
1160 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 38, NO. 3, MAY 2000

The Effect of Speckle Filtering on Scale-Dependent
Texture Estimation of a Forested Scene

Michael J. Collins, Member, IEEE, Jonathan Wiebe, and David A. Clausi

Abstract—Spatial fluctuations in microwave backscatter may be
an important piece of information in discriminating tree stands.
However, the presence of speckle in synthetic aperture radar (SAR)
image data is a barrier to the exploitation of image texture. We ex-
plored a new methodology that combines a recent adaptive speckle
reduction algorithm by Lopes et al. [12] with a generic texture es-
timation scheme. We investigated the claim that this filter was ca-
pable of preserving backscatter texture. To understand if speckle
reduction was destroying backscatter texture, we compared the
strength of the relationship between forest inventory parameters
and image texture as a function of spatial scale for both filtered
and unfiltered images. We used Radarsat Fine mode image data:
single look resolution is approximately 8.5 m, and pixel spacing is
3 m. Our study area was northern Vancouver Island, B.C., on the
west coast of Canada. For the unfiltered data, we found that the
ability of image texture to predict the forest parameters decreased
as the texture scale increased from 3 to 13 m, suggesting greater in-
formation content in the small scale texture. For the filtered data,
this relationship was much weaker at small scales and was not a
function of distance. Our results suggest that the speckle filter was
not retaining small scale texture, which is consistent with the the-
oretical hypotheses underlying its multiplicative noise model. We
also show that there is significant information in small scale SAR
image texture that may be used as an adjunct to other spatial infor-
mation for discriminating tree stands in the temperate rain forest.

I. INTRODUCTION

RECENT research has demonstrated the potential of SAR
image texture in helping to discriminate tree stands on a

forested landscape [13], [8]. SAR image texture consists of two
components: backscatter fluctuations, which contain informa-
tion about the scene, and speckle fluctuations, which are pro-
duced by the imaging process. The information content of the
backscatter texture is driven by a number of factors, of which
the three most important are

1) radar wavelength, which determines the penetration of the
wave into the forest canopy;

2) transmit/receive polarization state, which is sensitive to
certain scattering processes;

3) spatial resolution (and sample spacing), which determines
the texture scales that are retrievable from the image.

Our research was an exploration of the information content of
RADARSAT fine mode image texture as an aid for constructing
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and maintaining forest inventory systems. We have reported the
related results elsewhere [20]. The polarization state is HH, the
wavelength is about 5.5 cm, the spatial resolution is about 8.5
m in range and azimuth, and the pixel spacing is about 3 m (i.e.,
the data is Nyquist sampled with respect to the resolution cell in
range and azimuth). The study site was over the temperate rain
forests of northern Vancouver Island, B.C., on the west coast
of Canada. A 5.5 cm wavelength will not penetrate the canopy
to any appreciable extent, and the backscatter fluctuations will
be driven by the dielectric geometry of the canopy surface. The
tree stands in this area have a wide variety of ages and heights
and we anticipated that the backscatter texture might contain
information over a fairly large range of scales, but that the scales
on the order of 10 m (i.e., near the system resolution) would be
important.

In exploratory research, one generally does not know the
scales over which the backscatter fluctuations will contain
scene information. As the scales approach that of the resolution
cell, speckle fluctuations will be comparable to the informa-
tion-bearing backscatter texture. Hence, texture extraction
algorithms must deal with speckle. There have been three broad
approaches to this problem.

1) Ignore the speckle and apply generic texture extraction
algorithms and discriminate scene texture based on the
particular texture features of the algorithm.

This is the approach reported most often in the liter-
ature, and the most popular texture estimation algorithm
has been based on the grey level co-occurrence matrix. Its
use was first documented by Ulabyet al. [19], and it has
been used in sea ice texture estimation [1], [2] and anal-
ysis of agricultural fields [17].

2) Incorporate both the speckle and the backscatter fluctua-
tions in a data model and discriminate scene texture based
on model parameters.

The data model of choice is called the product model,
which assumes that the speckle process is independent of
the scene processes, giving rise to the backscatter fluc-
tuations. This assumption is equivalent to assuming that
the backscatter fluctuations are very smooth, i.e., that the
scale of the scene texture is much greater than the scale
of the resolution cell. While this assumption is not always
valid, the approach is very useful when it is, e.g., [18],
[10].

3) Incorporate both the speckle and the backscatter fluctua-
tions in an imaging process model and discriminate scene
texture based on model parameters.

This approach is the most sophisticated and is relatively
infrequent. It has been spearheaded by Chris Oliver of the
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Defense Research Agency (DRA), London, U.K. He and
his colleagues have published a wealth of material that
has recently been summarized in a book [16]. This ap-
proach includes models of correlated backscatter textures
that allow a discrimination based on two models of pa-
rameters: the order parameter and the correlation length
(although uncertainties in estimates of the latter are rela-
tively high).

A fourth strategy that has not been reported in the litera-
ture is to combine a speckle reduction filter with a generic tex-
ture algorithm. This has not been feasible until recently, since
speckle reduction filters have been designed to restore mean
backscatter levels rather than backscatter fluctuations. However,
a recent paper by Lopeset al. [11] reports an adaptive filter
that claims to preserve backscatter texture as well as to restore
mean backscatter (see [11, p. 1753]). While the algorithm is
based on the product model, which essentially assumes there
is no backscatter texture to restore below a few tens of resolu-
tion cells (in our case, no texture at scales below 80–100 m), the
claim that it can preserve texture is unqualified. Although skep-
tical, we were intrigued that this filter offered an entirely new
strategy for extracting backscatter texture from SAR imagery.
In this paper, we report an examination of the scale-dependent
information content of SAR image texture of filtered and unfil-
tered SAR imagery.

We have two hypotheses that drove the research reported here.
First, that the backscatter texture containing information about
forest stand parameters is scale dependent, with significant in-
formation at scales near the system resolution. Second, that the
Lopeset al. speckle filter will destroy backscatter texture at
scales near that of the resolution cell.

We will not rehearse the details of speckle properties or
speckle filtering. These are well known and can be found
in many places in the literature. We provide a brief review
of the Lopes filter since its implementation is not entirely
straightforward.

A. Enhanced Adaptive Filters

Lopeset al.[12] reviewed current speckle reduction filters by
Lee [9], Kuanet al. [6], [7], and Frostet al. [3] and enhanced
their performance by making greater use of the coefficient of
variation , defined as . The coefficient of
variation (CV) has been noted elsewhere to be a strong func-
tion of texture [19]. The enhancement is possible because the
Lee, Frost, and Kuan filters are also functions of but were
not using this variable to its full potential. There are three situ-
ations, defined by Lopeset al. [12], which a speckle filter may
encounter.

1) Homogeneous area.This is a good example of fully de-
veloped speckle and multiplicative noise in which speckle
can easily be separated from the scene. The filter in this
case should restore the scene cross section exactly like a
box filter.

2) Heterogeneous area.In this situation, it is important to
preserve the heterogeneous image features such as texture

and structure while smoothing speckle. The speckle filter
is only applied to the subscenes of the heterogeneous area
where all three criteria listed below are valid.

a) Fully developed speckle.
b) Multiplicative speckle model.
c) Speckle and scene variability can be separated suc-

cessfully.

3) Heterogeneous area without valid model assumptions.
The speckle filter should not attempt to reconstruct these
areas, because at least one of the filter criteria listed above
(a, b, and c) has not been met.

For the following, define as the coefficient of variation of
a perfectly homogeneous area, as the the coefficient of vari-
ation of the area being examined, and as the coefficient of
variation that would be calculated given situation 3, listed pre-
viously. Based on these three definitions, a speckle filter should
perform three operations:

1) Spatial averaging if .
2) Selective spatial averaging if .
3) Preserve existing features if .

has been theoretically determined for homogeneous areas
from intensity L-look images to be [19], [12]. If de-
termined from homogeneous portions of an image is dis-
tributed as a pseudo-Gaussian function [12].

is not easily determined. There is no theoretical
threshold for . If is chosen too large than valuable
textural information may be lost because the filter may choose
to smooth the area. It may be best to determine from a
textured area to ensure that area is preserved.

Lopeset al. [11] reported a new adaptive speckle reduction
filter that was capable of recognizing and preserving backscatter
texture as well as image structure such as strong scatterers, lines
and edges. This filter uses a Bayesian approach with the mul-
tiplicative speckle model and a gamma distributed radar cross
section. Two thresholds are used in the algorithm: and

. If the local CV is greater than , the window is tex-
tured or contains structure. If the local CV is less than, the
window is homogeneous.

Since this algorithm explicitly uses the multiplicative model
, where intensity, reflectivity, and

speckle, it is critical to locate heterogeneous areas where this
assumption may not be valid. If the area is heterogeneous, it
may contain structure or texture. The geometrical ratio detectors
are able to detect the heterogeneous areas with structure (edges,
lines, and points). The local CV is able to detect heterogeneous
areas with texture. Initially, a large window is used and assumed
homogeneous. It may iteratively become smaller if the window
contains edges or lines, until the edge or line is avoided by the
window. However, speckle is reduced more effectively with a
larger window size, so one should limit how small the window
can become. Once the window is considered homogeneous or
the window cannot get any smaller, the reflectivity of the center
image cell is estimated with the adaptive gamma-gamma MAP
(GGMAP) filter. If a point target is detected, the image cell in-
tensity is preserved.
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Using the Bayesian approach to restore the image, the so
called gamma-gamma MAP solution [one gamma for and
one gamma for ] is given by

(1)

where is the local reflectivity, is the MAP esti-
mate of the local reflectivity, is the intensity, is the number
of looks, , is
the coefficient of variation for pure speckle, and
is the coefficient of variation for a window. In practice, is
estimated by .

If the scene is homogeneous, then . Thus, we get
(or ) and our estimate . This

makes sense because a good filter for a homogeneous scene is an
averaging filter. Conversely, when , then ,
because a large number of looks effectively reduces the speckle.

II. DATA AND STUDY SITE

The Radarsat SAR image obtained for this study is a scene of
northern Vancouver Island. The forest stands analyzed here are
located along the northern coast of Vancouver Island between
Port Hardy and Port McNeill. The land is operated under a Tree
Farm License (TFL) to Western Forest Products Ltd. (WFP),
Vancouver Island. The Radarsat scene was imaged on December
6, 1996, with beam type F2 (single look) during a rainstorm.
The scene is centered at 5632’ latitude and 12715’ longitude.
The nominal resolution is 6 m in range and 8.9 m in azimuth.
The image was oversampled twice in range and three times in
azimuth for a pixel spacing of 3.125 m.

The reference data for this study were contained in a Geo-
graphical Information System (GIS), which contained labeled
polygons whose attributes were the forest inventory parameters
provided by WFP. The polygons were constructed using the tra-
ditional method of air photo interpretation. Hence, our reference
data is somewhat unorthodox. Rather than compare our results
with ground observations, we are comparing them with the re-
sults of current practice. It would be useful of course, to com-
pare our results to ground observations of species, height age,
and stand density. However, our intent here is to explore the fea-
sibility of replacing current practice (i.e., air photo interpreta-
tion), with an automated SAR image interpretation, which the
forest industry can buy from Radarsat International, Richmond,
B.C., Canada, for considerably less than the costs of acquiring
air photos.

Each polygon represents the boundary of a forest stand that
has at least one unique characteristic that distinguishes it from
the neighboring polygons. Polygon area, perimeter, year estab-
lished, species composition, age, height, basal area, stocking,
UTM coordinates, and other information are stored as attribute
data for each polygon. This study uses only species composi-
tion, age, height, and stocking data. Fig. 1 displays the Radarsat
image showing the three GIS coverages F64, F63, and F54 used
in this research.

The forest stands (outlined by polygons) consist of many
different species including Balsam, Western Red Cedar, Yellow
Cedar, Alder, Douglas Fir, Hemlock, Lodgepole Pine, and
Sitka Spruce. The majority of the forest stands are composed
of multiple species. The most frequently occurring species are
Western Red Cedar and Western Hemlock. The age of the trees
ranged from 0 to 250 years. Each stand was categorized into a
stocking (trunk density) class: dense, normal, or open. Normal
stocking is most common for these stands. Finally, height was
also determined and ranged from 1 to 80 m.

The entire Radarsat image covers two biogeoclimatic zones:
Coastal Western Hemlock and subalpine Mountain Hemlock
[14]. The annual precipitation is more than 350 cm. The old
growth forests have structural characteristics: snags, dead tops,
conifers with dome-shaped crowns, and spire-shaped crowns of
maturing trees [14].

We defined avirtual forest to be a set of texture features
from windows for which all but one of the forestry parameters
are identical. Avirtual forest standis a set of texture features
from windows with identical forestry characteristics. The vir-
tual forest stands make up a virtual forest. For example, suppose
all texture features from windows with identical age, species,
and height were gathered and assigned to a virtual forest. In this
particular virtual forest, every stand is identical in age, species,
and height, but not stocking. Stocking is allowed to vary. Now,
to test if texture is a function of stocking, one simply has to
examine how texture changes as stocking changes within this
virtual forest. The virtual forest concept is simply a construct to
help organize the forest data into testable subsets.

III. M ETHODS

A. Speckle Filtering

In this research, we were interested in exploring the infor-
mation-content of SAR image texture rather than developing
an operational algorithm. Hence, we avoided boundary effects
by selecting texture windows that lay entirely within stand poy-
gons, so that all pixels involved in a single texture estimate had
the same properties. Hence, it was not necessary to implement
the full structure detection algorithm described in [11]. How-
ever, point target detection was retained to preserve the bright
backscatter caused by defoliated tree tops [15]. Fig. 2 outlines
our implementation of the GGMAP filter.

The local coefficient of variation is used in the GGMAP
speckle filter to determine if more or less smoothing of the
image is required. The theoretical value of for a one-look
intensity image is 1. The RADARSAT image is an amplitude
image, but by squaring the digital number (DN), it was trans-
formed to an intensity image for speckle-filtering purposes.
However, the mean of our data’s is about 0.92 less than

. Since it is impossible for our image to be close to pure
speckle, some of the homogeneous targets were examined
(because they should be close to pure speckle). The lakes and
ocean gave CV values of about 0.9. Since the weather was
stormy on the day the scene was imaged, the water must have
been rough, giving the assumed homogeneous targets (water)
heterogeneous features. Therefore, there is no absolute way to
determine the level of speckle in the image.
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Fig. 1. Raw Radarsat image with three GIS coverages outlined.

Fig. 2. Gamma-gamma filter with point target detection.

To accommodate this situation, we designed two filters to
cover a range of possible speckle conditions. Aconservative
speckle filter was designed by setting average

and average . An aggressivespeckle

filter was designed by setting average and
average . See Fig. 3 for a pictorial placement
of and on the histogram. Choosing to offset
and in this manner improved experimental repeatability
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Fig. 3. Conservative and aggressive settings forC andC , shown on the
C histogram.

Fig. 4. Those cells marked “p” are cells which may represent a point target,
and the other cells are surrounding cells.

when using other datasets. The window size of these filters was
7 7. A larger window is generally better at reducing speckle,
but because the GGMAP filter was also expected to preserve
texture, a smaller than usual window size was used.

The threshold for point target detection was set to 0.15. This
threshold is compared to the inverse ratio of the average of those
image cells’ DN’s, which may represent a point target divided
by the average of the surrounding image cells’ DN’s

average of surrounding image cells
average of point target image cells

(2)

See Fig. 4, where “p” represents a cell that may be part of the
microwave response to a point scatterer. If the ratio is less than
0.15, then a point target has been detected. The threshold was
chosen by first generating a binary image of a portion of the
scene where 1 meant a point target was detected, and 0 meant
no point targets were detected. The threshold was varied until
most of the point targets, visual to the author, were detected.

B. Grey Level Co-Occurrence Texture Features

Co-occurrence probabilities, a second-order method for gen-
erating texture features, represent the most popular method of
characterizing texture in remotely sensed imagery. A brief pre-
sentation of the grey level co-occurrence matrix (GLCM) fol-
lows, but a more complete explanation is provided by Haralick
et al.[4]. The matrix contains the conditional joint probabilities
of all pairwise combinations of grey levels given two parame-
ters: interpixel distanceand interpixel orientation. Following
Barber and LeDrew [1], the probability measure can be defined
by

where (the GLCM) is defined by

represents the number of occurrences of grey levelsand
, and is the total number of grey levels. The sum in the de-

nominator represents the total number of grey level pairs within
a window given a particular . A different GLCM is deter-
mined for each . In our work, we assumed that the image
texture was isotropic, and we pooled each pair of angles at the
same offset into one GLCM, e.g., 0and 90 were pooled into
the offset 1.

In practice, the image is quantized to a certain number of bits
per pixel to save computation time and reduce memory require-
ments. Here, the quantization level is 256. Texture statistics are
calculated by summing weighted probabilities over the entire
GLCM. Given that many of the statistics are correlated [19],
only a few statistics are necessary to capture the essential in-
formation from the GLCM. In this work, the following three
statistics were selected, e.g., Clausi [2]

entropy

dissimilarity

correlation

where ( ) and ( ) represent the mean and standard
deviations in the row and column directions. Here, the co-oc-
currence probabilities are determined over 1515 windows,
which represent spatial extents larger than the resolution cells.

C. Analysis Methods

The data from the virtual forests were statistically tested with
a multivariate analysis of variance (MANOVA) and a Fisher cri-
terion and classified with a weighted Euclidean distance mea-
sure.

The MANOVA and Fisher criterion are necessary to form
conclusions about the relationship between SAR image texture
and the forestry parameters. In a hypothetical situation, where
the Fisher criterion failed to indicate strong separability, the
MANOVA may still indicate that the texture is significantly dif-
ferent. This would prove that although classification may not be
practical, the texture feature vectors are still measuring a change
in the texture. In other words, the texture measure is still able to
detect a fundamental change in the forest stand properties.

In addition to the MANOVA and the Fisher criterion, a more
widely understood measurement, the percentage of windows
that were correctly classified with the texture features, was also
calculated. Although partially correlated with the Fisher crite-
rion, classification results could support or contradict our hy-
pothesis that SAR image texture contains useful information
that a wider audience could understand. Furthermore, the clas-
sification scheme makes Gaussian assumptions that the Fisher
criterion does not.
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1) MANOVA: MANOVA [5] is able to determine if two
datasets have statistically equal or unequal means. For example,
if two sets of texture feature data from a virtual forest, identical
in every manner but of different height, are proven to have
significantly unequal means, then this supports a relationship
between texture and the forestry parameter under consideration.
In other words, this indicates that a change in height has a
corresponding change in texture. The results from a simple
classification scheme would not only support the MANOVA
results, but also measure the degree of separability between the
texture feature classes.

The MANOVA test requires independent samples from two
populations. This condition is met by taking samples from in-
dependent forest stands (those not adjacent are considered inde-
pendent). If the sample population size is small, then for a mean-
ingful MANOVA both populations must be multivariate normal
and have equal covariance matrices.For our forest stands the
sample sizes were adequate (greater than 29, but usually greater
than 100) in which case the above assumptions can be relaxed
[5]. Nevertheless, a random and infrequent comparison of co-
variance matrices showed only insignificant differences.

2) Fisher Criterion: The Fisher criterion [5] is a ratio be-
tween the interclass distance and the intraclass variation. This
measure represents the separability of the texture features. For
example, high separability between virtual forest stands with
different stocking indicates that texture is a function of stocking.
Moreover, the Fisher criterion places no assumptions upon the
distribution of the data, unlike the MANOVA test.

3) Classification: A standard weighted Euclidean distance
measure was adopted to classify the forest stands. Half the data
was used as training data, which produced an estimate of the
mean and covariance matrix. The other half was classified. For
each unique stand of trees, the multivariate mean and variance
were calculated. The decision rule for feature vector, given
classes and , is

(3)

where indicates a class mean vector, andindicates the
class covariance matrix. This classification method assumes
normality, but because of the large number of samples, this
assumption could be relaxed. We should note that we were
not attempting to perform an optimal classification, but rather
to get a quick estimate to support the MANOVA results. This
research seeks to show that forestry parameters are related to
texture, so this classification is only a rough procedure that
could potentially be improved by testing the normal assumption
or choosing another classification scheme without normal
assumptions.

D. Experimental Design

The following explains how these tests were used. Note
that MANOVA test statistics could be replaced with the
classification accuracy or Fisher criterion in the following
explanation. For a set of virtual forest stands (which compose
a virtual forest), MANOVA test statistics for all pairs are
calculated and then averaged. For example, take a fictitious

TABLE I
FORESTINVENTORY CATEGORIESUSED IN THE BRITISH COLUMBIA FOREST

INDUSTRY FORAGE, HEIGHT, AND STOCKING

set of virtual forest stands {H-2-3-3, H-3-3-3, CB-2-3-3,
CB-3-3-3, C-2-3-4} where the first letter(s) represent the
species (or species composition in the case of two letters),
the first number represents age class, the second number
represents height class, and the last number represents stocking
class (species-age-height-stocking). The codes are provided in
Table I. The first virtual forest stand in the set has species
code of H, age class 2, height class 3, and stocking class 3. For
the species virtual forest, MANOVA test statistics would be
calculated from only two comparisons: H-2-3-3 with CB-2-3-3
and H-3-3-3 with CB-3-3-3. In these comparisons, only the
species changes are used, not the age, height, or stocking.
The two test statistics would be averaged and plotted above
the species -label on the graphs in the results section. Stand
C-2-3-4 could not be used with H-2-3-3 or CB-2-3-3 because
the height is different. For another example, consider the age
virtual forest, where two test statistics would be calculated
by using H-2-3-3 with H-3-3-3 and CB-2-3-3 with CB-3-3-3
in the average. Nothing changes but the age.

Within the 15 15 pixel window we estimated, the three
GLCM features at six different offsets [(1,0), (1,1), (2,0), (2,2),
(3,0), (3,3)]. These correspond to linear scales in meters: 3.125,
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Fig. 5. Results of the MANOVA test. Each column represents a different speckle filtering case, and each row represents a different forest parameter.

4.419, 6.250, 8.839, 9.375, and 13.258 m. We expect to find the
information contained in the texture, as estimated through the
three statistical parameters noted above, to decline as the offset
increases.

IV. RESULTS

Our results are shown in three graphs: MANOVA results are
in Fig. 5, Fisher distance results are in Fig. 6, and the Bayesian
classification results are in Fig. 7. These graphs have a black dot
at the mean value of the statistic and an error bar. The error bars

represent the 16 and 84 percentiles. This means that 16% of the
samples are below the bottom error bar, 16% of the samples are
above the top error bar, and 68% of the data is contained within
the error bars. The error bars should give a useful impression of
the uncertainty.

A. MANOVA

A larger MANOVA test statistic indicates a stronger rela-
tionship between the image texture and the forest parameter. If
there is more information in image texture near the scale of the
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Fig. 6. Results of the Fisher Distance Test. Each column represents a different speckle filtering case, and each row represents a different forest parameter.

resolution cell than at larger scales, then we would expect the
MANOVA test statistic to decline with distance. Our hypoth-
esis is that the speckle filtering is destroying backscatter tex-
ture. Hence, if we see a decline in the MANOVA test statistic
with distance for the raw image, we should see a relatively flat
response for the filtered images.

Our hypothesis appears to be supported for all forest param-
eters shown in Fig. 5. The strongest support is for age, where

the statistic decreases by 60% between 1 and 3 pixels, after
which, it remains flat. For the filtered images, the statistic re-
mains essentially flat with distance. This applies to a lesser
extent for the other forest parameters. However, in each case,
the MANOVA statistic for the raw image decreases with dis-
tance. The filtered response remains flat for height, and de-
creases slightly for species and stocking, indicating that a small
amount of backscatter texture is being preserved by the filter.



1168 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 38, NO. 3, MAY 2000

Fig. 7. Results of the Bayesian Classification. Each column represents a different speckle filtering case, and each row represents a different forest parameter.

Interestingly, there is very little difference between the conser-
vative filter and aggressive filter.

B. Fisher Distance

For the Fisher distance, a higher statistic indicates greater sep-
arability between the categories of the forest parameter based
on image texture. Hence, if there is more information in res-
olution-scale texture, then we would again expect the Fisher

statistic to decline with distance. If this occurs in the raw image,
then our hypothesis is supported if the filtered images yield a flat
response.

Fig. 6 suggests that our hypothesis is supported strongly for
age. The statistic declines between 1 and 3 pixels for the raw
image and remains flat against distance for the filtered images,
indicating that texture-based separability was enhanced at short
distances and that this information was not available in the fil-
tered images. There is a very slight decrease in the statistic for
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species and stocking, while the filtered responses for these pa-
rameters remain flat or increase slightly. The height result is es-
sentially flat for all images, indicating no scale dependence for
this parameter. We are inclined to suggest that the scale depen-
dence for species and stocking is negligible.

C. Bayes Classifier

The results of the simple Bayes classifier are shown in Fig.
7. The points on these graphs indicate the percentage of pixels
for the species, age, height, and stocking parameters that were
correctly predicted using image texture. Again, we observe the
strongest scale dependence for the age parameter and that the
filtered images do not retain this resolution-scale texture infor-
mation. The three other parameters all decline with distance,
indicating some degree of scale-dependent texture information,
and the filtered responses are all either flat, indicating no scale
dependence, or slightly increasing, indicating that the texture
has been suppressed at smaller scales.

D. Uncertainty

It is clear that the uncertainty of our results, as indicated by
the error bars, may weaken our ability to make assertions in this
research. In the MANOVA and Fisher distance results, the error
bars for the unfiltered data are, in some cases, much larger than
for the filtered results. This is an issue that needs to be inves-
tigated further to understand whether the uncertainty exists for
all categories of each parameter or whether certain categories
contribute more uncertainty than others. However, given the
non-Gaussian distribution of the test statistics, the mean value is
very conservative, and assertions based on this mean value will
thus be conservative.

V. CONCLUSIONS

We have found evidence that supports the contention that the
backscatter texture bearing information on forest stand charac-
teristics in Radarsat fine mode image data is scale dependent.
We have observed a decrease in the ability the image texture
to predict forest parameters as the texture scale increases. This
suggests that there is considerable information in the texture at
scales near that of the system resolution. Our results also indi-
cate that the adaptive speckle filtering algorithm developed by
Lopeset al.[12] is not preserving this small scale texture. This is
certainly consistent with the inherent assumptions of the product
data model upon which their algorithm is based. It suggests that
the product model might not be appropriate for these data and
this application. However, further experiments would be neces-
sary to confirm this hypothesis.
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