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ABSTRACT

Among the main limitations of active contours are their
high noise sensitivity and poor capture range from the target
object. One of the most promising approaches for address-
ing these limitations is the concept of Vector Field Convo-
lution (VFC). However, due to its isotropic vector field ker-
nel, VFC does not take full advantage of the underlying im-
age structural characteristics. By specifically addressing this
idea, a novel local tensor vector field approach is developed to
adaptively account for these structural characteristics. Experi-
mental results demonstrate that the proposed adaptive method
leads to more accurate segmentation.

Index Terms— Active Contour, Snake, Segmentation,
Tensor Vector Field, Vector Field Convolution

1. INTRODUCTION

Active contours [1, 2, 3] are a set of methods for identifying
the boundary of an object of interest in a given image, which
is useful for a wide variety of applications in computer vi-
sion and medical imaging, such as object tracking and image
segmentation. The prime advantage of active contours lies in
their implicit way of handling object deformation based on
image gradients and other priors.

Briefly, for an active contour, the contour is initialized
around the object, following which the contour moves iter-
atively toward the boundary of the object of interest by min-
imizing some objective function, ideally eventually fitting it-
self around the object. The objective function to be minimized
has two so-called energy components [1]: i) an internal en-
ergy, which constrains the shape of the contour, thus allowing
only certain permissible deformations in the contour, and ii)
an external energy, which pulls the contour towards the object
boundary by favouring gradients or other image features.

The main challenge for an active contour algorithm is to
converge a contour to the ideal object boundary irrespective of
its initialized shape and position. The algorithm proposed by
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Kass et. al. [1] does not effectively capture objects when the
initial contour is placed far from the boundary. Furthermore,
this approach is very sensitive to the presence of noise in
an image, which tends to distract a converging contour from
reaching the ideal object boundary by distracting the external
energy with high gradients induced by the noise points.

To address these issues, there has been a long history of
proposing variations of external fields to improve the conver-
gence of active contours, particularly for contours with con-
cave boundary sections. External fields based on natural force
models such as gravitational force based field [4] and elec-
trostatic force [5] have been explored to better move contour
points towards the object boundary.

The Gradient Vector Field (GVF) and its more general-
ized version [6, 3] was introduced to address the issue of the
small capture range of the original active contour [1]. GVF
addresses the problem of small capture range very effectively
and can diffuse the field toward the concave boundary of an
object. However, the GVF is both sensitive to noise and is
computationally expensive. While there have been improve-
ments to the GVF model [7, 8], they have not yet addressed
these limitations effectively.

The Vector Field Convolution (VFC) [9, 10] was proposed
to handle the aforementioned limitations of GVF. While VFC
has been shown to be more effective than previous external
field models at handling noise and improving capture range,
it fails to take full advantage of the underlying structural char-
acteristics of the object boundary due to its isotropic property,
and still faces difficulty in handling high noise scenarios.

In this paper, we present a novel external field model
called Tensor Vector Field (TVF), which adaptively enforces
the external field around strong structural characteristics, and
hence makes it more robust to noise. In TVF, a vector field
kernel is adaptively modified based on the local tensors, help-
ing to generate a smoother and stronger external field by
nullifying the distracting affects of noise, leading to faster
convergence.

2. BACKGROUND

There are two types of active contours: parametric [1, 9, 6]
and non-parametric [2]. In this paper, we shall focus on para-



(a) Original Image (b) GVF [3] (c) VFC [9] (d) TVF

Figure 1: (b, c, d) depict the field streamlines for three dif-
ferent external fields in the brain (100 × 100 size) image (a),
corrupted by impulsive noise. The extent of the desired dark
regions [9], shows the effectiveness of the corresponding field
in pulling an active contour towards the object boundary.

metric active contours, which can be expressed in terms of a
normalized arc length parameter s as c(s) = [x(s)y(s)] s ∈
[0, 1], where x(s) and y(s) are the co-ordinates of the con-
tour in terms of s. The contour c deforms with the iterative
minimization of its energy EAC :

EAC =

∫ 1

0

[
Eint

(
c(s)

)
+ Eext

(
c(s)

)]
ds (1)

where Eint is the internal energy and Eext is the external
energy. The internal energy Eint is commonly expressed in
terms of two components as Eint = 1

2 (α|c′(s)|2 +β|c′′(s)|2)
and works to restrict the shape of the contour, based on some
prior model, here constrains on contour stretchability and cur-
vature. The external Eext drives a contour towards the object
boundary and may depend on properties such as intensity,
color, gradient etc. As such, the capture range of a contour
depends on Eext. EAC is minimized by satisfying Eq. 2, ob-
tained by partial differentiation of EAC (Eq. 1) with respect
to s and equating the result to zero.

αc′′(s)− βc′′′′(s)︸ ︷︷ ︸
Fint

−∆Eext︸ ︷︷ ︸
−Fext

= 0 (2)

The deformable contour moves towards the object boundary
in order to balance these opposing forces. Figs. 1 and 2 show
the external fields created by both GVF and VFC, showing
how a particle would move when placed in the field. For vi-
sualization, we have shown only those fields which can lead
a particle to the object boundary.

In a VFC based external field, the vector field kernel k of
size a × a is defined as k = n(i, j)m(i, j), where, i, j are
the coordinates with respect to the kernel’s center, n(i, j) is a
unit vector which points to the center of the kernel, m(x, y)
is the magnitude of the vector. n and m can be defined as,

n(i, j) = [−i/r,−j/r] (3)

m(i, j) = (r + ε)−ζ or m(i, j) = exp− r
σ

2
(4)

where r =
√
i2 + j2, ε is a small quantity to avoid n(0, 0)

from tending to infinity, ζ and σ are positive values to define
the decay of m as we move away from the origin.

(a) Original Image (b) GVF [3] (c) VFC [9] (d) TVF

Figure 2: Three field streamlines are shown (b, c, d) corre-
sponding to the starfish (109 × 104 size) image(a) corrupted
by noise. The greater extent of dark regions in (2d) shows the
promise of the proposed TVF approach.

Fext is obtained by convolving the edge map f(x, y) of
an image with the kernel k. Structural characteristics lead to
greater values in f when compared to uniform regions, thus
resulting in a stronger field around strongly structured areas.
The capture range clearly depends on the kernel size and de-
cay parameters, so the kernel size is chosen based on the ex-
pected or desired capture range of Fext. One limitation of
VFC is that it does not differentiate strong continuous struc-
tural characteristics such as the object boundary from random
structural fragments due to noise. Therefore, in spite of its
robustness compared to other external fields, VFC may still
fail to converage in the presence of noise.

3. TENSOR VECTOR FIELD

To address the limitations of VFC when dealing with the pres-
ence of noise, the concept of structure tensors [11] is incorpo-
rated into the construction of the external field in the proposed
TVF approach. Structure tensors allow for the characteriza-
tion of both the direction and coherence of structural charac-
teristics in the image, making it a perfect fit for incorporat-
ing structural characteristics. The proposed TVF approach
presents a way to improve active contours result by adap-
tively modifying the VFC kernel using image tensors Γ(x, y).
Γ(x, y) can be expressed as,

Γx,y =

(
σx,x σx,y
σy,x σy,y

)
(5)

where σx,x, σy,y are weighted variances and σx,y is a
weighted covariance of the image gradient. A Gaussian
mask of size κ× κ is used to compute these variance and co-
variance variables. If the mask’s center is at the x, y position
of the image, and i, j are co-ordinates with respect to mask’s
center, the co-variance of an image gradient can be expressed
as

σx,y =

κ/2∑
i=−κ/2

κ/2∑
j=−κ/2

g(i, j)ux(i, j)uy(i, j)

where g(i, j) is an element of the Gaussian mask at (i, j), ux
and uy are image gradients in x and y directions respectively.



(a) GVF [3] (b) VFC [9] (c) TVF

Figure 3: The result of applying active contours to the starfish
image (PSNR=25.5 dB) for 30 iterations using three different
external field approaches. The red and green curves represent
initial and final contours, respectively.

Other weighted variances (σx,x, σy,y) of the image gradient
can be computed in a similar manner. We have used the FFT
to accelerate the computation of weighted co-variances and
variances. For each Γ(x, y), the major axis is obtained by
calculating a major eigenvector v+(x, y) corresponding to its
maximum eigenvalue λ+(x, y). As such, v+(x, y) gives the
direction along the gradient at (x, y) and the corresponding
λ+(x, y) gives the gradient strength.

In TVF, the magnitude of each element of the vector field
kernel k is modified using these major eigenvectors v+(i, j).
Furthermore, |n(i, j)| is modified in proportion to the mag-
nitude of the projection of v+(i, j) on the vector kernel ele-
ment, n(i, j). Therefore, if v+(i, j) is perpendicular to the
kernel element vector, the magnitude of that vector element
will become zero. The kernel element can thus be modified
as

kmod(i, j) = |n(i, j) · v+(i, j)|m(i, j)λ+(i, j)n(i, j). (6)

Finally, the vector field kernel is computed adaptively based
on the local tensors, as expressed in Eq. 6. The resulting ex-
ternal field is the desired TVF. Eq. 2 is then solved iteratively
using the identical finite difference approach, as used in the
VFC method [9].

4. RESULTS AND ANALYSIS

The TVF method is tested on different images with varying
amounts of additive Gaussian noise, and the results are com-
pared with that of VFC [9] and GVF [3]. The performance
comparison is made consistent by using the same initial con-
tour for each image. The kernel size(a), mask size(κ) and
standard deviation of the Gaussian mask have been kept 65, 5
and 1, respectively. A commonly used segmentation perfor-
mance comparison parameter, the F1 measure [12], is used to
compare the results of the three active contour results. The
measure is expressed as

F1 measure =
2× precision× recall

precision + recall
(7)

(a) Brain (Fig. 1a), PSNR = 25.2 (b) Starfish (Fig. 2a), PSNR = 25.4

Figure 4: Convergence behaviour of the active contour for
all three external fields. The proposed TVF converges in ap-
proximately the same number of iterations as VFC, but with
a higher F1 measure.

where precision = TP
TP+FP and recall = TP

TP+FN . TP ,
FP , and FN represents the area of true positive regions,
false positive regions, and false negative regions, respectively,
where each area is computed as a pixel count.

In Fig. 1, the higher density and the even distribution
of the dark regions allow for better likelihood of conver-
gence [9]. We can clearly observe that TVF does better than
VFC and GVF in satisfying this criterion. A similar pattern,
showing the stronger performance of TVF over VFC, GVF
can be observed in Fig. 2.

Fig. 3 shows the final active contour results after 30 it-
erations for a low PSNR starfish image (Fig. 2a). It can be
observed that the object boundary coincides well with the fi-
nal contour using TVF, whereas it fails partially for VFC and
performs poorly for GVF. This demonstrates the robustness
of TVF to noise. In high PSNR scenarios, due to the absence
of noise distraction, both TVF and VFC give similar perfor-
mance. TVF shows improvements for both concave and con-
vex types of boundaries.

Fig. 5 shows a comparison using the F1 measure for the
starfish image after 30 iterations under different PSNR sce-
narios. Twenty iterations of each algorithm were run on a
set of images with randomly induced Gaussian noise. The
plot clearly shows that TVF outperforms the other tested al-
gorithms. Figs. 4a and 4b show that TVF takes almost the
same number of iterations to converge to the object boundary.
Moreover, the standard deviation of the F1 measure is smaller
for TVF, indicating greater stability. Table 1 shows the com-
parative results for VFV, GVF, and TVF using different types
of images. TVF outperforms the other tested methods in all
the cases. While TVF is slower than VFC, it can be useful in
noisy situations, specially when the object boundary is promi-
nent and the noise is random.

5. CONCLUSION

We have introduced a novel tensor vector field (TVF), to
be used in active contours based image segmentation. This



Figure 5: A comparison of the proposed TVF field with VFC
and GVF. TVF matches or exceeds the performance of VFC
and GVF for a wide range of PSNR scenarios.

model uses an adaptive vector field kernel based on local
tensor information to better utilize the underlying image
structural characteristics and promote convergence in fewer
iterations. Different comparisons clearly shows that TVF
provides improved performance over earlier external fields
VFC and GVF in terms of both accuracy and stability when
faced with noise contaminated situations.
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