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Abstract— The discrimination of textures is a significant aspect
in segmenting SAR sea ice imagery. Texture features calculated
from grey level co-occurring probabilities (GLCP) are well
accepted and applied in the analysis of many images. When
calculating GLCPs, each co-occurring pixel pair within the image
window is given a uniform weighting. Although a novel technique,
co-occurring texture features have a tendency to misclassify and
erode texture boundaries due to the large window sizes needed
to capture meaningful statistics.

A method is proposed whereby co-occurring pixel pairs closer
to the center of the image window are assigned larger co-
occurring probabilities according to a Gaussian distribution. By
using a Gaussian weighting scheme to calculate the GLCPs, less
significance is given to pixel pairs that are on the outlying regions
of the window, which have a tendency to produce erroneous
statistics as the image window overlaps a texture boundary. This
method proves to preserve the edge strength between textures
and provides better segmentation at the expense of computational
complexity.

Index Terms— Grey level co-occurrence probabilities; texture
analysis; image segmentation; SAR sea ice; texture features;
remote sensing imagery

I. INTRODUCTION

THE use of synthetic aperture radar (SAR) to monitor sea
ice is becoming extremely popular to due its accessibility

and accuracy. Providing images that discriminate pertinent ice
types is important for operational communities (e.g. ships, oil
platforms, etc) and monitoring climatic changes (e.g. global
warming). Although easily segmented by the human observer,
there is no robust automated machine approach that can
separate relevant ice types from an image.

Automated computer interpretation of SAR sea ice im-
agery is exceedingly challenging because of varying imag-
ing parameters, environmental factors, platform resolution,
and electromagnetic properties of active sensors (i.e. speckle
noise). These aspects can create inconsistencies in the tone and
texture of the SAR sea ice appearance and make it difficult to
formulate a robust automated segmentation algorithm.

In general, unsupervised image segmentation involves (1)
extracting each pixel’s features and (2) clustering together like
pixels based their features. Extracting properties of texture
from images make excellent features for segmenting SAR
data. Texture features can be categorized as statistical, struc-
tural, signal-based and model-based (Tuceryan & Jain 1993).
This paper intends on investigating statistical-based features
generated by grey level co-occurring probabilities (GLCP),
developed Haralick et al. (1973), which have been extensively
used in feature extraction of remote sensing imagery.

A drawback of using co-occurring textures for SAR sea ice
segmentation is that they have a tendency to misclassify and
erode texture boundaries, especially for large window sizes and
irregular texture boundaries (Clausi & Yue 2003). Although
large window sizes will erode texture boundaries, they are
necessary to gather sufficient data to characterize local texture
regions; small window sizes will result in poorly sampled
GLCPs, which produce incoherent statistics.

In this paper, a Gaussian weighting scheme is proposed
for calculating the co-occurring probabilities whereby pixel
pairs closer to the center of the image window are given
a higher probability than those on the outlying edges. This
paper intends on comparing the texture features generated by
weighted grey level co-occurring probabilities (WGLCP) to
the GLCP features with respect to their boundary preservation
and segmentation ability.

This paper is arranged in the following manner. In Section
II, a derivation of the grey level co-occurrence method is given.
A complete formulation of the WGLCP texture features and
implementation details are described in Section III. Section IV
provides a comparison of the GLCP and WGLCP texture fea-
tures and their discriminating abilities while the final Section
(V) summarizes and concludes the paper.

II. GREY LEVEL CO-OCCURRENCE TEXTURE FEATURES

The GLCPs provide a second-order method for generating
texture features (Haralick et al. 1973). Given a spatial window
within the image, the GLCPs represent the conditional joint
probabilities of all pair-wise combinations of grey levels given
two parameters: interpixel distance (δ) and orientation (θ). It
should be noted that since the image window is a discrete set, it
is convenient to represent the parameters δ and θ as Cartesian
co-ordinates δx and δy which represent the interpixel spacings
in the x- and y-directions respectively. The probability measure
can be defined as:

Pr(x) = {Cij | (δx, δy)} (1)

where Cij (the co-occurrence probability between grey levels
i and j) is defined as:

Cij =
Pij∑G

i,j=1 Pij

(2)

where Pij represents the frequency of occurrence between two
grey levels, i and j, for a given displacement vector (δx, δy)Proceedings of the First Canadian Conference on Computer and Robot Vision (CRV’04) 
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TABLE I

GREY LEVEL SHIFT-INVARIANT CO-OCCURRENCE TEXTURE STATISTICS

Maximum probability (MAX) max(Cij) for all (i, j)

Uniformity (UNI)
∑

C2
ij

Entropy (ENT)
∑

Cij logCij

Dissimilarity (DIS)
∑

Cij |i − j|

Contrast (CON)
∑

Cij(i − j)2

Inverse difference (INV)
∑ Cij

1+|i−j|

Inverse difference moment (IDM)
∑ Cij

1+(i−j)2

Correlation (COR)
∑ (i−µx)(j−µy)Cij

σxσy

for the specified window size. G is the number of quantized
grey levels for the entire image. The sum in the denominator
represents the total possible number of grey level pairs (i,j)
within the window, given (δx, δy).

Statistics are applied to the GLCPs to generate texture
features. Although many texture statistics can be applied, eight
common grey level shift invariant statistics are considered
(Table I). From the literature (Baraldi & Parmiggiani 1995), it
has been determined that statistics which are grey level shift
invariant are best suited for SAR imagery so that classification
is not a function of tone.

Historically, the GLCPs are stored inefficiently in a G×G
sparse matrix known as the grey level co-occurrence matrix
(GLCM). When using GLCMs, the fewer number of grey
levels, G, the faster the computation of the features. There have
been advances in the computation time required to calculate
the co-occurring statistics through the use of grey level co-
occurring linked lists (GLCLL) (Clausi & Jernigan 1998), or
the grey level co-occurrence hybrid structure (GLCHS) (Clausi
& Zhao 2002). In contrast to the GLCM technique, these
methods avoid storing zero probabilities for grey level pairs.

III. FORMULATION OF THE WEIGHTED CO-OCCURRENCE

TEXTURE FEATURES

When calculating traditional co-occurring texture features,
all the co-occurring pixel pairs within the image window are
considered to have a uniform probability. To improve on the
texture features for the purposes of segmentation, pixel pairs
closer to the center of the image window should be given
higher significance than those on the border. As illustrated
in Figure 1, the location of the pixel pair to the center of
the image window determines the relative frequency of co-
occurrence.

Assume the effective image window, W , is rectangular with
nx columns and ny rows (where nx and ny are odd numbers).
Then the image window can be indexed as follows:

Wx ε

{
− �nx

2
�,−(�nx

2
� − 1), . . . , (�nx

2
� − 1), �nx

2
�
}

Wy ε

{
− �ny

2
�,−(�ny

2
� − 1), . . . , (�ny

2
� − 1), �ny

2
�
}

Fig. 1. Measuring the pixel pair distance to the center of the image window

(3)

where Wx × Wy is the set of pixels in the image window
indexed by their x-y (i.e. column-row) designations as outlined
by the example in Table II. This indexing scheme was chosen
so that center pixel in the image window will have an index
of (0, 0) which is convenient for calculating the WGLCPs.
The grey levels in the image window can be represented as a
function of the index as follows:

W (x, y) = i, where i ⊆ {0, 1, . . . G − 1} (4)

Given two pixels in the image window that are separated
by (δx, δy), one with grey level i, the other with grey level
j, the point that bisects the line connecting W (x1, y1) and
W (x2, y2) is defined as follows:

rij = rij(W (x1, y1), W (x2, y2))

=
(

x1 + x2

2
,
y1 + y2

2

)

= (rx, ry)∣∣∣∣W (x1, y1) = i, W (x2, y2) = j

(δx, δy) = (x1 − x2, y1 − y2)
(5)

Previously in Equation 2, Pij was defined as the frequency
of co-occurrence between two grey levels. However, in this
formulation, Pij is the weighted co-occurring frequency and
is a Gaussian function of rij . Formally, for a fixed interpixel

TABLE II

THE IMAGE WINDOW (Wx × Wy ) INDEXING SCHEME

W(-2,-2) W(-1,-2) W(0,-2) W(1,-2) W(2,-2)

W(-2,-1) W(-1,-1) W(0,-1) W(1,-1) W(2,-1)

W(-2,0) W(-1,0) W(0,0) W(1,0) W(2,0)

W(-2,1) W(-1,1) W(0,1) W(1,1) W(2,1)

W(-2,2) W(-1,2) W(0,2) W(1,2) W(2,2)Proceedings of the First Canadian Conference on Computer and Robot Vision (CRV’04) 
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displacement vector (δx, δy), the weighted co-occurring fre-
quencies are as follows:

Pij =
∑
∀rij

1
2πσxσy

exp
{
− 1

2

[(
rx

σx

)2

+
(

ry

σy

)2]}

(6)

where σx and σy represent the standard deviation of the
Gaussian pdf in the x- and y-directions respectively. Using
Equation 2, the frequencies are normalized to produce the
probability measures.

To maximize the energy of the Gaussian pdf within the
effective image window, the standard deviations are selected
to be 1

5 of the window size. This captures approximately 90
percent of the pdf’s energy (area) in the effective window.
Formally, the window size can be written as a function of the
standard deviation as follows:

nx =




5σx if 5σx is odd

5σx + 1 if 5σx is even

ny =




5σy if 5σy is odd

5σy + 1 if 5σy is even

(7)

In the current implementation, the WGLCPs are stored in a
G×G matrix similar to the GLCM. Once the WGLCPs have
been normalized, the texture statistics (Table I) can be applied.

IV. ANALYSIS AND COMPARISON

A. Objectives

The purpose of this study is to investigate and compare the
texture features generated from WGLCPs and GLCPs. Three
tests are performed for determining the preferred feature set:
(1) segmentation ability, (2) texture boundary edge strength
and (3) computational speed.

B. Parameters

There are a number of parameters required for the cal-
culation of GLCP and WGLCP texture features. First, the
quantization of the image grey levels reduces the memory
and computational demands. Typically, the image is quantized
from an 8 bit (256 levels) representation to 4 or 5 bits. As
outlined in the literature (Clausi 2002), a 5 bit (32 levels)
representation of the image is preferred when calculating co-
occurring features. Secondly, it is ideal to have a minimal
number of texture features by minimizing the number of
parameters used (distances, orientations, statistics). The in-
terpixel displacement vectors selected are dependent on the
nature and resolution of the textures to be segmented. For
most SAR sea ice imagery, the interpixel spacing is selected
for four orientations (0◦, 45◦, 90◦, 135◦) with a displacement
of 1. It is recommended (Barber & LeDrew 1991) that only
three statistics be used. Studies have shown that entropy,

TABLE III

GLCP AND WGLCP PARAMETERS USED

GLCM PARAMETERS WGLCM

(1,0), (1,1), (0,1), (-1,1) Displacement Vector (1,0), (1,1), (0,1), (-1,1)

32 levels Quantization 32 levels

ent, con, cor Statistics ent, con, cor

15 × 15 Window Size 15 × 15

n/a Standard Deviation 3

contrast and correlation form an appropriate set of statistics
(Soh & Tsatsoulis 1999). Third, the window size must be
large enough to characterize the region of interest but remain
sufficiently small as to not erode texture boundaries. As well,
the resolution of the image is a factor when determining
window size. Research indicates that a window size of 15×15
is preferred for SAR sea ice imagery (Barber et al. 1993) for
most satellite platforms. Table III summarizes the GLCP and
WGLCP parameters used for this study.

C. Image data sets

To address the segmentation abilities of the GLCP and
WGLCP features, two texture image sources are studied. Test
Set 1 (Figure 2) is a SAR sea ice image of the Beaufort
area taken from the RADARSAT-I platform with a nominal
resolution of 150 m with 100 m pixel spacing. A manual
segmentation of the image is included with the test set and
is used as ground truth for analysis.

Test Set 2 (Figure 4) is RADARSAT-I SAR imagery of the
Baffin Bay area. The nominal resolution is 150 m with 100
m pixel spacing. As above, the manual segmentation of the
image is included in the test set and will be used in analysis.
This image was selected due to the numerous amount of cracks
within the ice floes. These cracks increase the number of ice-
water boundaries in the image and prove to be very challenging
for segmentation.

D. Segmentation Ability

Using the parameters in Table III, the GLCP and WGLCP
texture features were calculated and scaled using linear nor-
malization for all test sets. The features were scaled to improve
segmentation by providing a consistent resolution along all
dimensions of the features space. From these feature sets, K-
means clustering was applied. Figures 3 and 5 show the seg-
mentation results of K-means clustering for the SAR images of
the Beaufort and Baffin regions respectively. For both images,
the manually segmented boundaries are overlayed (in grey) to
provide a better indication of the segmentation results.

By viewing the lower right quadrant of the segmented Beau-
fort images (Figure 3), it is apparent that the WGLCP features
perform better at segmenting regions close to boundaries. In
general, there are fewer pixels incorrectly classified as water
near boundary regions; this is reflected by a 15 % increase
producers’s accuracy for water when using the WGLCP texture
features. Table IV lists all the accuracies for the BeaufortProceedings of the First Canadian Conference on Computer and Robot Vision (CRV’04) 
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(a) Original (b) Manual Segmentation

Fig. 2. Test Set 1: SAR Sea Ice Image from Beaufort Bay

(a) Segmentation using GLCP feature set (b) Segmentation using WGLCP feature set

Fig. 3. Segmentation Results from Test Set 1: SAR Sea Ice Image from Beaufort Bay

Image (Test Set 1) and indicates that there was a 6 % increase
in the overall accuracy for the WGLCP feature set.

The segmented Baffin images (Figure 5) also display the
same behaviors as Test Set 1. In general, WGLCP texture fea-
tures perform better at segmenting regions close to boundaries.
Formally, Table V indicates that there was a 3 % increase in the
overall accuracy when using the WGLCP features. Although

TABLE IV

TEST SET 1: PERFORMANCE ANALYSIS FOR THE BEAUFORT IMAGE

GLCP METRICS WGLCP

0.73 Overall Accuracy 0.79

0.27 Overall Error 0.21

0.99 Ice: Producer’s Accuracy 0.99

0.68 Ice: User’s Accuracy 0.74

0.36 Water: Producer’s Accuracy 0.51

0.99 Water: User’s Accuracy 0.99

0.40 Kappa Statistic 0.54

there was an increase in accuracy for the WGLCP features,
both algorithms were unable to detect the cracks in the lower
portion of the image. This is a result of the window size being
too large.

For both test sets, there was a significant increase in
the user’s accuracy for ice classification and the producer’s
accuracy for water classification. Both of these statistics are
positively correlated and indicate that more ice pixels were
identified correctly while fewer water pixels were incorrectly
assigned.

E. Texture Boundary Discrimination

An edge transect is a profile view of a GLCP or WGLCP
feature as the image window moves across a row in the image.
The purpose of this test is to measure and to compare the
response of the GLCP and WGLCP features as they move
across a texture boundary. Using the ice and water textures
from the Baffin Image (Test Set 2), an artificial bipartite image
with a vertical boundary was created as shown in Figure 6.Proceedings of the First Canadian Conference on Computer and Robot Vision (CRV’04) 
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(a) Original (b) Manual Segmentation

Fig. 4. Test Set 2: SAR Sea Ice Image from Baffin Bay

(a) Segmentation using GLCP feature set (b) Segmentation using WGLCP feature set

Fig. 5. Segmentation Results from Test Set 2: SAR Sea Ice Image from Baffin Bay

Twenty random transects were taken across the image and
the GLCP and WGLCP texture features were calculated. For
each texture statistic, the results for each orientation were
averaged to make the features directional invariant. As well,
the twenty samples were averaged to increase the signal-to-

TABLE V

TEST SET 2: PERFORMANCE ANALYSIS FOR THE BAFFIN IMAGE

GLCP METRICS WGLCP

0.82 Overall Accuracy 0.85

0.18 Overall Error 0.15

0.99 Ice: Producer’s Accuracy 0.99

0.78 Ice: User’s Accuracy 0.82

0.47 Water: Producer’s Accuracy 0.57

0.99 Water: User’s Accuracy 0.99

0.54 Kappa Statistic 0.63

noise (SNR) ratio. The edge transect responses are displayed
in Figure 7. For these results, the true boundary is indicated
by a dashed vertical line.

Fig. 6. Bipartite Test ImageProceedings of the First Canadian Conference on Computer and Robot Vision (CRV’04) 
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(a) GLCP: entropy results
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(b) WGLCP: entropy results
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(c) GLCP: contrast results
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(d) WGLCP: contrast results
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(e) GLCP: correlation results
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(f) WGLCP: correlation results

Fig. 7. Edge Transects

From the transect results, it is apparent that the WGLCP
features have a less damped response near the boundary and
thus perform better at preserving texture edges. From Table VI,
it is quantitatively verified that all the WGLCP features have
greater average gradients than the GLCP features. It should
be noted that since the correlation statistic has an impulse-
like response, the gradient was not computed.

Due to the high frequency of boundaries in SAR sea
ice imagery, boundary preservation is a critical aspect for
segmentation. For example, using a 15 × 15 window size for
the image in Figure 2, 55 % of the windows contain pixels
belonging to both ice and water textures. This being said,

TABLE VI

AVERAGE GRADIENT RESPONSE OF THE TEXTURE BOUNDARY FOR

SELECTED FEATURE STATISTICS

GLCP Gradient Feature Statistics WGLCP Gradient

-0.103 Entropy -0.120

-0.058 Contrast -0.112

conservation of the texture boundaries has a significant impact
on segmentation.

The correlation statistic produces a impulse-like responseProceedings of the First Canadian Conference on Computer and Robot Vision (CRV’04) 
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near the SAR ice-water texture boundary. The impulse is
caused from a change in contrast across the boundary. The
result of this characteristic can cause confusion during seg-
mentation; instead of segmenting ice-water, the algorithm will
separate boundary versus non-boundary.

F. Computational Comparisons

Recently, there have been advances in the calculation of
co-occurring texture features. Historically, the GLCPs were
stored in the GLCMs which are an inefficient and slow
method of calculation due to the sparse nature of co-occurring
grey level pairs. As discussed in Section II, the GLCLL
(Clausi & Jernigan 1998) and GLCHS (Clausi & Zhao 2002)
have decreased computational time significantly from the
GLCM approach. Currently, the GLCM is needed to store
the weighted co-occurring probabilities. As well, an increase
in computational time occurs from the need to determine the
Euclidean distance of a pixel pair to the center of the image
window. Therefore, a drawback of using the WGLCP texture
statistics is that there is a significant increase in computational
time needed.

More investigation is necessary to determine if the compu-
tation time required for calculating the WGLCP features can
be decreased.

V. CONCLUSION

Texture discrimination is a significant aspect in segmenting
remote sensing imagery. Texture features from GLCPs are very
popular and well accepted amongst remote sensing commu-
nities. Albeit an innovative technique, GLCP features have
a predisposition to misclassify and erode texture boundaries
due to the large window sizes needed to capture meaningful
statistics.

We formulated a set of Gaussian weighted co-occurring
features which proved to be better at discriminating texture
boundaries and image segmentation. Through the test sets,
there was a notable improvement in segmentation. We also
showed that the edge response of the WGLCP is sharper, thus
preserving texture boundaries compared to the GLCP features.
Currently, a drawback in using WGLCP features is that a
significant increase in computational time is required. More
investigation is necessary to try reducing the computational
speed of calculating the WGLCP features.
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