which are common in remote sensing imagery.

Already discussed in the introduction is the significant lit-
erature on nonparametric texture synthesis methods [18]—-[21].
These methods grow a synthesis by iteratively matching image
patches in the synthesis and training. Being driven directly by
the training data, these methods often produce good syntheses,
but can miss large-scale or nonlocal phenomena, and suffer
from patch copying when the patch size is set too large.

There is an established literature on the use of partition
trees to decompose multilabel problems in image segmentation,
compression, and synthesis [22]-[24], [38]. In this approach, a
multilabel problem is repeatedly partitioned to yield a set of
simple problems. In the past, the simple partitioned problem
was solved using simple models, such as a single MRF. How-
ever, as we will see, a partitioned label field may still possess
sufficiently complex scale-dependent structure to require a
more sophisticated model, such as the FSHF.

III. HIERARCHICAL FIELDS

In this paper, we are proposing to do data and label synthesis
on the basis of first synthesizing the label field, specifically
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by combining two existing methods—hierarchical models and
partitioning methods.

There exist a variety of approaches to synthesize label fields
and, in particular, we are using methods taken from MRFs
which have been widely used in discrete field modeling [39],
[40]. In modeling a given label field U, an MRF [28], [29]
characterized by a local neighborhood N

Pluslus\s) = p (us|u,) (1)

cannot assert the presence of structures on more than one
scale, whereas learning a huge nonlocal model which can,
in principle, learn such structures is a prohibitive approach.
Instead, to model a label field U having multiscale structure, we
would propose using scale-dependent modeling, such that U is
defined via a sequence of fields {Uy, k € K = (0,1,..., M)},
where k& = 0 denotes the finest scale and k = M the coarsest.
At each scale k, Uy, is defined on site space Sy and results from
the downsampling of U = Uj. A hierarchical Markov random
field (HMRF) model can be written as

p(uo, -+, unr) =

M-1
11 p(uk|uk+1)] plunr). ()

k=0

The advantage of hierarchical modeling is that nonlocal
large-scale features become local at a sufficiently coarse scale;
therefore, at each scale, a single MRF can be used to capture
the features local to that scale, inherently allowing for scale-
dependent structures. We will define uy, s to be the label state
at site s on scale k, with an associated local neighborhood N ks
and parent uj 1, (s) On the next coarser scale.

1) Frozen-State Hierarchy Model: In defining a hierarchical
model, two issues need emphasizing: 1) the interscale context
and 2) the computational complexity. To effectively model
the spatial context, the interscale relationships are defined
as a Markov chain in [36] with p(ug|ug\i) = p(ur|ugi1),
whereas the intrascale relationships are MRF p(ug s|uy \s) =
P(Uks|Uk41,0(s), g k). This model has attractive elements
but remains computationally expensive.

To improve computational efficiency, an FSHF model was
presented in [37] to synthesize binary images. In that work, a
given binary field (u = wug) can be represented by a hierarchical
field {uy}, where uy =i (ug) is a downsampled field. At
coarse scales (k > 0), uy, is defined with a ternary state uy(s) €
{0,1,1/2}, where 0, 1 (black, white) are determined states,
and 1/2 (gray) is undetermined. In terms of modeling, a fine
to coarse representation can be derived as

1 ifup_1,4=1, Vg € Re—1(s)
ups =9 0 ifug1,4=0, Vg e Rp-1(s)  (3)
% otherwise

where )1 (s) is the set of sites in scale & — 1 corresponding
to the location s in scale k. Then, for synthesis, the key idea of
the FSHF model is that, at each scale, only the sites which are
undetermined need to be sampled, with those sites determined
by the parent scale fixed (or frozen)

P(ur,s|ug,s\s)
_ {5%,57%“,@(5) if up41,0(s) € {0,1}  <— Frozen
P (ursluen.) ifurirpe) =3 +— Sampled.
4)
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Fig. 2. Key concept of this paper: The modeling structure of TSHF. The

partition tree has a hierarchical field at each node, where the field U; is
conditioned on the behavior of its parent, or both parent and grandparent.

With the frozen state, large scale features captured at the coarse
scale are frozen and maintained to the fine scale, regardless
of annealing schedule or sampling method. Since the interface
between determined regions represents only a small fraction
of most images, this approach offers a huge reduction in
computational complexity relative to standard full-sampling
hierarchical techniques. Given the significant computational
benefits of the FSHF model, we are motivated to extend this
modeling approach for the multistate case.

2) Multistate Hierarchy: In general, extending beyond bi-
nary modeling leads to rather complex representations and
models, as well as to significant computational complexity.
Although the FSHF model is effective in binary modeling,
extending the method to multistate modeling is not a trivial
step [27], [37]. The problem related to modeling all pairwise,
triplet wise, etc., label interactions at coarser scales is quite
complicated even for the ternary case.

However, for some ternary-state phenomena, if there is an
intermediate medium acting as a physical separation or layer
between two others, we have a particularly convenient con-
text for modeling the ternary phenomenon. We can change
the state definition of the FSHF by letting gray (1/2) de-
note the intermediate layer or undetermined, with the effect
that the FSHF method can be directly applied and the interme-
diate state will lead to a ternary rather than binary field at the
finest scale. We insist here on a spatial decoupling assumption
that the intermediate state conditionally separates the other
two states; in most cases, it will be simpler to decompose a
complex multilabel structure into a set of simpler components
as discussed in Section IV.

3) Modeling and Sampling: At each scale k, the FSHF can
be formulated by a Gibbs distribution

e Er(ur)/T
p(ug) = A %)
where T is a temperature, Z; is the partition function, and
Ej(uy) is the energy function at scale k.

A variety of energy functions [32] can be used to model
complex structures. In the proposed modeling approach, we use
alocal histogram model [33], [41], a nonparametric model of all
possible joint configurations within a 3 x 3 neighborhood with
29 binary or 3% ternary configurations. The energy function at
each scale k is then defined as

N-1

n=0
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Complex multilabel map can be decoupled as several binary or ternary fields with relatively simple structures. For example, the label map from Fig. 1(d)

is decomposed here in (a)—(f). Although some fields, such as (a), (b), and (d), still contain structures at multiple scales, each decomposed field becomes much

simpler than the original.

Sampling

Modeling

Fig. 4. Hierarchical modeling approach is a bottom—up process, starting at
the finest scale to infer a different model at each scale. Hierarchical sampling,
on the other hand, is a top-down process, starting at the coarsest scale then
sampling at each scale k, constrained by the model H}, and parent state Uk+1.

where N is the number of possible neighborhood configura-
tions, H}, is the target histogram corresponding to the training
data, hj is the sample histogram corresponding to wug, v
is a normalizing coefficient, and e controls the penalty for
unobserved (H = 0) configurations.

In sampling, the FSHF algorithm is randomly initialized at
the coarsest scale; the label field is then sampled by simulated
annealing from coarse scale to fine scale. The hierarchical
model and sampling scheme applied in this paper is shown
in Fig. 4.

IV. TSHF

The FSHF method in Section III offers a compelling ap-
proach to modeling, which is computationally highly efficient,
and admits a scale-dependent model for the synthesis of binary
label maps. However, there are two obvious issues that need

to be addressed for the synthesis of more complex label fields
as encountered in remote sensing: First, we generally have to
solve a multilabel problem; second, the label maps may be
nonstationary, meaning that there are different behaviors in
different parts of the image which cannot be well modeled
by a single hierarchy. Forcing a single hierarchy to learn the
variability of a nonstationary behavior leads to an averaging
effect; thus, we need more than one model.

There is an existing literature on partition trees [22], [23]
which allows a given image or label map to be partitioned into
pieces. The general idea behind the partition tree is that behav-
iors are split and successively subdivided until homogeneous
portions of images are found. In general, such binary partition
trees can be used in problems of classification. Here, we choose
to use them equally suitably in image synthesis as a proposed
TSHF. The assumption is that a given multilabel image can be
produced as a tree-structured conditional sequence of binary
or ternary images, such that the dominant large-scale structure
is produced first (the root node of the partition tree) and,
then, with further details inside and outside of this structure,
developed in the child nodes, a detailed example of which
will be seen in the experimental results. The key idea is to
use the existing method of partition trees to combine multiple
hierarchical models to allow the nonstationary and nonbinary
representation that we are seeking and at the same time to
preserve the scale-dependent computational efficiency of the hi-
erarchical approach. The modeling structure of TSHF is shown
in Fig. 2.

In the proposed modeling approach, the structural com-
ponents of U are progressively specified by a sequence of
nodes in a binary tree 7' = {U?|Q",0 < i < N} from mixed
to pure labeled states. Every node is defined as a conditional
hierarchical field U*|Q" = {U}|Q%, k € (0,1,..., M)}, where
Q! denotes the set of fields on which U? depends. The partition
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Multilabel synthesis with the proposed tree-structured hierarchical model. [(a)—(f)] The synthesized component fields are shown, corresponding to the

training samples shown in Fig. 3. The simple binary/ternary fields can be combined, based on (i) the tree structure, to achieve (g) the final label map, which is

~0 =1

clearly similar to the true label map in Fig. 1(d). Given (g), (h) a synthesized sea-ice texture sample is produced. (a) 110|1. () ot \&“. (c) 4?2 |4, 4. (d) a3 |ﬁo.

e at|ad,a°. () a°|a°, a°. (2) @ = J(aP, ..., a%). (h) 4. (i) Partition tree.

tree starts at the root U% = {UP|Q" = 1}, used to capture the
most significant structure of U.

The influence of U* on the partition tree is mediated through
the up to two children of U ¢ conditional on U? or U*, such that
binary field U? controls the spatial extent of its children. The
conditioning is encoded in Q' which consists of one or more
fields, such that

Q'=U* — U'=0 if U=0
Q' =U*U" — Ul=0 if U=1orU’=0 (7)

etc.

Since each node under 7" only models simple binary/ternary
structures, each field U* | Q' can be well modeled by the FSHEF,
as discussed in Section III, and each scale of each field U ;\Ql
can be sampled as

019"« p (Ui1Q Ui ) - ®)

This process proceeds recursively, first over all scales in U°
then over scales on fields further down the partition tree.
The process by which we infer a partition tree structure

T from a given ground-truth label field u is a creative one,
requiring human input, and is highly problem dependent. The
main example of this paper, the field shown in Fig. 1(d), has
as its dominant large-scale structure the binary behavior u°|1
[Fig. 3(a)]. Since both foreground and background in Fig. 3(a)
correspond to mixed labels, the partition process needs to

continue. The foreground is partitioned into two binary fields
[Fig. 3(b) and (c)], whereas the background is decomposed
into a Fig. 3(d) ternary field and Fig. 3(e) and (f) two minor

residual binary ones. The original label field u has thus been
decomposed (Fig. 3), represented as a partition tree, as shown
in Fig. 5(1).

Having specified a partition tree, the inverse step, the process
of recombining the synthesized conditional fields {U?|Q'} to
getd = J(aY,...,aM) is straightforward.

Thus, the proposed TSHF method synthesizes a label field
in two ways: In terms of shape complexity, the structure is
gradually refined hierarchically from coarse to fine resolution;
in terms of label complexity, the states are specified through
a partition tree from coarse to fine labeling. The proposed
modeling approach, with both resolution-oriented and region-
oriented hierarchies, provides a capability to model complex
discrete fields using simple models while maintaining high
computational efficiency. A hierarchical model on its own, such
as the FSHE, can be considered as a special case of the TSHF
with only one region-oriented component.

Admittedly, one of the limitations of the proposed approach
is its spatial decoupling assumption, which assumes that a
multilabel field can be decomposed into multiple binary/ternary
fields. In some cases, in which the different label regions are
highly interacting, this assumption may not hold true; however,
our tests show that a variety of SAR and other data can indeed
be modeled in this way.

The overall modeling process (Algorithm I) is therefore to
select a partition tree to find the ground truth for each state
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in the partition and to learn a histogram model H} in (6)
from the empirical histogram of the ground-truth data for each
scale k in model :. With the modeling performed, the sampling
process follows the dependency structure of the partition tree.
Each hierarchy is randomly initialized at the coarsest scale and
sampled at progressively finer scales using simulated annealing.
When all of the frozen state hierarchies have been sampled, the
generated fields are combined according to the partition-tree
structure to obtain the label synthesis.

Algorithm I: TSHF Modeling

1) Initialize a training partition tree 7' = {U*|Q%,0 < i <
N}.

2) Learn a hierarchical histogram model H} at k scales for
each conditional node U | Q'inT.

3) Initialize each sampling hierarchy randomly at the coars-
est scale.

4) Sample each hierarchical model from coarser to finer
scales by using simulated annealing.

5) Combine the generated fields to the partition-tree struc-
ture and obtain the synthesized label field.

V. IMAGE SYNTHESIS

The textured data in Fig. 1(a) and (b), having a complex non-
local nonstationary behavior, are difficult to model. Therefore,
the direct synthesis

&« p(x) €))

is a complicated undertaking. On the other hand, because U
represents the salient features of interest in X, what remains in
X, given U, are the fine-scale details not of interest, namely,
noise, speckle, quantization, blurring, etc.; all of which are
comparatively simple and /ocal textural phenomena. That is,
the synthesis

Z + p(x|a) (10)

is comparatively straightforward; therefore, we are deliberately
picking an existing texture synthesized method [18] to generate
the fine-scale texture on top of .

The method in [18] is a sample-based approach to synthesis,
such that a pixel x5 is synthesized by comparing its neighbor-
hood Xy to all possible neighborhoods in the training data

= and selecting x5 at random from among the matching x
neighborhoods.

We slightly modify the method of [18] to allow a synthesized
texture Z to be sampled from the conditional MRF X |U

(1)

rather than directly from the texture field X. Given the con-
ditioning on u,, we now search for a set of closely matching

T p(zs|on,, us)

patches in x, for which the training label w also matches.

We will see in Section VI that this simple texture synthesis
approach leads to good results. There is nothing inherent ne-
cessitating the use of [18] with our approach; indeed, any other
advanced texture synthesis method may be used as well.
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(c) (d)

Fig. 6. Binary-label sea-ice samples synthesized using a frozen-state hier-
archical model. Trained by the label sample in Fig. 1(c), [(a) and (b)] the
synthesized label maps not only maintain similar format structure statistics of
the training sample but also have significant variations. Conditioned on (a) and
(b), it is straightforward to sample the textures shown in (c) and (d), comparable
to the true sea-ice sample of Fig. 1(a).

VI. EXPERIMENTAL RESULTS

This paper proposes two goals:

1) the synthesis of realistic SAR data;
2) the synthesis of the underlying label field as ground truth.

To demonstrate the effectiveness of the proposed TSHF
model, the data synthesis approach described in Sections IV
and V was used to generate random SAR sea-ice data based
on operational RADARSAT-1 SAR sea-ice data of the polar
region provided by the CIS, as well as SIR-C/X-SAR land-
mass data of Hong Kong, China, provided by NASA JPL. The
SAR sea-ice data used to learn the model for generating sea-ice
imagery are acquired in the microwave band (C-band), with HH
polarization, 100-m pixel spacing, and three ice types. The sea-
ice data of the polar region are difficult to model and synthesize
given the complex sea-ice structures and formations, as well as
nonhomogeneous texture characteristics. The SAR land-mass
data of Hong Kong, China, used to learn the model for gener-
ating land-mass imagery are acquired in the microwave band
(C-band). The sea-ice and land-mass data are very different
from one another, with the intent of illustrating that our method
is not specialized to a single type of SAR data.

A. Single Hierarchical Approach

A single hierarchical field model, such as the FSHF, can
be considered as a special case of the TSHF with only one
component. As the first test for the proposed model, we apply
a single FSHF model to synthesize a scale-dependent binary
field. This initial test is undertaken to demonstrate the morpho-
logical modeling performance of a single hierarchy in modeling

a binary field. The model is trained by the binary field & shown
in Fig. 1(c). Two synthesized samples @ are shown in Fig. 6(a)
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Fig. 7. Multilabel sea-ice samples synthesized with multiple runs based on the same training samples from Fig. 3 and the same tree structure in Fig. 5(i).
-3 -3
g X 10 g X 10
------ True sample v True sample
— Synthesized samples —e=0.1
-k AV €=0.02
5 5 ---£=0.001
Q Q
o 4 24
o o
© ©
X X
a2 a2
. . a .
0 100 200 300 400 500 1 100 200 300 400 512
Chordlength Index Chordlength Index
(a) (b (©
Fig. 8. Hierarchical model of the proposed modeling structure is evaluated using a chordlength model [42]. (a) Large binary microscopic excerpt (2048 x 2048)

for model evaluation. (b) Chordlength distributions from multiple synthesis runs. (c) Chordlength as a function of parameter € in (6).

and (b). We can see that the structures in the synthesized
fields essentially resemble the multiscale phenomena of the
training data.

The texture at each pixel Z4 is sampled, as described in
Section V. In the synthesized texture samples, Fig. 6(c) and (d),
we see that the created texture skin is consistent with the texture
characteristics in the training data shown in Fig. 1(a).

B. Tree-Structured Hierarchical Approach

A more general test for the proposed TSHF is the image
shown in Fig. 1(b), with a corresponding label field in Fig. 1(d).
Based on the tree-structured modeling representation of
Section IV, a partition tree of binary or ternary component

fields ﬂZ is constructed, as shown in Fig. 5(i), such that the
hidden field is produced from the components as

12)

where the partition tree structure is subjectively inferred, by
hand, from the training data.

We thus obtain a complex synthesized multilabel field
[Fig. 5(g)]. By comparing Fig. 5(a)—(f) to Fig. 3(a)—(f), respec-
tively, we can see that the synthesized components generally
resemble the multiscale structure in their corresponding train-
ing components. Since the structured features of each training
component can be well captured by each node hierarchy, the
final label field should possess similar statistical characteristics

Fig. 9. Sea-ice label map synthesis comparison. Panels (a) and (b) show
the label fields resulting from single Markov fields based on chordlength and
local-histogram models, whereas panels (c) and (d) show the label fields from
the scale-dependent FSHF and TSHE, respectively. It is clear that the single
Markov models can only provide stationary fields, with structure on one scale,
as opposed to the nonstationary and scale-dependent structures possessed by the
real label maps in Fig. 1(c) and (d), which are well captured by the multiscale
models in the FSHF and the TSHF. (a) Two-phase black/white chordlength
model [42]. (b) Local histogram model [41]. (c) FSHF. (d) Proposed TSHEF.

to the training data, comparing Fig. 5(g) to Fig. 1(d). Given the
synthesized label field [Fig. 5(g)], the sea-ice texture may be
generated [Fig. 5(h)] and can be compared with Fig. 1(b).
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Fig. 10. Sea-ice texture synthesis comparison, based on [(a) and (d)] the pixel-based nonparametric sampling method [18], [(b) and (e)] patch-based sampling
method [19], and our [(c) and (f)] texture synthesis method proposed in Section V. The top row shows two-label synthesis results and should be compared to
Fig. 1(a). The bottom row shows three-label syntheses compared to Fig. 1(b). The difficulty in producing large-scale structure is particularly apparent in the

[(d) and (e)] three-label case relative to (f) our result.

To emphasize the variability in the synthesized samples and
the suitability of our approach in generating ground-truth test
data, three additional results based on the same training data
are shown in Fig. 7. We can see that the synthesized label fields
provide substantial variations and yet share similar statistical
characteristics.

The hierarchical model in the proposed modeling structure
is evaluated, as plotted in Fig. 8, using a chordlength model
[42] from a large (2048 x 2048) binary sample [Fig. 8(a)]. This
test sample, a microscopic image of a physical porous medium,
contains a wide variety of multiscale structures, exactly the
sort of structure our proposed hierarchical model is expected to
model. Comparing the chordlength plots between the synthe-
sized and true fields [Fig. 8(b)], the chordlength model, which
is unrelated to our model in (6), validates the consistency of the
synthesized samples with each other and with the true sample.
The sensitivity of the free parameter e in (6) is assessed by
generating samples as a function of €; as shown in Fig. 8(c),
the proposed algorithm is insensitive to small e.

To illustrate the strength of the TSHF, we compare our
proposed method with other methods in label field modeling
and texture synthesis. First, a single MRF is used to synthesize
both binary and ternary fields based on Fig. 1(c) and (d). The
synthesized label fields are shown in Fig. 9(a) and (b) where
we see that the synthesized structures are local and stationary,
rather than presenting the multiscale structures appearing in the
true label maps. In contrast, the FSHF and TSHF models exhibit
their capabilities of capturing complex structures in the label
fields by capturing the presence of scale-dependent behavior in
Fig. 9(c) and (d).

As a second comparison, we compare our proposed data
synthesis method with two nonparametric texture synthesis
methods: one is a pixel-based sampling [18] and the other
is a patch-based sampling [19]. The basic idea of both non-

parametric methods is to directly sample the given image by
using self-similarity, a concept widely used in texture synthesis.
For the relatively simple sea-ice training data in Fig. 1(a), the
generated textures from the two comparison methods are given
in Fig. 10(a) and (b), which provide a good reproduction of
the training sample. Similarly, given the training data with
more complex structure in Fig. 1(b), the nonparametric methods
also provide quite attractive results in Fig. 10(d) and (e) and
demonstrate a good ability in structure representation.

However, there are three significant issues. First, the non-
parametric methods are sensitive to the synthesis staring seed,
such that for certain seeds the synthesis may fail to sense certain
significant structures present in the training data, as may be seen
in comparing Fig. 10(e) with Fig. 1(b). Second, the nonpara-
metric methods are sensitive to window size, such that a small
window fails to sense large-scale structure, whereas a large
window can lead to copying portions of the training image,
as may be seen in Fig. 10(d), rather than random sampling.
Finally, and most significantly, the texture synthesis methods
synthesize only the texture and have no notion of the underlying
label field, which is essential for the testing of classification and
segmentation algorithms.

A third experiment compares to a recent method [21] in
which a nonparametric method does generate the label field
as part of synthesis. Developed from the patch-based sampling
method of [19], the method inherits the same advantages and
disadvantages of patch-based methods. Because the focus of
[21] was on texture synthesis, and not necessarily the quality of
the underlying field, the synthesized ground truth is relatively
poor, as shown in Fig. 11. In particular, the synthesized label
field is rather sensitive patch size [Fig. 11(a)—(c)] and suffers
from blocky and repetitive artifacts [Fig. 11(c), (d), and (f)].

As a final experiment, in contrast to the sea-ice im-
agery shown in the previous examples, land-mass imagery in
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Sea-ice label map synthesized by the IceSynth2 method [21]. Based on the binary and ternary label samples of Fig. 1(c) and (d), samples (a)—(c) and

(d)—(f) are synthesized with the stated patch sizes. The sensitivity of the result to patch size is clear, as is the blockiness and repetitive artifacts in (c), (d), and (f).
(a) Block size 10 x 10. (b) Block size 40 x 40. (c¢) Block size 100 x 100. (d) Block size 10 x 10. (e) Block size 40 x 40. (f) Block size 100 x 100.

(d

Fig. 12.

(a) SIR-C/X-SAR land-mass imagery with (d) its given label field. Both (e) the synthesized label field and (f) texture resemble (d) the true label map

and (a) texture well. (a) Land-mass image. (b) Method of [18]. (¢) Method of [19]. (d) True label field of (a). (e) Synthesized label field from the proposed TSHF.

(f) Synthesized texture from (e).

Fig. 12(a), with a corresponding label field in Fig. 12(d), is also
used as training samples. The synthesized label field and texture
are shown in Fig. 12(e) and (f). Compared to the results in
Fig. 12(b) and (c), from the nonparametric methods [18], [19],
our proposed approach shows more flexibility in producing
random syntheses, particularly, given the similar structures
which appear in the nonparametric syntheses, copied from the
training data.

VII. CONCLUSION

In this paper, a novel modeling approach has been introduced
for capturing complex nonstationary scale-dependent structures
in complex SAR data. The proposed TSHF model integrated a
region-oriented binary tree structure with a resolution-oriented
hierarchical approach to allow for complex multiscale structure
modeling while maintaining high computational efficiency. The
application of the proposed model for synthesizing complex
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SAR data with complex multiscale structural characteristics
has been presented, and experimental results using operational
RADARSAT-1 SAR sea-ice and SIR-C/X-SAR land-mass data
have demonstrated the effectiveness of the proposed model at
producing realistic synthesized SAR data and corresponding
ground-truth label fields. Although, here, the proposed ap-
proach has been demonstrated in the synthesis of SAR sea-ice
and land-mass data, it is nonspecific and can be applied to a
wide variety of different remote sensing problems. The primary
limitations of the proposed approach are the need for a manual
partition tree and the strict spatial decoupling assumption; both
limitations are the subject of ongoing work.
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