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Abstract

The discrimination ability of texture features derived
from Gaussian Markov random fields (GMRFs) and
grey level co-occurrence probabilities (GLCPs) are
compared and contrasted. More specifically, the role
of window size in feature consistency and separability
as well as the role of multiple textures within a win-
dow are investigated. GLCPs are demonstrated to have
improved discrimination ability relative to MRFs with
decreasing window size, an important concept when
performing image segmentation. On the other hand,
GLCPs are more sensitive to texture boundary confu-
sion than GMRFs.

1 Introduction

Texture, a representation of the spatial relationship of
grey levels in an image, is an important characteristic
for computer image interpretation. Many texture fea-
ture methods exist [7], however, limited research has
been conducted to compare different methods. Compar-
ison texture papers often only consider the supervised
classification problem, without considering full image
segmentation [3]. In the case of unsupervised segmen-
tation, windows contain mixed classes with unknown
parameters, making the feature extraction and class as-
signment decisions far more challenging.

This paper compares the unsupervised segmentation
capabilities of two popular texture methods: GLCPs
(grey level co-occurrence probabilities) and GMRFs
(Gaussian Markov random fields). Most notably, the pa-
per emphasizes the role of window size selection when
using GLCP and GMRF texture features for unsuper-

vised segmentation. Test data includes MRF generated,
Brodatz, and synthetic aperture radar (SAR) sea ice im-
agery.

2 Texture Feature Methods

GLCPs represent the conditional joint probabilities of
all pairwise combinations of grey levels (i,j) in the
fixed-size spatial window given interpixel distance (δ)
and orientation (θ) [6]. Here, θ = 0, 45, 90, 135 de-
grees and δ = 1 are used. To generate texture features,
statistics (dissimilarity, entropy, and correlation [4]) are
applied to the probabilities. The grey level quantization
level is fixed at 16. For simplicity, k-means [5] is used
to perform GLCP segmentation.

MRFs are recognized for being effective for texture
analysis [2]. The basic premise is that neighborhood
pixels are expected to have similar characteristics. Un-
der the assumption of a Gaussian MRF (or GMRF), the
following model is produced [2]:

xs =
∑

r∈ Ns

θr(xs+r + xs−r) + es (1)

where xs is a real number representing the center pixel
of the neighborhood, xs+r and xs−r are a pair of pixels
centered around xs, es is a zero mean Gaussian noise,
and θr represents the MRF model parameters. The sum-
mation is over some neighborhood Ns, as defined by the
model order. The MRF parameters are determined us-
ing least squares. The iterated conditional mode (ICM)
method is used for GMRF image segmentation [1].
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3 Methods and Testing

Large windows produce better estimates of texture,
however, they can also lead to the undesirable situation
of containing multiple texture classes. Small windows
are less likely to contain multiple classes, however, the
limited coverage can produce misleading features.

Research Question One How does window size in-
fluence the estimated individual GLCP texture features
and GMRF model parameters?

Theory: For both GLCP and GMRF, different n gen-
erate different feature estimates. The effect of n on the
stability of GLCP texture features and GMRF model pa-
rameters must be assessed.

Method: For a given texture, the relative change
of a feature’s standard deviation as a function of n is
calculated. One MRF synthetic texture (1024 × 1024),
one Brodatz texture (1024 × 1024) (pigskin), and one
RADARSAT SAR texture (768 × 768) are used. From
each texture image, 60 window samples are randomly
selected for each of n = 8, 16, 32, 64, 96. The standard
deviation σ per feature per window size is determined
for each set of 60 samples. To measure the relative
change, σ is normalized by σ for n = 96.

Results: Table 1 summarizes the average increase of
σ across n. First, with decreasing n, estimated GLCP
features and the GMRF model parameters increase ex-
ponentially. Second, with decreasing n, the σ of each
GMRF model parameter increases faster than the GLCP
features. The GMRF method requires a relatively larger
n than the GLCP to obtain the same degree of stability
in the feature estimates.

Research Question Two How does n influence the
cluster separability of the estimated features?

Theory: This research question compares GLCP
texture features versus GMRF model parameters for fea-
ture space separability. If the feature space separability
is larger, it is assumed that those features are more ap-
propriate for classification.

Method: The Fisher criterion [5] (J) is used as
a non-parametric measure of the cluster separability.
Further insight can be obtained by calculating the up-
per bound of classification error between feature cluster
pairs using the Bhattacharyya error bound [5] (BEB).
Three texture pairs are used for testing. These include
an MRF generated synthetic image (with two textures)
(1024 × 1024), a Brodatz image (1024 × 1024) contain-
ing wood grain and raffia and a SAR sea ice image (768
× 768) containing first year and multiyear ice. Sixty

Table 1: Ratio of the standard deviations for each win-
dow size (64, 32, 16, 8) with respect to window size 96
for both GLCP and GMRF features.

GLCP texture features
96 to 8 96 to 16 96 to 32 96 to 64

Synthetic 9.33 5.45 2.93 1.55
Brodatz 6.85 4.22 2.33 1.24
Sea ice 2.51 2.04 1.34 0.99

GMRF model parameters
96 to 8 96 to 16 96 to 32 96 to 64

Synthetic 28.32 8.50 3.95 1.66
Brodatz 16.44 4.85 2.23 1.24
Sea ice 21.38 7.35 3.19 1.75

sample windows with sizes 8, 16, 32 and 64 are ran-
domly selected from each texture in each image.

Results: Table 2 reports BEB and J for each tex-
ture pair. When n = 8 and n = 16, all of the GLCP
pairs have a lower BEB as well as a higher J com-
pared to GMRF (except for sea ice for n = 16). In con-
trast, for n = 32, the GMRF has lower BEB and higher
J . Separability is relatively stronger given smaller n for
GLCP features compared to GMRF features. However,
for large windows, GMRF features are more separable
relative to GLCP features. As a result, if one requires
small windows, the GLCP method is advocated.

Research Question Three What is the effect on the
estimated features if a window contains multiple tex-
tures?

Theory: For segmentation, some local windows will
contain multiple textures.

Method: A reasonable hypothesis is that features
derived from a multi-texture window are based on a lin-
ear weighting proportional to the spatial extent of each
texture. For example, given textures A and B, then
F = a×FA + b×FB , where F is the observed texture
feature, a and b are the ratios of textures A and B in the
window n, and a + b = 1.

Results: Three bipartite texture images with vertical
center boundaries (synthetic, Brodatz, SAR sea ice) are
used for testing. Texture estimates for each image are
estimated based on two window sizes (n = 16, n = 32)
for each pixel across fifty randomly selected rows. Se-
lected results are only presented for the sea ice image,
n = 16, and GLCP, given that results for other images
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Table 2: Bhattacharyya error bounds (BEB) and Fisher
criteria (J) for the indicated texture pairs.

8 × 8 window size
GMRF GLCP

BEB J BEB J

synthetic 3.5 × 10−1 0.24 2.9 × 10−1 1.68

Brodatz 3.7 × 10−1 0.24 2.0 × 10−1 1.52
sea ice 2.5 × 10−1 0.55 4.8 × 10−2 6.58

16 × 16 window size
GMRF GLCP

BEB J BEB J

synthetic 1.7 × 10−1 4.19 1.3 × 10−1 4.98

Brodatz 1.3 × 10−1 2.21 4.4 × 10−2 5.64
sea ice 7.9 × 10−13 101.03 1.1 × 10−3 21.07

32 × 32 window size
GMRF GLCP

BEB J BEB J

synthetic 4.0 × 10−4 26.33 3.0 × 10−3 19.75

Brodatz 3.2 × 10−3 21.85 3.5 × 10−3 21.54
sea ice 1.5 × 10−51 462.21 6.7 × 10−8 58.74

and GMRF textures are similar. The vertical lines mark
the window centered on the texture boundary. The hy-
pothesis is supported since features change in a linear
manner from one texture to another.

Fig. 2 shows the segmentation results of a bipartite
image (containing Brodatz paper and pigskin) with an
11 period sinusoidal texture boundary. For both straight
and four sinusoidal boundaries given both n = 8 and
n = 16, GLCP and GMRF and their associated seg-
mentation schemes successfully segment the images
(not shown). The segmentation results for both GLCP
and GMRF using a 16 × 16 window are unsuccessful
(Fig. 2(c) and (d)). Fig. 2(e) and (f) are the segmenta-
tion results using n = 8. In this case, the GLCP method
produces a much better segmentation than the GMRF
method. Also, n = 8 generates a much better result than
n = 16 given the GLCP texture features. For complex
boundaries, both methods may have damaged features
estimates which can erode the quality of the segmen-
tation. To minimize the effect of windows containing
multiple textures, smaller windows should be used. In
such cases, the GLCP method should be employed, as
supported by the first two research questions.

Fig. 3(a) contains four textures separated by horizon-
tal and vertical sinusoidal boundaries. The larger win-
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Figure 1: GLCP features averaged over 50 arbitrarily
selected rows from a SAR sea ice image with two tex-
tures separated by a vertical boundary (n = 16).

dow size (n = 32) allows the GMRF method to pro-
duce a reasonable segmentation (Fig. 3(f)) compared to
a window size of n = 16 (Fig. 3(d)). The GLCPs are not
able to properly identify the boundary region between
the textures (Figs. 3(c) and (e)).

From the segmentation results using different win-
dow sizes, one can see that both methods prefer a larger
window size to obtain a robust estimation. But, the
larger window size may cause a segmentation problem
using the GLCP method in the boundary area, i.e., the
true boundary between textures may be blurred, and
sometimes, the pixels along the boundary areas could be
distinguished as another texture class. To minimize this
boundary problem, the window size should be as small
as possible for the GLCP method. Using the GMRF
method, a small window size may ruin the texture model
estimation ability. As a result, the window size should
be as large as possible for the GMRF method. But given
complex texture boundaries, a large window size could
also damage the estimated GMRF models based on the
results of the third research question.

4 Summary

There exists a lack of published research comparing un-
supervised texture segmentation methods. The goal of
this research was to develop a better understanding of
the ability of two popular methods for unsupervised im-
age segmentation by considering the role of window
size. A number of research questions were posed, pro-
ducing the following results. GMRFs require larger
window sizes relative to GLCPs to produce stable tex-
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Figure 2: Segmentation of Brodatz mosaic. (a) Original
image (b) True segmentation (c) GLCP result (n = 16).
(d) GMRF result (n = 16). (e) GLCP result (n = 8). (f)
GMRF result (n = 8).

ture estimates. GLCPs produce more separable features
for smaller windows relative to the GMRF. A window
size of 32 was deemed sufficiently large to obtain sepa-
rable, consistent texture features for the tested textures.
However, such a large window can lead to segmentation
error due to the higher risk of multiple classes appear-
ing in the same window. Given a window with mul-
tiple textures, a region-based weighting of the texture
features generates the overall feature. Such a weighting
can lead to erroneous boundary estimates and can even
identify the boundary itself as belonging to a separate
class. The segmentation of classes separated by irregu-
lar boundaries will be strongly affected by this process.
The texture literature often utilizes convenient texture
boundaries, yet complex boundaries coupled with vary-
ing local class spatial extents, pose greater challenges in
the applied use of segmentation algorithms.

Figure 3: Segmentation of Brodatz texture image. (a)
Original image. (b) True segmentation. (c) GLCP result
(n = 16). (d) GMRF result (n = 16). (e) GLCP result
(n = 32). (f) GMRF result (n = 32).
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