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Abstract. This paper presents an empirical study of the joint wavelet
statistics for textures and other random imagery. There is a growing real-
ization that modeling wavelet coefficients as independent, or at best cor-
related only across scales, assuming independence within a scale, may be
a poor assumption. While recent developments in wavelet-domain Hid-
den Markov Models (notably HMT-3S) account for within-scale depen-
dencies, we find empirically that wavelet coefficients exhibit within- and
across-subband neighborhood activities which are orientation dependent.
Surprisingly these structures are not considered by the state-of-the-art
wavelet modeling techniques. In this paper we describe possible choices
of the wavelet statistical interactions by examining the joint-histograms,
correlation coefficients, and the significance of coefficient relationships.

1 Introduction

Statistical models, in particular prior probability models, for underlying tex-
tures are of central importance in many image processing applications. However
because of the high dimensionality (long-range) of spatial interactions, model-
ing the statistics of textures is a challenging task. Statistical image modeling
can be significantly improved by decomposing the spatial domain pixels into a
different basis, most commonly a set of multiscale-multichannel frequency sub-
bands, referred to as the wavelet domain [1]. Indeed, the wavelet transform (WT)
has widely been used as an approximate whitener of statistical time series. It
has, however, long been recognized [2] that the wavelet coefficients are neither
Gaussian, in terms of the marginal statistics, nor white, in terms of the joint
statistics.

The wavelet parsimony representation observes that the majority of the co-
efficients happen to be small, and only a few of the coefficients are large in mag-
nitude, implying that the marginal distributions of the high frequency wavelet
subbands are more heavily tailed than a Gaussian, with a large peak at zero.
Existing works assume a generalized Gaussian model, some sort of mixture, for
the marginal distribution [1]. Chipman et al. [1] and Crouse et al. [2] showed that
this heavy-tailed non-Gaussian marginal can be well approximated by a Gaus-
sian Mixture Model (GMM). Accordingly, wavelet non-linear shrinkage, such as
Bayesian estimation has been achieved with these non-Gaussian priors, which
consider this kurtosis behavior of the wavelet coefficients.
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Fig. 1. Three hidden Markov models. The empty circles show the hidden states and
black nodes are the coefficient values. (a) Hidden states are independent. (b) Interscale
dependencies are modeled. (c) The three subbands are integrated into one hybrid HMT.

A opposed to the marginal models, the question of joint models is much
more complicated and admits for more possibilities, with structures possible
across subbands, orientations, and scales. Since the development of zerotree cod-
ing for image compression there have been many efforts to model these struc-
tures, including Markov random fields (MRFs) [3], [4], Besov spaces [5], and
the wavelet hidden Markov models (HMMs) [2], [6], [7] and Gaussian scale mix-
ture(GSM) [8]. The wavelet-based HMMs, in particular, have been thoroughly
studied and successfully outperform many wavelet-based techniques in Bayesian
denoising, estimation, texture analysis, synthesis and segmentation.

HMMs are indeed intended to characterize the wavelet joint statistics. As
visualized by Fig. 1, the class of the HMMs mainly includes Independent Mixture
Model (IMM) [2], Hidden Markov Tree (HMT) [2], and HMM-3S [7]. In general,
they adopt a probabilistic graph, in which every wavelet coefficient (node) is
associated with a set of discrete hidden states S = 0, 1, . . . , M − 1 (in particular
M = 2) displayed as empty circles in Fig. 1. To model the connectivity of
those states, HMMs first define some hypothesis based on the wavelet coefficients
properties, then parameterize models that fit into those assumptions and can be
solved by existing algorithms.

In the two-state IMM, the simplest case of HMMs, hidden states are assumed
to be independent and every wavelet coefficient is modeled as Gaussian, given
its hidden state value (the variance). More sophisticated approaches sought to
model the local wavelet statistics by introducing Markovian dependencies be-
tween the hidden state variables across scales and orientations. Crouse et al. [2]
introduced the HMT, which captures wavelet interscale dependencies by con-
sidering Markov chains across scales, while assuming independence within and
across the three high frequency channels. Fan and Xia [7] proposed HMT-3S
in which, in addition to the joint interscale statistics captured by HMT, the
dependencies across subbands are exploited by integrating three corresponding
coefficients across three orientations.

Goal of this paper: Motivated by these inter-coefficient probabilistic stud-
ies, the primary goal of this paper is to study the wavelet joint statistics by
empirically investigating local random field neighborhoods representing statis-
tics of within- and across-scale coefficients. Although the previous observations
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Fig. 2. Focus of this work: Development of joint Gaussian models of wavelet statistics.

highlighted some main wavelet coefficient correlation, there is still uncertainty in
wavelet statistics as to whether these approaches offer reasonable choices of cor-
relations? How should one examine sufficiency of wavelet models? Would these
models be justified by empirical statistics? This paper is meant to discuss these
issues and demonstrate the structure of coefficient correlation that was not cap-
tured by HMMs due to their primary assumptions.

Development of wavelet Gaussian random field models for statistical textures
forms the focus of our work (shown in Fig. 2). The goal, of course, is the develop-
ment of non-Gaussian joint models with non-trivial neighborhood. However for
the purpose of this paper, we are willing to limit ourselves to simplifying marginal
assumptions (Gaussianity) which we know to be incorrect, but which allow us
to undertake a correspondingly more sophisticated study of joint models.

Example joint histograms as representatives of the underlying coefficients
densities are visualized. We display the hierarchy of wavelet covariance struc-
ture and define statistical neighborhoods for the coefficients. The main novelty
is the systematic approach we have taken to study the wavelet neighborhood
system including 1) inter-scale dependency, 2) within-scale clustering, and 3)
across-orientation (geometrical constraints) activities. This probabilistic mod-
eling is directly applied to the wavelet coefficient values, but to some extent
their significance is also considered. Surprisingly our empirical observation indi-
cates that the wavelet correlation structure for different textures does not always
match with those offered by the HMMs. We will discuss this in later sections.

2 Wavelet Neighborhood Modeling

In order to study exact correlations between the wavelet coefficients we con-
sidered a class of statistical textures based on Gaussian Markov random field
(GMRF) covariance structures, as shown in Fig. 3. They are spatially station-
ary, an assumption for convenience only and is not fundamental to our analysis.

The chosen spatial domain covariance structure Ps is projected into the
wavelet domain by computing the 2-D WT W , containing all translated and
dilated versions of the selected wavelet basis functions:

Pw = WPsW
T (1)

where we have restricted our attention to the set of Daubechies basis functions.
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Fig. 3. (a-e) Five GMRF textures used to visualized wavelet correlation structure.
(f) Correlation coefficients of a spatial thin-plate model in the wavelet domain, in
which the main diagonal blocks correspond to the same scale and orientation, whereas
off-diagonal blocks illustrate cross-correlations across orientations or across scales.

The wavelet covariance, Pw (Fig. 3(f)), is not a diagonal matrix, indicating
that the wavelet coefficients are not independent. Intuitively, localized image
structures such as edges tend to have substantial power across many scales.
More interestingly, Pw is block-structured, and it is evident that the coefficients
interactions align with direction of their subband. We have observed [9] that,
although the majority of correlations are very close to zero (i.e., decorrelated), a
relatively significant percentage (10%) of the coefficients are strongly correlated
across several scales or within a particular scale but across three orientation
subbands. Clearly a random field model for wavelet coefficients will need to be
explicitly hierarchical. One approach to statistically model these relationships
was to implement a multiscale model [9]. Although the multiscale model cap-
tured the existing strong parent-child correlation, spatial and inter-orientation
interactions are not explicitly taken into consideration. Our most recent work [10]
investigated two techniques to approximate non-Markov structure of Pw into a
Markovian neighborhood which contains the significance of inter-orientation and
spatial relationships, which we seek to visualize more formally and compare with
other methods in this paper.
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Fig. 4. Empirical joint histograms of a coefficient at position (x,y) in a horizontal
subband associated with different pairs of coefficients at the same scale and orientation
(a,b), at the same orientation but adjacent scales (c,d), at the same scale but across
orientations (e-h). The skewness in the ellipsoid indicates correlation.

2.1 Wavelet Domain Joint Histograms

In order to characterize the wavelet neighborhood explicitly, we first utilize joint
histogram plots. This intermediate step helps to identify two coefficients’ de-
pendency even if they show as decorrelated on their correlation map (i.e. de-
correlation does not always mean independence!).

For a typical texture, joint histograms of a horizontally aligned coefficient
at position (x,y) associated with different pairs of coefficients are illustrated in
Fig. 4. These plots highlight the following important aspects of the coefficients
connectivity:

Remark 1: In the top row, the first two plots show extended contours indi-
cating that two spatially adjacent horizontal coefficients not only are dependent
but also the direction of their correlation matches with that of their subband.
For instance, within its subband, a horizontal coefficient is more correlated with
its adjacent left and right neighbors than up and down neighbors.

Remark 2: The top row’s last two plots are joint histograms of parent-child
horizontal coefficients. It is a quite evident that a child strongly depends not
only on its parent (a fact observed by many other researchers) but also on its
parent’s adjacent neighbor (left or right). We also observed that, by symmetric,
a vertical coefficient statistically depends on its parent and parent’s upper or
lower neighbor.

Remark 3: The bottom row plots display joint histograms of a horizontal co-
efficient with its corresponding neighbors within the same scale but across other
two orientations. Firstly, the nearly circular contours indicate that coefficients at
the same location but from different orientations are almost independent! Sec-
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ondly, there is still some inter-orientation correlation which aligns with direction
of the centered coefficient (i.e. correlation structure is subband dependent).

In summary, we emphasize that this paper is not to report the striking wavelet
correlations exhibited in these empirical observations. Rather, it is observed that,
surprisingly, the existing wavelet joint models not only consider a subset of these
inter-relationships but also fail in connecting some coefficients which are indeed
independent, e.g. in HMT-3S three coefficients at the same location from three
subbands are grouped into one node (assumed to be correlated), an assumption
that is rejected by these histogram plots.

2.2 Wavelet Domain Correlation Structure

Being motivated by the histogram plots, we have chosen to study the problem
visually, and without any particular assumption regarding the coefficient position
on the wavelet tree. First, correlation coefficients are calculated from the wavelet
prior Pw for three fine scale textures displayed in Fig. 3. As shown in Fig. 5,
we use the traditional 2-D wavelet plot to display the correlation of a coefficient
coupled with any other coefficient on the entire wavelet tree. Each panel includes
three plots illustrating local neighborhood for a centered coefficient (marked
by •) chosen from horizontal, vertical, and diagonal subbands. The left column
panels in Fig. 5(a-c), show correlation coefficients for a coefficient paired with
all other nodes on the wavelet tree.

There is a clear consistency between the joint histograms and these corre-
lation maps which shows 1) The concentration of the wavelet correlations in a
locality. 2) This locality increases toward finer scales, which supports the persis-
tency property of wavelet coefficients [6]. 3) The local neighborhood definition for
any given pixel is not limited to the pixel’s subband: it extends to dependencies
across directions and resolutions. Besides the long range across scale correla-
tions, every typical coefficient exhibits strong correlation with its spatially near
neighbors both within subband and across orientations. 4) The correlation struc-
ture for horizontally and vertically aligned coefficients are almost symmetrically
identical. For textures whose edges extend more or less toward one direction
(such as tree-bark), this similarity does not hold.

To consider the sparse representation property of the WT, these empirical
evaluations have been extended to dependency structure of those significant
coefficients. In [9], we defined the significance map as a tool to identify those
correlations corresponding to the significant coefficients. Fig. 5(d-f) show the
significance of correlations for the corresponding panels displayed in Fig. 5(a-c).
It is evident from these diagrams that within scale dependency range reduces
to shorter locality (yet orientation dependent), but across scale activities still
present up to several scales.

Interestingly, the wavelet correlation plots in Fig. 5 show a clear consistency
in structure for many textures. They confirm that 1) The well-structured coef-
ficients dependencies are hierarchical and orientation dependent. 2) Coefficients
across three orientations and at the same spatial position are decorrelated, how-
ever, there is a clear dependency between coefficients across orientations and
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Fig. 5. Wavelet correlation structure for three fine scale textures displayed in Fig. 3.
Each panel contains three plots illustrating local neighborhood for a centered coefficient
(marked by •) from horizontal, vertical, and diagonal subbands. The left column panels
(a-c) show correlation coefficients for a coefficient paired with all other nodes on the
wavelet tree. The right column (d-f) are plots of significance of above interrelationships.
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at nearby neighborhood. 3) Coefficients are correlated with their parent and
neighbors of it, in addition to parents across other two coarser subbands.

3 Conclusions

A thorough study of the 2-D wavelet statistics has been presented in this paper.
Empirical examination of the coefficient correlations, within or across scales,
revealed the fact the there exist local and sparse random field models governing
these local dependencies.

A superset including all statistically local neighbors for a wavelet coefficient
was demonstrated. We compared our modeling observations with the advanced
wavelet joint models. This study showed that the correlation structures presumed
and proposed by those approaches (such as HMT-3S) does not always accurately
integrate the correlated coefficients. We also discussed examples of interscale
and intra-scale dependencies that are missing in the existing models. We are
expanding this ongoing research to the statistics of real world images. The early
empirical examinations show consistency with the correlation structures studied
in this article.
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