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Abstract

The detection of marine oil spill candidate from synthetic
aperture radar (SAR) images is largely hampered by SAR
speckle noise and the complex marine environment. In this
paper, we develop a thresholding-guided stochastic fully-
connected conditional random field (TGSFCRF) model for
inferring the binary label from SAR imagery. First, an in-
tensity thresholding approach is used to estimate the ini-
tial labels of oil spill candidates and the background. Sec-
ond, a Gaussian mixture model (GMM) is trained using all
the pixels based on the initial labels. Last, based on the
GMM model, a graph-cut optimization approach is used
for inferring the final labels. By using a threholding-guided
approach, TGSFCRF can exploit the statistical character-
istics of the two classes for better label inference. More-
over, by using a stochastic clique approach, TGSFCRF effi-
ciently addresses the global-scale spatial correlation effect,
and thereby can better resist the influence of SAR speckle
noise and background heterogeneity. Experimental results
on RADARSAT-1 ScanSAR imagery demonstrate that TGS-
FCRF can accurately delineate oil spill candidates without
committing too much false alarms.

1. Introduction

Spaceborne synthetic aperture radar (SAR), due to its
ability to cover large areas irrespective of weather condi-
tion or sun-light illumination, provides a powerful tool for
the detection of marine oil spill, which is usually caused
by ships or drilling platforms, and greatly endanger the
marine ecosystem. Efficient identification of potential oil
spills from SAR imagery is crucial for supporting quick re-
sponse to oil pollution and the cleanup efforts. The first use
of SAR image for oil spill monitoring was by Elachi [1],
who investigated the feasibility of Seasat imagery for oil
spill detection. After the launch of the second generation
of satellite SAR sensors in the 1990s, such as ENVISAT,
ERS-2, and RADARSAT-1, SAR images became exten-

sively used for oil spill detection [2–8]. The third generation
of SAR sensors were launched in the past five years, such
as Canadian RADARSAT-2, Italian Cosmo-Skymed, Ger-
man TerraSAR-X and Japanese ALOS. These sensors are
characterized by multi-polarization options, higher spatial
resolution and shorter revisit time, therefore, provide better
capability for oil spill detection [9, 10].

Today, almost all of the operational marine monitoring
programs depend on trained human analysts to determine
oil spill candidates, by visual interpretation, based on their
experiences and prior knowledge [11]. However, dealing
with a large amount of SAR images of vast marine regions
is costly and time-consuming. As such, automatic methods
for oil spill detection have been a very active research topic
in remote sensing community. In the last two decades, ef-
forts have been made by several organizations towards the
development of semi-automated or fully automated systems
for oil spill detection based on SAR imagery. Examples in-
clude the semi-automated systems such as Ocean Monitor-
ing Workstation (OMW) at CIS [2], Alaska SAR Demon-
stration (AKDEMO) system [12], the European Commis-
sion Joint Research Centre (JRC) system [13], the Nor-
wegian Defense Research Establishment (NDRE) system
[14], and a fully-automated Kongsberg Satellite Services
(KSAT)s oil spill detection system at Norway [15].

Oil spills appear as dark-spots on SAR imagery. How-
ever, other natural or man-made phenomena (e.g., organic
film and low wind area), called look-alikes, also appear as
dark-formations on SAR ocean images [16]. It is difficult to
discriminate oil spills from look-alikes solely based on SAR
intensity values. Ancillary features regarding dark-spots
(e.g., texture, geometric shape, contrast with surrounding
areas and contextual information) has to be extracted to fur-
ther classify oil spills from look-alikes [17]. As a result, an
oil spill identification system typically requires three stages:
(i) oil spill candidate detection, (ii) feature extraction, and
(iii) classification [18]. The first step aims to detect from
SAR imagery all dark-spots that are potential oil spills. This
step is very important for the system, because once oil spills
are omitted in this step, they will never be detected in the
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following steps. Moreover, the false detections in the first
step steps will increase the computational burden and clas-
sification difficulty of the subsequent steps.

This paper therefore focuses on developing effective oil
spill candidate detection algorithm. Several approaches
have been proposed for oil spill candidate detection. The
commonly used approaches are based on intensity thresh-
olding. Many global thresholds have been proposed: Nir-
chio et al. set the threshold as the normalized radar cross
section (NRCS) minus standard deviation of the SAR im-
age; Fiscella et al. used half of the averaged NRCS [7].
Although the global thresholding methods have high com-
putational efficiency, they sometimes fail to detect weak oil
spill candidate because the global thresholds do not always
account for the local variation. By selecting the threshold
locally, adaptive thresholding methods tend to be able to
delineate oil spill candidates more accurately. Solberg et
al. set the threshold to be k dB below the mean value esti-
mated in a moving window [4, 15, 19]. In order to resist the
influence of speckle noise, Shu et al. proposed a threshold-
ing method that takes advantage of spatial density informa-
tion [20]. Another approach exploits the edge information
on SAR image for oil spill detection. Chen et al. proposed
the use of both Difference of Gaussian (DoG) and Laplace
of Gaussian (LoG) to detect the boundary of oil spills [21].
As a band pass filter, the wavelet method was used for the
delineation of oil spill areas [22–24]. Other more sophisti-
cated oil spill candidate detection methods have been pro-
posed, such as the neural network based approach [25] and
the marked point process based approach [26].

The effectiveness of an oil spill candidate detection sys-
tem depends highly on its capability to deal with the diffi-
culties caused by the complex marine environment and the
SAR speckle noise. The separability between the oil spill
candidate class and the background class is usually very
low, due to the variation caused by SAR speckle noise and
the low intensity contrast between oil spill candidate and the
background. Given the low class separability, the threshold-
ing approaches tend to produce intense false detection and
omissions, and the edge detection approaches could not ac-
curately delineate the target boundaries. Moreover, because
of the heterogeneity of the background, a unsupervised seg-
mentation approach tend to split the big class of background
into two small classes, leading to failure in oil spill candi-
date detection. In order to increase the class separability,
the spatial contextual information in SAR image has to be
exploit to resist the influence of speckle noise and to high-
light the difference between the target and the background.
Although oil spill candidates are weak signals, they tend to
present significant patterns when being examined on large
spatial scale. Consequently, the model accounting for large-
scale spatial correlation effect is more suitable for oil spill
candidate detection.

The paper presents thresholding-guided stochastic fully-
connected conditional random field (TGSFCRF) algorithm
for oil spill candidate detection. Comparing with ordinary
conditional random field (CRF) that only consider the cor-
relation effect in a small neighborhood, the fully-connected
CRF (FCRF) can address correlation effect in the global im-
age scale. However, FCRF usually requires huge computa-
tional cost. The TGSFCRF model can maintain the advan-
tage of FCRF, but reduce its computational cost by using
a stochastic clique approach, where the connectivity of a
node with all the other nodes in the graph is determined
in a stochastic manner [27]. Since oil spill candidates are
usually weak signals and can be easily misclassified under
a totally unsupervised circumstance. We therefore adopt a
thresholding-guided approach to regulate the learning pro-
cess. The experiments on RADARSAT-1 SAR imagery in-
dicate that the proposed algorithm can accurately delineate
oil spill candidate comparing with other methods.

The rest of the paper is organized as below. Section II de-
scribes the TGSFCRF model and its implementation. Sec-
tion III presents the experiments results on RADARSAT-1
SAR images. Section IV concludes the study.

2. Methodology
In this section, we start with a introduction to TGSFCRF

framework in the context of SAR oil spill candidate detec-
tion, followed by the detailed illustration of key components
in TGSFCRF.

2.1. TGSFCRF Framework

TGSFCRF is a fully-connected random field model,
where threholding approach is used as a guide to learn
model parameters, and the stochastic clique is used to de-
termine the connectivity among nodes in a fully-connected
graph.

Let xi and yi denote respectively the intensity observa-
tion and the class label of a site in the SAR image lattice
I contains |I| = N sites. The SAR image is expressed as
X = {xi|i ∈ I} and the labels corresponding to this ob-
servation as Y = {yi|i ∈ I}. Oil spill candidate detection
aims to infer Y given X by maximizing the following con-
ditional probability distribution:

P (Y |X) = (1)
1

Z(X)
exp

(
−
∑
i

ψu(yi, X)−
∑

(i,j)∈C

ψp(yi, yj , X)
)

where Z(X) is the partition function, ψu and ψp are the
unary potential and the pairwise potential respectively and
C encodes the set of clique structure in the random field.
The clique structure C in (1) determines the connectivity
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among nodes in the neighborhood. Since the the underlying
graph is assumed to be fully-connected, the neighborhood
of node i denoted by Ni, has the following expression:

Ni = {j|j = 1 : N, j 6= i} (2)

Based on the above model definition, the following two
problems need to be addressed for effective oil spill can-
didate detection. First, performing oil spill detection is
a totally unsupervised manner is not appropriate, because
oil spill candidate are weak signals that usually constitute
limited number of pixels comparing with the background.
Considering the heterogeneity of the background, a unsu-
pervised segmentation approach tend to split the big class
of background into two small classes, leading to failure in
oil spill candidate detection. Due to this reason, we adopt
a threholding-guided approach to learn Gaussian statistics
that can describe what the two classes look like. Based on
this information, better oil spill candidate description can
be achieved. Second, the heterogeneity of the background
in SAR image and the variation in the spatial structure of
oil spill candidates call for spatial models that are capable
of modeling long-range spatial correlation effect. Neverthe-
less, modeling long-range correlation effect usually cause
very high computational cost. Due to this reason, we use
a stochastic clique approach which selects the most rele-
vant pixels for building connectivity from the global image
space.

Figure 1. The flowchart of TGSFCRF.

As shown by Fig. 1, in TGSFCRF, an intensity thresh-
olding approach is first conducted to estimate the initial es-
timation of binary labels, based on which, a Gaussian mix-
ture model (GMM) involving the oil spill candidate class
and the background class are learned. Based on GMM and
a stochastic clique structure, a graph-cut approach is used
to optimize the objective function of TGSFCRF, leading to
the final estimation of the class labels.

In the following sections, we illustrate some key compo-
nents in TGSFCRF algorithm, as well as the optimization
scheme.

2.2. Intensity Thresholding

The initial class label of the pixel at the ith site is
achieved by performing an intensity thresholding approach,
according to the following rule:

y0i =

{
1 if xi > thrd
0 otherwise. (3)

where thrd = mean(X) − ω · std(X) with ω usually be-
ing 1. Since different images tend to have different mean
and standard deviation values, using thrd can adapt to the
individual histogram characteristics.

2.3. GMM Learning

The initial class labels Y 0 will be used to estimate the
unknown parameters in the unary potential, which is for-
mulated as below:

ψu(yi, X) = −log
(
p(yi|xi)

)
(4)

where p(yi|ii) is the posterior probability of yi given xi
based on a GMM. The parameters in GMM are estimated
by the maximum likelihood (ML) approach.

2.4. Stochastic Clique

To take the advantage of large-range spatial informa-
tion with feasible computational complexity, we adapt the
stochastic clique approach in [27] for modeling the spatial
correlation effect in SAR image.

Fig. 2 displays some examples of SAR oil spill candidate
images. As demonstrated in Fig. 2(a), the oil spill candidate
can have elongated structures, which implies long range
spatial correlation effect. Fig. 2(b) and Fig. 2(c), how-
ever, indicate that oil spill candidate sometimes has a big
dense structure. Therefore, modeling oil spill candidates by
fixed clique structure is challenging due to the variation in
the direction and scale of spatial correlation effect. How-
ever, determining the clique structure in a data-driven man-
ner might be more appropriate. Consequently, TGSFCRF,
where stochastic clique approach is used to sample the rel-
evant clique connectivities from a fully-connected random
field, can capture the useful spatial contextual information
for enhancing the detectability of oil spill candidate.

The widely used pairwise clique structure is adopted
here. The clique structure C is a combination of individual
stochastic clique structures {C(i)} associated with different
nodes in the random field:

C ={C(i)} (5)
C(i) ={(i, j)|j ∈ Ni, 1{i,j} = 1} (6)

3
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(a) (b) (c)
Figure 2. Examples of various image structures of oil spill candidates in SAR images. Oil spill candidates can have different shape
structures, such as thin and elongated shape in (a) or dense and small shapes in (b), or a combination of some small spots that are near to
each others in (c).

where 1{i,j} = 1 is a clique indicator function determining
whether two nodes i and j can construct a clique or not,
according to a stochastic measure:

1{i,j} =

{
1 if γ · PijQij > ϕ
0 otherwise. (7)

where Pij is the data similarity likelihood between pixel xi
and xj , Qij is the probabilistic spatial closeness measure-
ment from xi to xj in image space, γ determines the sparsity
of the graph, and ϕ is a random value in the range of [0, 1]
generated from a uniform distribution.

Considering the noise distribution, the data similarity
likelihood Pij between two amplitude values ai =

√
xi and

aj =
√
xj is expressed as [28]:

Pij = 4L
Γ(2L− 1)

Γ(L)

(
aiaj

a2i + a2j

)2L−1

(8)

The probabilistic spatial closeness measurement Qij be-
tween pixel xi and xj is defined as below:

Qij = exp

(
− (Lir − Ljr)2 + (Lic − Ljc)

2

2σ2

)
(9)

where Lir and Lic are respectively the row and column lo-
cations of site i in image space, and σ determines the spatial
scale.

Fig. 3 displays the graphical model of TGSFCRF, where
the edge eik between yi and yk is determined in a stochastic
manner. Nodes that are closer in both feature space and im-
age space have higher possibility to be connected, whereas
nodes far away from each other have lower chance of be-
ing connected. As a result of implementing the criterion
defined in (7), in TGSFCRF, only a subset of nodes in the
neighborhood that are the most relevant with the referenced
node will be adopted for building connectivity with the ref-
erenced node. TGSFCRF therefore can efficiently and ef-
fectively model large-scale spatial correlation effect.

Figure 3. The graphical model of TGSFCRF. The probability of
connectivity between the referenced node yi and an arbitrary node
yk is denoted by edge eik. Closer nodes have black solid edges, in-
dicating higher possibility to be connected, whereas nodes with far
distance red dashed edges, implying a smaller chance for building
connectivity.

2.5. MAP Inference

Since the unary potential can be achieved by GMM, to
incorporate the spatial information, the pairwise potential is
expressed as:

ψp(yi, yj , X) = −λ · µ(yi, yj) · Pij (10)

where µ(yi, yj) is implemented according to the Potts
model:

µ(yi, yj) =

{
1 yi 6= yj
0 otherwise. (11)

Using the above-described unary and pairwise poten-
tials, the binary classification of SAR image into the oil spill
candidate class and background class is achieved according
to the maximum a posterior (MAP), such that

Y ∗ = argmax
Ŷ

P (Y |X) (12)

where Y ∗ is the best label configuration in the set Ŷ
that maximizes P (Y |X). To find Y ∗, the energy func-
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tion
∑

i ψu(yi, X) +
∑

(i,j)∈C ψp(yi, yj , X) of (1) is min-
imized by graph-cut approach. The stochastic clique
scheme, as implemented in TGSFCRF, is seamlessly in-
tegrated into the conventional graph-cut based random
field optimization framework by replacing the conventional
clique with the stochastic clique.

The graph-cut [29, 30] algorithm divides the nodes in
graph into two disjoint sets Y1 and Yt, with each set being
connected to either the source terminal node s or the sink
terminal node t. The best partitioning of the nodes is the
one that minimizes the cost of the cut, which is defined as
the sum of weights on the edges being cut. Graph-cut can
ideally fit in the problem here, because it can achieve global
optimal solution for binary classification.

3. Results and Discussion
3.1. Dataset

Some RADARSAT-1 SAR images containing oil spill
candidates provided by Canadian ice service (CIS) of En-
vironment Canada are used for testing the proposed algo-
rithm. In order to monitor the illegal release of oily wastes
from ships traveling in Canadian waters, CIS has been de-
signing a program called Integrated Satellite Tracking of
Pollution (ISTOP) as part of its ice surveillance operational
program towards effective use of RADARSAT images to aid
oil spill detection. In ISTOP, human analysts at CIS man-
ually interpret SAR images to detect oil spill candidates.
The images provided by CIS are RADARSAT-1 ScanSAR
intensity data, with HH polarization and a spatial resolution
of 50×50 m. Sub-images containing both oil spill candidate
and the surrounding sea area were clipped to test the pro-
posed approach. The test dataset contains 21 images with
various image size. This dataset covers major types of oil
spill candidates detected under a variety of sea conditions.

3.2. Experimental Methods

The proposed TGSFCRF algorithm is tested on the
RADARSAT-1 images to detect oil spill candidates. To ex-
amine the advantage of using the stochastic clique approach
in TGSFCRF, we compare TGSFCRF with other two CRF
approaches that use the same implementation with TGS-
FCRF but conventional pairwise clique structure defined
in a neighborhood, i.e., TGCRF3 with 3×3 neighborhood
and TGCRF11 with 11×11 neighborhood. Moreover, the
threholding-guided GMM (TGGMM) model is also used
to show the performance difference with CRF-based ap-
proaches when spatial contextual information is not ad-
dressed. For each method, the model parameter values are
optimized by tuning the parameters using a random subset
of 5 images before the experiments until the best visual de-
tection results were achieved.

To quantitatively assess the accuracy of the detection re-

sults, a reference dataset was produced by manual image-
interpretation to be used as ground-truth. To quantify the
inconsistency between the detected target and the ground-
truth target, we use three statistics, i.e., omission error (CE),
commission error (OE), and averaged error (AE) [31]. First,
CE measures the ratio of falsely-detected target relative to
all detections:

CE =
AE −AEinR

AE
(13)

where AE and AR denote respectively the size of detected
target and the size of ground-truth target, and AEinR is
the size of detected target within a certain distance of the
ground-truth target. Second, the OE measures the ratio of
the omission in detections relative to the ground-truth tar-
get.

OE =
AR −ARinE

AR
(14)

where ARinE is the size of ground-truth target within a cer-
tain distance of the detected target. Last, AE is expressed as
below:

AE =
CE +OE

2
(15)

AE therefore measures the balanced detection capability
of different methods by averaging CE and OE.

3.3. Results Analysis

Fig. 4 shows the oil spill candidate detection results
achieved by different methods on several RADARSAT-1
Images. Due to the existence of speckle noise and the low
contrast between oil spill candidates and the background,
the TGGMM approach tends to produce many false detec-
tions. Comparing with TGGMM, TGCRF3 is less affected
by the speckle noise and greatly reduces false alarms, indi-
cating the benefits of considering spatial contextual infor-
mation for label inference. Nevertheless, TGCRF3 tends to
be easily disturbed by the background heterogeneity, and
wrongly classified some dark areas in the background as oil
spill candidates. This demonstrate the limitation and weak-
ness of modeling local-scale spatial correlation effect when
dealing with the complexity and unstationaries of SAR oil
spill candidate images. This conclusion is reinforced by the
fact that TGCRF11, which address larger-range correlation
effect, is able to effectively resists the influence of back-
ground heterogeneity and produce relatively clean back-
ground. However, since TGCRF11 uses all the pixels in the
neighborhood to connect with the center pixel, it faces the
risk of accepting many pixels that are irrelevant to the center
pixel for building connectivity, considering the disturbance
of noise effect on the similarity measures. This may explain
that fact that TGCRF11 undesirably keeps many dark pixels
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in the background and tends to blur the boundaries. Com-
paring with TGCRF3 and TGCRF11, TGSFCRF can bet-
ter delineate the target without being significantly affected
by the background heterogeneity and speckle noise, demon-
strating the benefits and importance of modeling large-scale
spatial correlation effect by determining the clique structure
in a stochastic data-driven manner.

Table 1 shows the statistics of the numerical measures
achieved by different methods on the 21 RADARSAT-1
SAR images. The statistics are basically consistent with
the visual detection results. Overall, TGSFCRF achieves
lower mean OE values, and much lower mean CE and AE
values than TGCRF3 and TGCRF11, indicating a good bal-
ance between the ability to detect the target and the ability
to resist the influence of the disturbance caused background
heterogeneity. According to mean AE value, the second
best method is TGCRF11, which achieves lower mean CE
value, but slightly higher OE than TGCRF3. All CRF-based
approach produce lower mean AE value than TGGMM ap-
proach, which stably achieve very high OE and CE values
on the test images.

4. Conclusions

In this paper, we presented TGSFCRF algorithm for the
purpose of oil spill candidate detection. First, the initial
labels of oil spill candidate and the background are ob-
tained by perofrming intensity threholding on SAR image.
Second, the initial labels are used to train a GMM model.
Third, using the GMM model, TGSFCRF is performed on
SAR image again to infer the binary labels to achieve the
task of oil spill candidate detection. Comparing the CRF
and FCRF, TGSFCRF is more capable effectively modeling
large-scale spatial correlation effect by the use of stochastic
clique approach, and thereby is more tailored to the char-
acteristics of SAR oil spill candidates. The TGSFCRF is
solved by a graph-cut approach to achieve global optimal
for the binary label problem. The experiments conducted
on many RADARSAT-1 ScanSAR images demonstrate that
TGSFCRF better delineate oil spill candidate, without being
significantly affected by background and foreground het-
erogeneities caused by SAR speckle noise and the complex
marine environment.
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Image TGGMM TGCRF3 TGCRF11 TGSFCRF
Figure 4. The detection results achieved by different methods on several RADARSAT-1 images. For display purpose, the SAR images in
the first column have been enhanced by performing histogram equalization on the original SAR images. TGGMM method tends to produce
intense false detection. TGCRF3 performs better than TGGMM, but is still affected by background heterogeneity and yields many false
alarms. TGCRF11 tends to erase the boundaries and keep undesirable black dots in the background. TGSFCRF can accurately identify the
targets and produce a clean background.

Table 1. Statistics (i.e., mean, median, standard deviation) of omission error (OE), commission error (CA) and averaged error (CA) achieved
by different methods on 21 RADARSAT-1 SAR oil spill candidate images. For all statistics, lower values indicate better performance.

OE CE AE
Mean (%) Std. (%) Mean (%) Std. (%) Mean (%) Std. (%)

TGSFCRF 10.2 22.9 11.2 19.9 10.7 21.4
TGGMM 15.1 8.7 91.7 7.8 53.4 8.2
TGCRF3 9.0 9.5 70.7 18.1 39.9 13.8

TGCRF11 14.3 21.7 46.6 31.0 30.4 26.4
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