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BRINT: Binary Rotation Invariant and Noise
Tolerant Texture Classification

Li Liu, Yunli Long, Paul Fieguth, Songyang Lao, and Guoying Zhao

Abstract—In this paper we propose a simple, efficient, yet
robust multi-resolution approach to texture classification —
Binary Rotation Invariant and Noise Tolerant (BRINT). The
proposed approach is very fast to build, very compact while
remaining robust to illumination variations, rotation changes and
noise.

We develop a novel and simple strategy to compute a local
binary descriptor based on the conventional LBP approach,
preserving the advantageous characteristics of uniform LBP.
Points are sampled in a circular neighborhood, but keeping the
number of bins in a single-scale LBP histogram constant and
small, such that arbitrarily large circular neighborhoods can be
sampled and compactly encoded over a number of scales. There
is no necessity to learn a texton dictionary, as in methods based
on clustering, and no tuning of parameters is required to deal
with different datasets.

Extensive experimental results on representative texture
databases show that the proposed BRINT not only demonstrates
superior performance to a number of recent state-of-the-art LBP
variants under normal conditions but also performs significantly
and consistently better in presence of noise due to its high
distinctiveness and robustness. This noise robustness character-
istic of the proposed BRINT is evaluated quantitatively with
different artificially generated types and levels of noise (including
Gaussian, salt and pepper and speckle noise) in natural texture
images.

Index Terms—Texture descriptors, rotation invariance, local
binary pattern (LBP), feature extraction, texture analysis

I. INTRODUCTION

Texture is a fundamental characteristic of the appearance
of virtually all natural surfaces and is ubiquitous in natural
images. Texture classification, as one of the major problems
in texture analysis, has received considerable attention during
the past decades due to its value both in understanding how
the texture recognition process works in humans as well as
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in the important role it plays in the field of computer vision
and pattern recognition [1]. Typical applications of texture
classification include medical image analysis and understand-
ing, object recognition, content-based image retrieval, remote
sensing, industrial inspection, and document classification.

The texture classification problem is conventionally divided
into the two subproblems. It is generally agreed that the
extraction of powerful texture features is of more importance
to the success of texture classification and, consequently,
most research in texture classification focuses on the feature
extraction part [1], with extensive surveys [1]. Nevertheless
it remains a challenge to design texture features which are
computationally efficient, highly discriminative and effective,
robust to imaging environment changes (including changes in
illumination, rotation, view point, scaling and occlusion) and
insensitive to noise.

Recently, the Bag-of-Words (BoW) paradigm, representing
texture images as histograms over a discrete vocabulary of
local features, has proved effective in providing texture fea-
tures [2]–[7]. Representing a texture image using the BoW
model typically involves the following three steps:

(i) Local texture descriptors: extracting distinctive and ro-
bust texture features from local regions;

(ii) Texton dictionary formulation: generating a set of rep-
resentative vectors (i.e., textons or dictionary atoms)
learned from a large number of texture features;

(iii) Global statistical histogram computation: representing a
texture images statistically as a compact histogram over
the learned texton dictionary.

Within the BoW framework, the focus of attention has been on
the design of local texture descriptors capable of achieving lo-
cal invariance [2], [4]–[7]. These descriptors can be classified
as dense or sparse, with the sparse approaches, such as SPIN,
SIFT and RIFT [4], [10], requiring a process of detecting
salient regions before applying the texture descriptors, leading
to issues of implementation and computational complexity
and instability. In contrast, dense approaches, applying texture
descriptors pixel by pixel are more popular. Important dense
textures descriptors include Gabor wavelets [8], LM filters [5],
MR8 filters [5], BIF features [7], LBP [2], Patch descriptor [6]
and RP random features [3] and many others [4].

Among local texture descriptors, LBP [2], [11] has emerged
as one of the most prominent and has attracted increasing
attention in the field of image processing and computer vision
due to its outstanding advantages: (1) ease of implementation,
(2) no need for pre-training, (3) invariance to monotonic
illumination changes, and (4) low computational complex-
ity, making LBP a preferred choice for many applications.
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Although originally proposed for texture analysis, the LBP
method has been successfully applied to many diverse areas
of image processing: dynamic texture recognition, remote
sensing, fingerprint matching, visual inspection, image re-
trieval, biomedical image analysis, face image analysis, motion
analysis, edge detection, and environment modeling [12]–[17].
Consequently many LBP variants are present in the recent
literature.1

Although significant progress has been made, most LBP
variants still have prominent limitations, mostly the sensitivity
to noise [19], [21], and the limiting of LBP variants to
three scales, failing to capture long range texture information
[19], [21], [23]. Although some efforts have been made to
include complementary filtering techniques [21], [24], these
increase the computational complexity, running counter to the
computational efficiency property of the LBP method.

In this paper, we propose a novel, computationally simple
approach, the Binary Rotation Invariant and Noise Tolerant
(BRINT) descriptor, which has the following outstanding
advantages: It is highly discriminative, has low computational
complexity, is highly robust to noise and rotation, and allows
for compactly encoding a number of scales and arbitrarily
large circular neighborhoods. At the feature extraction stage
there is no pre-learning process and no additional parameters
to be learned.

We derive a rotation invariant and noise tolerant local
binary pattern descriptor, dubbed as BRINT Sr,q, based on
a circularly symmetric neighbor set of 8q members on a
circle of radius r. Parameter q controls the quantization of
the angular space, and r determines the spatial scale of the
BRINT Sr,q operator, which produces a histogram feature of
constant dimensionality at any spatial scale r with arbitrary
large number of sampling points 8q for each texture image.

Motivated by the recent CLBP approach, which was pro-
posed by Guo et al. [25] to include both the signs and the
magnitudes components between a given central pixel and its
neighbors and the center pixel intensity in order to improve
the discriminative power of the original LBP operator, we
extend BRINT to include a magnitude component and to code
the intensity of the center pixel. Based on these methods we
develop a discriminative and robust combination for multi-
resolution analysis, which will be demonstrated experimentally
to perform robustly against changes in gray-scale, rotation, and
noise.

The remainder of this paper is organized as follows. A brief
review of LBP and CLBP is given in Section II. Section III
presents the motivation and the development of the new
proposed BRINT approach in detail, as well as the multires-
olution analysis and a brief overview of the classification
process. Comprehensive experimental results and comparative
evaluation are given in Section IV. Section V concludes the
paper. A preliminary version of this work appeared in [9].

II. LBP AND CLBP
Despite the great success of LBP in computer vision and

image processing, the original LBP descriptor [11] has some

1A comprehensive bibliography of LBP methodology can be found at http:
//www.cse.oulu.fi/MVG/LBP Bibliography/.

limitations: producing long histograms which are not rota-
tion invariant; capturing only the very local texture structure
and being unable to exploit long range information; limited
discriminative capability based purely on local binarized dif-
ferences; and and lacking noise robustness. On the basis of
these issues, many LBP variations have been developed (see
surveys [12], [13]), focusing on different aspects of the original
LBP descriptor.
Dimensionality Reduction and Rotation Invariance

Most common is to reduce the feature length based on some
rules, where influential work has been done by Ojala et al. [2]
who proposed three important descriptors: rotation invariant
LBP (LBPri), uniform LBP (LBPu2), and rotation invariant
uniform LBP (LBPriu2). Of these, LBPriu2, described in
Section II-A, has become the most popular since it reduces the
dimensionality of the original LBP significantly and achieves
improved discriminative ability.
Discriminative Power

There are two approaches to improve discriminative power:
reclassifying the original LBP patterns to form more discrim-
inative clusters, or including other local binary descriptors.
Noticeable examples include the Hamming LBP [26], which
regroups nonuniform patterns based on Hamming distance
instead of collecting them into a single bin as LBPriu2 does,
the CLBP approach [25] which is discussed in Section II-B,
and the Extended LBP approach [27] which considers the
local binary descriptors computed from local intensities, radial
differences and angular differences.
Noise Robustness

Ahonen et al. introduced Soft LBP (SLBP) method [28]
which allows multiple local binary patterns to be generated at
each pixel position, to make the traditional LBP approach more
robust to noise; however, SLBP is computationally expensive
and is no longer strictly invariant to monotonic illumination
changes. Tan and Triggs [29] introduced local ternary patterns
(LTP), where the binary LBP code ia replaced by a ternary
LTP code. The LTP method is more resistant to noise, but no
longer strictly invariant to gray-scale changes. Liao et al. [21]
proposed to use dominant LBP (DLBP) patterns which consid-
ers the most frequently occurred patterns in a texture image.
The Median Binary Pattern (MBP) proposed in [30] claims
increased robustness to impulse noise such as salt-and-pepper
noise, but MBP was only explored in a local 3 × 3-patch.
Fathi et al. [18] proposed a noise tolerant method based on the
traditional LBP by combining a circular majority voting filter
and a new LBP variant which regroups the nonuniform LBP
patterns in order to gain more discriminability. Raja et al. [22]
proposed Optimized Local Ternary Patterns (OLTP) based on
LTP in order to reduce feature dimensionality, however the
authors did not extend OLTP to multiscale analysis. Ren et
al. [20] proposed a much more efficient Noise Resistant Local
Binary Pattern (NRLBP) approach based on the SLBP method,
but it is computationally expensive to generalize to larger
scales with a bigger number neighboring points.
Combining with Other Approaches

Ojala et al. [2] proposed a local contrast descriptor VAR to
combine with LBP; It was recommended in [21] that Gabor
filters and LBP-based features are mutually complementary
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Fig. 1. The (r, p) neighborhood type used to derive a LBP like operator:
central pixel and its p circularly and evenly spaced neighbors on circle of
radius r.

because LBP captures the local texture structure, whereas
Gabor filters extract global texture information. Ahonen et al.
proposed an approach named LBP histogram Fourier features
(LBP-HF) [24], which combines the LBP and the discrete
Fourier transform (DFT). Khellah [19] introduced a Dominant
Neighborhood Structure (DNS) method which extracts global
rotation-invariant features from the detected image dominant
neighborhood structure to complement LBP.

A. Local Binary Patterns (LBP)

The original LBP method, proposed by Ojala et al. [11]
in 1996, characterizes the spatial structure of a local image
texture by thresholding a 3 × 3 square neighborhood with
the value of the center pixel and considering only the sign
information to form a local binary pattern. A more general
formulation defined on circular symmetric neighborhood sys-
tems was proposed in [2] that allowed for multi-resolution
analysis and rotation invariance. Formally, given a pixel xc

in the image, the LBP pattern is computed by comparing its
value with those of its p neighboring pixels

xr,p = [xr,p,0, . . . , xr,p,p−1]
T

that are evenly distributed in angle on a circle of radius r
centered at center xc, as in Fig. 1, such that the LBP response
is calculated as

LBPr,p =

p−1∑
n=0

s(xr,p,n − xc)2
n, s(x) =

{
1 x ≥ 0
0 x < 0

(1)

where s() is the sign function. Relative to the origin at (0, 0)
of the center pixel xc, the coordinates of the neighbors are
given by −r sin(2πn/p), r cos(2πn/p). The gray values of
neighbors which do not fall exactly in the center of pixels
are estimated by interpolation.

Given an N × M texture image I, a LBP pattern
LBPr,p(i, j) can be the computed at each pixel (i, j). A tex-
ture image can be characterized by the probability distribution
of the LBP patterns. Formally, the whole textured image I is
represented by a LBP histogram vector h:

h(k) =
N∑
i=1

M∑
j=1

δ(LBPr,p(i, j)− k) (2)

where 0 ≤ k < d = 2p is the number of LBP pat-
terns. To be able to include textural information at different
scales, the LBP operator was later extended to use neighbor-
hoods of different sizes [2], with values of (r, p) selected as
(1, 8), (2, 16), (3, 24), . . . , (r, 8r).

TABLE I
NUMBER OF PATTERNS OF DIFFERENT DESCRIPTORS. THE NOTATION CLBP CSM IS THE ABBREVIATION FOR

CLBP CSriu2
r,p Mriu2

r,p . THE SAMPLING SCHEMES FOR SCALES 4 AND 5 HAVE BEEN IMPLEMENTED BY ZHAO et al.

[35] IN THEIR CLBC CSM APPROACH.

Scale (r, p) LBPr,p LBPri
r,p LBPriu2

r,p CLBP CSM
Scale 1 (1, 8) 256 36 10 200
Scale 2 (2, 16) 65536 4116 18 648
Scale 3 (3, 24) 16777216 699252 26 1352
Scale 4 (4, 32) 232 huge 34 2312
Scale 5 (5, 40) 240 huge 42 3528

Scale 1-5 infeasible infeasible 106 8040

A rotation invariant version LBPri
r,p of the original LBPr,p

descriptor was proposed by Pietikäinen et al. in [34]. The
LBPri

r,p descriptor uses only the rotation invariant LBP patterns

LBPri
r,p = min{ROR(LBPr,p, i) | i = 0, 1, . . . , p− 1} (3)

where ROR(x, i) performs a circular i-step bit-wise right shift
on x, i times. Keeping only those rotationally-unique patterns
leads to a significant reduction in feature dimensionality, as
shown in Table I, although beyond one scale the number of
bins remains large. The LBPri

r,p descriptor was found to have
poor performance [2], [34], therefore it has received little
attention.

In order to obtain improved rotation invariance and to fur-
ther reduce the dimensionality of the LBP histogram feature,
building on LBPri

r,p Ojala et al. [2] proposed the “rotation
invariant uniform” patterns LBPriu2

r,p , the collection of those
rotation invariance patterns having a U value of at most 2:

LBPriu2
r,p =

{ ∑p−1
n=0 s(xr,p,n − xc), if U(LBPr,p) ≤ 2

p+ 1, otherwise
(4)

where

U(LBPr,p) =

p−1∑
n=0

|s(xr,p,n − xc)− s(xr,p,n+1 − xc)|. (5)

There are p + 1 distinct groups of rotation invariant uniform
patterns, with the rest considered as “nonuniform” patterns
which are merged into one group, leading to a much lower
dimensional histogram representation for the whole image,
as shown in Table I. The success of the LBPriu2

r,p operator
comes from the experimental observation that the uniform
patterns appear to be fundamental properties of local image
textures [2], representing salient local texture structure.

Compared with the original LBPr,p descriptor and its rota-
tion invariant version LBPri

r,p, LBPriu2
r,p has improved rotation

invariance, considerably lower dimensionality, and very sat-
isfactory discriminative power which make it attractive [2],
[25].

B. Completed Local Binary Patterns (CLBP)

Completed Local Binary Patterns (CLBP) [25] consist of
three LBP-like descriptors: CLBP C, CLBP S and CLBP M
which include information on the center pixel, signed differ-
ences, and magnitudes of differences, respectively, with the
variants tested to improve the discriminative power of the
original LBP operator. The CLBP S descriptor is exactly the
same as the original LBP descriptor; CLBP C thresholds the
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central pixel against the global mean gray value of the whole
image:

CLBP C = s

xc −
1

MN

N∑
i=1

M∑
j=1

I(i, j)

 . (6)

CLBP M performs a binary comparison between the absolute
value of the difference between the central pixel and its
neighbors and a global threshold to generate an LBP-like code:

CLBP Mr,p =

p−1∑
n=0

s(|xr,p,n − xc| − µg
r,p)2

n (7)

where the global threshold µg
r,p used by Guo et al. [25] is

computed as:

µg
r,p =

∑N−r
i=r+1

∑M−r
j=r+1

∑p−1
n=0 |xr,p,n(i, j)− x(i, j)|

(M − 2r)(N − 2r)p
(8)

Since the CLBP approach adopts the ‘uniform and rotation
invariant’ scheme for texture representation, clearly it inher-
its the main characteristics of the traditional LBPriu2

r,p (i.e.
CLBP Sriu2

r,p ) descriptor. Moreover, due to the combination
of three complementary descriptors CLBP Mriu2

r,p , CLBP C
and CLBP Sriu2

r,p jointly, CLBP has provided better texture
classification performance than traditional LBPriu2

r,p , but leads
to much higher dimensionality.

III. BRINT: A BINARY ROTATION INVARIANT AND NOISE
TOLERANT DESCRIPTOR

A. Motivation

Although the original LBP approach is attractive for its
conceptual simplicity and efficient computation, a straightfor-
ward application of the original LBPr,p histogram features is
limited:

(1) As shown in Table I, the original LBP operator produces
rather long histograms (2p distinct values), overwhelm-
ingly large even for small neighborhoods, leading to
poor discriminant power and large storage requirements.

(2) The LBP operator captures only the very local structure
of the texture, appropriate for micro-textures but not
for macro-textures. Because the LBP dimensionality
becomes intractable as the sampling radius increases,
it is difficult to collect information from a larger area.

(3) The original LBP codes computed based on (1) are
sensitive to image rotation.

(4) LBP codes can be highly sensitive to noise: the slightest
fluctuation above or below the value of the central pixel
is treated the same way as a major contrast.

The rotation invariant descriptor LBPri
r,p has received very

limited attention, having shortcomings (1,2,4) listed above and
in fact providing poor results for rotation invariant texture
classification [34].

The LBPriu2
r,p descriptor has avoided the disadvantages (1)

and (2), which can be seen from Table I. However despite
its clear advantages of dimensionality, gray scale and rotation
invariance, and suitability for multi-resolution analysis, it

suffers in terms of reliability and robustness as it only uses
the uniform patterns and has minimal tolerance to noise.

The CLBP C ∗ CLBP Sriu2
r,p ∗ CLBP Mriu2

r,p , abbreviated
as CLBP CSM, has been shown to perform better than
LBPriu2

r,p [25], due to the joint behavior of the three comple-
mentary LBP-like codes CLBP C, CLBP S and CLBP M,
although this concatenation leads to a feature vector relatively
high dimensionality (Table I). In standard CLBP CSM appli-
cations, typically three scales are considered, with a corre-
sponding dimensionality of 2200. The CLBP CSM approach
adopted in [35], utilizes five scales to extract texture feature,
leading to an even higher dimensionality of 8040. For a
multi-resolution analysis, with non-local features based on a
larger number of scales, the increased dimensionality leads to
challenges in storage and reliable classifier learning.

All of the discussed descriptors share one or more weak-
nesses of noise sensitivity, high dimensionality, and/or infor-
mation insufficiency. Though all of the LBP-based approaches
are computationally simple at the feature extraction step, ex-
cept for LBPriu2

r,p the other descriptors are all computationally
expensive at the classification stage due to the high dimension-
ality of the histogram feature vector. The inherent difficulty in
extracting suitable features for robust texture classification lies
in balancing the three competing goals of discriminativeness,
low computational requirements, and a robustness to noise.
The goal of this paper was to build on the advantageous
characteristics of LBP, developing an approach which achieves
a better balance among these three competing requirements, in
particular increasing robustness to noise. Our concern with the
reduced approaches of LBPriu2 and CLBP CSM lies with the
use of only the uniform LBP patterns, which appear to lack
texture discriminability. Instead, the LBPri, although having
large dimensionality, possesses meaningful texture features
and strikes us as a more promising starting point.

B. BRINT: Proposed Approach
1) BRINT S descriptor: The construction of the local

BRINT S descriptor is illustrated in Fig. 2. Similar to the sam-
pling scheme in the original LBP approach, we sample pixels
around a central pixel xc, however on any circle of radius r
we restrict the number of points sampled to be a multiple of
eight, thus p = 8q for positive integer q. So the neighbors of
xc sampled on radius r are xr,8q = [xr,8q,0, · · · , xr,8q,8q−1]

T .
In contrast to original LBP, we transform the neighbor

vector xr,8q by local averaging along an arc,

yr,q,i =
1

q

q−1∑
k=0

xr,8q,(qi+k), i = 0, . . . , 7, (9)

as illustrated in Fig. 2, such that the number of neighbors in
y
r,q

is always eight.
Given y

r,q
= [yr,q,0, · · · , yr,q,7]T , we can trivially compute

a binary pattern with respect to the center pixel, as in LBP:

BNT Sr,q =
7∑

n=0

s(yr,q,n − xc)2
n (10)

where BNT S represents “Binary Noise Tolerant Sign”. One
can easily see that for any parameter pair (r, q) there are
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Fig. 2. Illustration of the proposed BNT S descriptor which is designed to derive
the proposed BRINT descriptor: The definition of the BNT S descriptor, and a 3-scale
example illustrating the construction of the proposed BNT S descriptor. This figure is
better read in color. Rather than directly subtracting the gray value xc of the center pixel
from the precise gray value of each neighboring pixel xr,8q,i, i = 0, . . . , 8q− 1, the
proposed approach introduces a novel idea – Average-Before-Quantization (ABQ) – first
transforming the original neighborhood into a new one yr,8q,i, i = 0, . . . , 7, and then
thresholding yr,8q,i, i = 0, . . . , 7 at the gray value of the center pixel to generate a
binary pattern. See text for further details.
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Fig. 3. A motivational example for illustration of noise robustness. Middle: A 7× 7-
pixels image and its zero mean additive Gaussian noise added version. The conventional
LBP responses are shown on the left, in contrast to the BNT S pattern on the right. The
BNT S approach shows greater consistency in the presence of noise.

28 = 256 BNT Sr,q binary patterns in total. Furthermore, the
transformation from xr,8q to y

r,q
makes the pattern more robust

to noise, as is illustrated in an example in Fig. 3.
As rotation invariance is one of our stated objectives, and to

avoid the limitations [13], [19], [21] of uniform patterns, we
follow the inspiration of LBPri

r,q , grouping equal versions of
binary representations under rotations, assigning code numbers
to the resulting groups. Formally, then, BRINT Sr,q is defined
as

BRINT Sr,q = min{ROR(BNT Sr,q, i)|i = 0, · · · , 7}, (11)

where rotation function ROR(•, •) is as in (3), reducing the
number of histogram bins, for one scale, from 256 to 36. The

(a) (b)
Fig. 4. Illustration of two sampling schemes on an example patch of
size 13 × 13-pixels used in this work: (a) Sampling Scheme 1: (r, p) ∈
{(1, 8), (2, 16), (3, 24), · · · , (r, 8r)} , and (b) Sampling Scheme 2: (r, p) ∈
{(1, 8), (2, 24), (3, 24), · · · , (r, 24)}. The proposed BRINT method using Sampling
Scheme 1 or 2 is denoted as BRINT1 or BRINT2, respectively.

motivation, then, for fixing the number of points in y
r,q

to
a constant 8 was to limit the growth in histogram bins with
scale.

In terms of parameter q, which controls the number of
neighbors being sampled and averaged, we illustrate two
reasonable sampling schemes in Fig. 4. Scheme 1, employed in
BRINT1, should be more robust to noise, due to having more
neighbors to average, however it may cause over-smoothing
relative to Scheme 2, employed in method BRINT2.

Fig. 5 validates the basic behavior of BRINT Sr,q as a
function of the number of scales by contrasting its classi-
fication performance with that of the conventional LBPri

r,p

descriptor. The classification results show a significant jump
in classification performance on the three Outex databases,
outperforming the best results reported by Ojala et al. [2].

In terms of computation cost, the proposed BRINT S de-
scriptor does not imply an increase in complexity over the
traditional LBPriu2

r,p . In particular, BRINT S always deals with
local binary patterns based on 8 points, whereas for LBPriu2

r,p

the mapping from LBP to LBPriu2
r,p requires a large lookup

table having 2p elements.
2) BRINT M descriptor: Motivated by the striking clas-

sification results achieved by BRINT S and considering the
better performance of the CLBP CSM feature over the single
feature LBPriu2

r,p proposed by Guo et al. [25], we would like
to further capitalize on the CLBP M descriptor by proposing
BRINT M.

Given a central pixel xc and its p neighboring pixels
xr,p,0, · · · , xr,p,p−1, as before in Fig. 2, we first compute the
absolute value of the local differences between the center pixel
xc and its neighbors

∆r,8q,i = |xr,8q,i − xc|, i = 0, · · · , 8q − 1. (12)

Following the work in [25], ∆r,8q is the magnitude component
of the local difference. Similar to (10), ∆r,8q is transformed
into

zr,q,i =
1

q

q−1∑
k=0

∆r,8q,(qi+k), i = 0, . . . , 7. (13)

We compute a binary pattern BNT M (Binary Noise Toler-
ant Magnitude) based on z via

BNT Mr,q =
7∑

n=0

s(zr,q,n − µl
r,q)2

n, (14)
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Fig. 5. Comparison of the classification accuracies of the proposed BRINT S descriptor and the conventional LBPri descriptor with all the three benchmark test suites from the
Outex database designated by Ojala et al. [2]: (a) Results for Outex TC10, (b) Results for Outex TC12 000, and (c) Results for Outex TC12 001. Sampling scheme 2 is used as
defined in Fig. 4 (b). The experimental setup is kept consistent with those in [2]. The results firmly indicate that the proposed BRINT S descriptor significantly outperforms the
conventional LBPri descriptor.
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Fig. 6. Comparing the classification accuracies of the proposed BRINT M with the
corresponding CLBP results.

where µl is the local thresholding value. Note that the
CLBP M descriptor defined in (7) of [25] uses the global
threshold µg of (8), whereas in the original LBP operator the
thresholding value is the center pixel value, which clearly
varies from pixel to pixel. Therefore, instead of using a
constant global threshold, we propose to use a locally varying
one:

µl
r,q =

1

8

7∑
n=0

zr,q,n. (15)

With BNT M defined, BRINT M is defined as

BRINT Mr,q = min{ROR(BNT Mr,q, i)|i = 0, . . . , 7}. (16)

Fig. 6 compares the results of the proposed BRINT M with
the comparable CLBP methods, with BRINT M significantly
outperforming.

Finally, consistent with CLBP, we also represent the center
pixel in one of two bins:

BRINT Cr = s(xc − µI,r) (17)

where µI,r is the mean of the whole image excluding boundary
pixels:

µI,r =
1

(M − 2r)(N − 2r)

M−r∑
i=r+1

N−r∑
j=r+1

x(i, j). (18)

C. MultiResolution BRINT

The proposed BRINT descriptors were, so far, extracted
from a single resolution with a circularly symmetric neighbor
set of 8q pixels placed on a circle of radius r. Given that one

concatenating

Joint

Histogramming

BRINT_M2,2

BRINT_C

2,2BRINT_CS

2,2BRINT_CM

Joint

Histogramming

Center Pixel

Differences

Absolute of

DifferencesRadius 2

Histogram Feature of BRINT at Single Resolution

Original Image

Sampling Scheme

at a Pixel

Histogram Feature of BRINT Concatenated from MultiResolution

2,2BRINT_S

2,2 2,2BRINT_CS _CM

2,2 2,2BRINT_CS _CM

1,1 1,1BRINT_CS _CM
3,3 3,3BRINT_CS _CM

4,4 4,4BRINT_CS _CM

Fig. 7. The overall framework of the proposed multiresolution BRINT
approach, whereby the BRINT S, BRINT M and BRINT C histograms are
concatenated over multiple scales.

goal of our approach is to cope with a large number of different
scales, by altering r we can create operators for different
spatial resolutions, ideally representing a textured patch by
concatenating binary histograms from multiple resolutions into
a single histogram, as illustrated in Fig. 7, clearly requiring
that the histogram feature produced at each resolution be of
low dimension.

Since BRINT CSM, the joint histogram of BRINT C,
BRINT S and BRINT M, has a very high dimensionality of
36∗36∗2 = 2592, in order to reduce the number of bins needed
we adopt the BRINT CSr,q CMr,q descriptor, meaning the
joint histogram BRINT C ∗ BRINT Sr,q concatenated with
BRINT C ∗ BRINT Mr,q , producing a histogram of much
lower dimensionality: 36 ∗ 2 + 36 ∗ 2 = 144. As a point of
comparison, in the experimental results we will also evaluate
BRINT Sr,q Mr,q, having a dimensionality of 36+36 = 72.

D. Classification

The actual classification is performed via one of two popular
classifiers:
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TABLE II
SUMMARY OF TEXTURE DATASETS USED IN OUR EXPERIMENTS.

Experiment # 1
Texture
Dataset

Image
Rotation

Illumination
Variation

Scale
Variation

Texture
Classes

Sample
Size (pixels)

Samples
per Class

Training Samples
per Class

Test Samples
per Class

Samples
in Total

Outex TC10
√

24 128 × 128 180 20 160 4320
Outex TC12 000

√ √
24 128 × 128 200 20 180 4800

Outex TC12 001
√ √

24 128 × 128 200 20 180 4800
Experiment # 2

Texture
Dataset

Image
Rotation

Illumination
Variation

Scale
Variation

Texture
Classes

Sample
Size (pixels)

Samples
per Class

Training Samples
per Class

Test Samples
per Class

Samples
in Total

CUReT
√ √

61 200 × 200 46 46 92 5612
Brodatz 24 64 × 64 25 13 12 600

KTH-TIPS2b
√ √ √

11 200 × 200 432 216 216 4752

1) The Nearest Neighbor Classifier (NNC) applied to the
normalized BRINT histogram feature vectors hi and hj ,
using the χ2 distance metric as in [3], [5], [6], [25],
[38].

2) The nonlinear Support Vector Machine (SVM) of [43],
where the benefits of SVMs for histogram-based classifi-
cation have clearly been demonstrated in [4], [21], [31].
Kernels commonly used include polynomials, Gaussian
Radial Basis Functions and exponential Chi-Square ker-
nel. Motivated by [4], [21], [31], we focus on the
exponential χ2 kernel

K(hi, hj) = exp(−γχ2(hi,hj)), (19)

where only one parameter γ needs to be optimized.
We use the one-against-one technique, which trains a
classifier for each possible pair of classes.

IV. EXPERIMENTAL EVALUATION

A. Image Data and Experimental Set up

For our experimental evaluation we have used six texture
datasets, summarized in Table II, derived from the four most
commonly used texture sources: the Brodatz album [32],
the CUReT database [6] and KTHTIPS2b [42]. The Brodatz
database is perhaps the best known benchmark for evaluating
texture classification algorithms. Performing classification on
the entire database is challenging due to the relatively large
number of texture classes, the small number of examples for
each class, and the lack of intra-class variation.

1) Experiment # 1: There are 24 different homogeneous
texture classes selected from the Outex texture database [33],
with each class having only one sample of size 538 × 746-
pixels. The 24 different texture samples are imaged under
different lighting and rotations conditions. Three experimen-
tal test suites Outex TC10, Outex TC12 000 and Ou-
tex TC12 001, summarized in Table II, were developed by
Ojala et al. [2] as benchmark datasets for rotation and illu-
mination invariant texture classification. For all the three test
suites, the classifier is trained with 20 reference images of
the ‘inca’ illumination condition and angle 0◦, totaling 480
samples. The difference among these three test suites is in
the testing set. For Outex TC10, the remaining 3840 samples
with ’inca’ illumination, are used for testing the classifier.
For Outex TC12 000 and Outex TC12 001, the classifier is
tested with all 4320 images from fluorescent and sunlight
lighting, respectively.

For the experiments on all three Outex databases, we first
test the classification performance of the proposed approach

TABLE III
ABBREVIATION OF THE METHODS IN EXPERIMENTS AND THEIR

CORRESPONDING MEANING.

BRINT S Binary rotation invariant and noise tolerant descriptor based
on sign component BRINT Sr,q

BRINT M Binary rotation invariant and noise tolerant descriptor based
on magnitude component BRINT Mr,q

BRINT C (CLBP C) Binary pattern for the center pixel
BRINT S M Concatenation of BRINT S and BRINT M
BRINT CS Joint distribution of BRINT C and BRINT S
BRINT CM Joint distribution of BRINT C and BRINT M
BRINT CS CM Concatenation of BRINT CS and BRINT CM
LBPri

r,p(CLBP Sri
r,p) Rotation invariant LBP

LTPriu2
r,p Rotation invariant uniform LTP

LBPriu2
r,p (CLBP Sriu2

r,p ) Rotation invariant uniform LBP
CLBP Mri

r,p Rotation invariant magnitude LBP
CLBP Mriu2

r,p Rotation invariant uniform magnitude LBP
CLBP Sri

r,p Mri
r,p Concatenation of CLBP Sri and CLBP Mri

CLBP Sriu2
r,p Mriu2

r,p Concatenation of CLBP Sriu2
r,p and CLBP Mriu2

r,p

CLBP CSri
r,p CMri

r,p Concatenation of CLBP CSriu2
r,p and CLBP CMriu2

r,p

CLBP CSriu2
r,p CMriu2

r,p Concatenation of CLBP CSriu2
r,p and CLBP CMriu2

r,p

on the original database and then assess the robustness of the
proposed method under noisy conditions, where the original
texture images are corrupted by zero-mean additive Gaussian
noise with different Signal-to-Noise Ratios (SNRs) (defined
as the ratio of signal power to the noise power). Moreover,
we also test the classification performance of the proposed
approach against impulse salt-and-pepper noise with different
noise density ratio and multiplicative noise with zero mean
and different variances, which is randomly and independently
added to each image.

2) Experiment # 2: Brodatz was chosen to allow a direct
comparison with the state-of-the-art results from [21]. There
are 24 homogeneous texture classes2. Each image was parti-
tioned into 25 nonoverlapping sub-images of size of 128×128,
each of these downsampled to 64× 64. 13 samples per class
were selected randomly for training and the remaining 12 for
testing.

For the CUReT database, we use the same subset of images
which has been previously used in [3], [5], [6], [19], [25], [35],
[38]: 61 texture classes each with 92 images under varying
illumination direction but at constant scale. 46 samples per
class were selected randomly for training and the remaining
46 for testing. It has been argued [5], [6], [39] that this
scale constancy is a major drawback of CUReT, leading to
KTHTIPS2b [39], [42], with 3 viewing angles, 4 illuminants,
and 9 different scales. We follow the training and testing
scheme of [39]: training on three samples and testing on
unseen samples.

For Brodatz and CUReT, results for texture classification
under random Gaussian noisy environment are also provided.
Training and testing scheme is the same as in noise-free
situation.

B. Methods in Comparison and Implementation Details
We will be performing a comparative evaluation of our

proposed approach, where the abbreviations of the proposed

2The 24 Brodatz textures are D1, D4, D16, D19, D21, D24, D28, D32,
D53, D54, D57, D65, D68, D77, D82, D84, D92, D93, D95, D98, D101,
D102, D106, D111
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TABLE IV
SAMPLING SCHEME, NOTATIONS AND COMPARISONS OF NUMBER OF BINS

IN THE HISTOGRAM FEATURE FROM SINGLE SCALE (SS).

Method Parameter SS1 SS2 SS3 SS4 SS5 SS6 SS7 SS8 SS9
BRINT1 S (r, 8q) (1, 8) (2, 16) (3, 24) (4, 32) (5, 40) (6, 48) (7, 56) (8, 64) (9, 72)

(BRINT1 M) bins 36 36 36 36 36 36 36 36 36
BRINT2 S (r, 8q) (1, 8) (2, 24) (3, 24) (4, 24) (5, 24) (6, 24) (7, 24) (8, 24) (9, 24)

(BRINT2 M) bins 36 36 36 36 36 36 36 36 36
CLBP Sriu2

r,p (r, p) (1, 8) (2, 16) (3, 24) (4, 24) (5, 24) (6, 24) (7, 24) (8, 24) (9, 24)

(CLBP Mriu2
r,p ) bins 10 18 26 26 26 26 26 26 26

LTPriu2
r,p

(r, p) (1, 8) (2, 16) (3, 24) (4, 24) (5, 24) (6, 24) (7, 24) (8, 24) (9, 24)

bins 20 36 52 52 52 52 52 52 52

NRLBPriu2
r,p

(r, p) (1, 8) (2, 8) (3, 8) (4, 8) (5, 8) (6, 8) (7, 8) (8, 8) (9, 8)

bins 10 10 10 10 10 10 10 10 10
CLBP Sri

r,p (r, p) (1, 8) (1, 8) (1, 8) (1, 8) (1, 8) (1, 8) (1, 8) (1, 8) (1, 8)

(CLBP Mri
r,p) bins 36 36 36 36 36 36 36 36 36

descriptor and state-of-the-art approaches are given in Ta-
ble III:

1) CLBP CSri
r,p CMri

r,p: The rotation invariant CLBP ap-
proach parallel to our proposed BRINT CS CM feature.

2) CLBP CSriu2
r,p CMriu2

r,p : The rotation invariant and
uniform CLBP method parallel to our proposed
BRINT CS CM feature.

3) DLBP+NGF [21]: The fused features of the DLBP
features and the normalized Gabor filter response av-
erage magnitudes (NGF). It is worth mentioning that
the DLBP approach needs pretraining and the dimen-
sionality of the DLBP feature varies with the training
image.

4) LTP [29]: The recommended LTPriu2
r,p is used. Here

we implemented a nine scale descriptor, where the
associated parameter settings can be seen in Table IV.

5) CLBP [25]: The recommended fused descriptor
CLBP CSM (i.e. CLBP CSriu2

r,p Mriu2
r,p ) is used, however

only a 3-scale CLBP CSM is implemented due to the
high dimensionality limitation mentioned in Table I.

6) LBP [2]: The traditional rotation invariant uniform fea-
ture proposed by Ojala et al. [2]. We use a 3-scale
descriptor as recommended by the authors.

7) DNS+LBP [19]: The fused feature of Dominant Neigh-
borhood Structure approach and the conventional LBP
approach proposed by Khellah [19] claimed to have
noise robustness.

8) disCLBP [15]: The discriminative descriptor obtained
by a learning framework proposed by Guo et al. [15].
Due to the high dimensionality of the descriptor at
larger scales, we use a 3-scale descriptor dis(S+M)rir,p
as recommended by the authors.

9) LBPNT
r,p,k [18]: A circular majority voting filter to

achieve noise robustness, followed by a scheme to re-
group the nonuniform LBP patterns into several different
classes instead of classifying them into a single class as
in LBPriu2

r,p . Parameter k acts as the size of kernel in the
circular majority voting filter, controlling the number of
noisy bits that should be filtered in the obtained LBP
pattern. As suggested by Fathi et al. [18], parameter k
is set as 1, 3 and 4 for p = 8, 16 and 24 respectively. We
implemented a multiresolution (nine scales) LBPNT

r,p,k

TABLE V
COMPARING THE CLASSIFICATION ACCURACIES (%) OF THE PROPOSED BRINT2 CS CM DESCRIPTOR WITH TWO

CONVENTIONAL CLBP DESCRIPTORS. ALL RESULTS ARE OBTAINED WITH A NNC CLASSIFIER. THE HIGHEST

CLASSIFICATION ACCURACIES ARE HIGHLIGHTED IN BOLD FOR EACH TEST SUITE.

Outex Single Scale Multiple Scales

Databases Methods SS1 SS2 SS3 SS4 SS5 SS6 SS7 SS8 SS9 MS2 MS3 MS4 MS5 MS6 MS7 MS8 MS9

TC10

BRINT2 CS CM 91.87 96.43 96.04 94.04 95.16 94.51 91.61 92.16 93.78 96.95 98.52 99.04 99.32 99.32 99.30 99.40 99.35

CLBP CSri
r,p CMri

r,p 91.87 95.34 89.14 84.95 80.89 78.10 73.83 70.44 67.92 96.28 95.21 93.44 91.56 90.60 89.14 88.07 87.58

CLBP CSriu2
r,p CMriu2

r,p 95.68 98.23 98.72 98.96 98.05 97.58 97.71 96.77 96.30 98.41 99.30 99.43 99.45 99.51 99.53 99.48 99.48

LBPNT
r,p,k [18] 84.24 85.76 93.52 92.19 94.74 93.39 92.76 91.74 88.96 91.87 96.15 98.10 98.88 99.19 99.35 99.32 99.24

NRLBPriu2
r,p [20] 89.79 89.24 88.31 84.35 77.01 77.81 77.01 65.41 62.16 93.78 96.67 97.01 98.07 97.81 95.60 95.05 93.44

TC12 000

BRINT2 CS CM 86.46 93.38 94.47 91.06 92.15 89.86 89.65 89.38 90.72 94.24 96.23 97.04 97.18 97.22 97.43 97.64 97.69
CLBP CSri

r,p CMri
r,p 86.46 92.62 88.56 81.27 79.86 77.62 73.36 69.63 67.94 93.17 94.56 93.29 91.25 88.82 87.55 86.92 86.41

CLBP CSriu2
r,p CMriu2

r,p 89.81 94.31 94.88 93.98 90.56 87.85 88.26 88.29 87.71 95.63 96.81 96.67 96.23 95.95 96.00 96.00 95.97

LBPNT
r,p,k [18] 69.70 80.42 85.42 86.57 85.95 84.47 82.99 85.05 82.18 84.72 91.46 94.05 94.42 95.19 96.00 96.34 96.18

NRLBPriu2
r,p [20] 73.52 78.89 78.52 71.30 64.79 65.67 60.83 59.12 56.92 84.81 88.33 89.35 89.28 89.26 87.99 86.71 86.13

TC12 001

BRINT2 CS CM 88.50 93.98 94.40 90.81 92.27 90.42 88.80 89.70 90.97 94.35 96.34 97.29 97.41 97.85 97.99 98.29 98.56
CLBP CSri

r,p CMri
r,p 88.50 93.01 87.82 81.78 79.26 76.48 73.12 69.21 68.75 93.26 93.63 92.04 90.88 89.47 88.43 87.29 86.78

CLBP CSriu2
r,p CMriu2

r,p 91.44 94.47 93.19 92.41 88.98 85.83 86.90 88.01 86.90 95.12 95.63 95.35 94.58 94.40 94.19 94.21 93.91

LBPNT
r,p,k [18] 64.42 75.28 82.48 86.30 86.39 84.40 83.38 86.39 80.65 79.70 85.09 89.17 91.00 92.08 93.77 94.19 94.28

NRLBPriu2
r,p [20] 69.19 73.36 79.19 72.99 67.69 69.14 60.53 58.33 57.48 81.18 85.76 88.50 89.86 91.13 89.58 88.24 87.38

(MS9)3, however Fathi et al. [18] only considered three
scales in their work.

10) NRLBP [20]: We implemented a multiresolution
NRLBPriu2

r,p descriptor: NRLBPriu2
r,8 , r = 1, · · · , 9,

though Ren et al. [20] only evaluated the first scale
(r, p) = (1, 8) in their original paper. The reason that
the number of neighboring points p is kept 8 for each
radius r is because the extraction of the NRLBP feature
requires building up a lookup table of size 3p which is
extremely expensive in terms of both computation time
and memory cost.

Each texture sample is preprocessed: normalized to zero
mean and unit standard deviation. For the CUReT and Brodatz
databases, all results are reported over 100 random parti-
tionings of training and testing sets. For SVM classification,
we use the publicly available LibSVM library [41]. The
parameters C and γ are searched exponentially in the ranges
of

[
2−5, 218

]
and

[
2−15, 28

]
, respectively, with a step size

of 21 to probe the highest classification rate. However, in
our experiments setting C = 106 and γ = 0.01 give very
good performance. In the additive Gaussian noise environ-
ment, the SNRs tested here are 100, 30, 15, 10, 5 and
3, corresponding to 20db, 14.78db, 11.76db, 10db, 7db and
4.77db respectively. The noise density ratios of the salt-and-
pepper noise tested are ρ = 5%, 10%, 20%, 30%, 40%. The
multiplicative noise tested is with zero mean and different
variances υ = 0.02, 0.05, 0.1, 0.15, 0.2, 0.3.

C. Results for Experiment # 1

Fig. 8 plots the classification performance of different
BRINT combination schemes as a function of number of
scales. There is a trend of increasing classification perfor-
mance as the number of scales increases. It is apparent that
the BRINT CS CM feature performs the best, therefore the
BRINT CS CM descriptor will be our proposed choice and
will be further evaluated.

Fig. 9 compares the two sampling schemes for the proposed
approach, using the Outex TC12 000 database. Here we can
see that sampling scheme 2 produced better classification
performance than sampling scheme 1, believed to be because

3LBPNT
1,8,1+LBPNT

2,16,3+ LBPNT
3,24,4+LBPNT

4,24,4+ LBPNT
5,24,4+LBPNT

6,24,4+
LBPNT

7,24,4+LBPNT
8,24,4+LBPNT

9,24,4
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Fig. 8. Classification rates as a function of number of scales, with the same
experimental setup as in Fig. 5, using a NNC classifier. Of the combinations tried,
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Fig. 9. Comparing the classification performance of the two sampling
schemes of Fig. 4 on Outex TC12 000. The experimental setup is the same
as in Fig. 8. Scheme 2 performs better and will be adopted.

sampling scheme 1 oversmooths the local texture structure,
resulting in lost texture information.

Table V compares the classification performance of the pro-
posed BRINT2 CS CM descriptor with those of CLBP [25]
on the three Outex databases. We observe that BRINT2
performs significantly and consistently better than both ri and
riu2 forms of CLBP, both in single-scale and multiple-scale
cases. The striking performance of BRINT2 CS CM clearly
demonstrates that the concatenated marginal distributions of
the proposed basic BRINT C, BRINT S and BRINT M codes
and the novel “averaging before binarization” scheme turns
out to be a very powerful representation of image texture.
The use of multiple scales offers significant improvements
over single-scale analysis, consistent with earlier results in
Figs. 8 and 9, showing that the approach is making effective
use of interactions between the center pixel and more distant
pixels. To the best of our knowledge, the proposed approach
produced classification scores which we believe to be the
best reported for Outex TC12 000 and Outex TC12 001.
Keeping in mind the variations in illumination and rotation
present in the Outex databases, the results in Table V firmly
demonstrate the illumination and rotation invariance property
of the proposed BRINT CS CM approach.

Table VI compares the best classification scores achieved
by the proposed BRINT2 CS CM method using nine scales
(MS9) in comparison with state-of-the-art texture classification
methods on all three Outex test suites. Despite not being

TABLE VI
COMPARING THE CLASSIFICATION SCORES (%) ACHIEVED BY THE PROPOSED

APPROACH WITH THOSE ACHIEVED BY RECENT STATE-OF-THE-ART TEXTURE

CLASSIFICATION METHODS ON THE THREE OUTEX TEST SUITES IN EXPERIMENT # 1.
SCORES ARE AS ORIGINALLY REPORTED, EXCEPT THOSE MARKED (⋄) WHICH ARE

TAKEN FROM THE WORK BY GUO et al. [25].

Outex Database
Classifier Method TC10 TC12 000 TC12 001
NNC Ours: BRINT2 CS CM (MS9) 99.35 97.69 98.56
SVM Ours: BRINT2 CS CM (MS9) 99.30 98.13 98.33

NNC

CLBP CSM [25] 99.14 95.18 95.55

CLBC CSM [35] 98.96 95.37 94.72

LBPriu2
P,R /VARP,R [2] 97.7 87.3 86.4

LBPVu2
P,RGMP/2-1

PD2 [38] 97.63 95.06 93.88

dis(S+M)rir,p [15] 97.0 96.5

LBPNT
r,p,k [18] (MS9) 99.24 96.18 94.28

NRLBPriu2
r,p (MS9) [20] 93.44 86.13 87.38

VZ-MR8 [5] 93.59(⋄) 92.55(⋄) 92.82(⋄)
VZ-Patch [6] 92.00(⋄) 91.41(⋄) 92.06(⋄)

SVM DLBP+NGF [21] 99.1 93.2 90.4

TABLE VII
BRINT PERFORMANCE AS A FUNCTION OF NOISE, COMPARED WITH SEVERAL

RECENT STATE-OF-THE-ART LBP VARIANTS. FOR EACH TEST GAUSSIAN NOISE WAS

ADDED, AND THE HIGHEST CLASSIFICATION ACCURACY HIGHLIGHTED IN BOLD.
THE NOISE ROBUSTNESS OF OUR PROPOSED BRINT IS QUITE STRIKING.

Classification Accuracies (%)
Database Features SNR=100 SNR=30 SNR=15 SNR=10 SNR=5 SNR=3

Outex TC10

BRINT1 CS CM (MS9, NNC) 94.74 94.04 92.21 92.42 89.24 77.50
BRINT2 CS CM (MS9, NNC) 97.76 96.48 95.47 92.97 88.31 71.51

CLBP CSriu2
r,p CMriu2

r,p (MS9, NNC) 99.30 98.12 94.58 86.07 51.22 28.65

LBPriu2
r,p (MS3, NNC) [2] 95.03 86.93 67.24 49.79 24.06 12.97

LBPNT
r,p,k (MS9, NNC) [18] 98.65 96.12 88.85 80.23 51.09 30.34

dis(S + M)rir,p (NNC) [15] 96.07 82.60 56.72 39.66 19.66 8.83

LTPriu2
r,p (MS9, NNC) [29] 99.45 98.31 93.44 84.32 57.37 27.73

NRLBPriu2
r,p (MS9, NNC) [20] 87.40 85.73 80.16 72.42 51.02 32.63

Outex TC12 000

BRINT1 CS CM (MS9, NNC) 92.87 90.63 89.72 88.12 83.84 74.47
BRINT2 CS CM (MS9, NNC) 95.95 93.59 91.32 90.49 83.68 69.70

CLBP CSriu2
r,p CMriu2

r,p (MS9, NNC) 96.16 93.54 88.73 83.52 52.22 29.35

LBPriu2
r,p (MS3, NNC) [2] 91.30 82.55 60.25 47.31 24.07 13.63

LBPNT
r,p,k (MS9, NNC) [18] 92.15 89.35 83.77 74.47 49.84 31.27

dis(S + M)rir,p (NNC) [15] 91.55 78.06 54.98 37.36 18.24 8.77

LTPriu2
r,p (MS9, NNC) [29] 96.44 95.90 89.42 82.27 53.06 27.89

NRLBPriu2
r,p (MS9, NNC) [20] 84.49 81.16 77.52 70.16 50.88 33.31

Outex TC12 001

BRINT1 CS CM (MS9, NNC) 94.10 92.31 90.95 89.84 85.83 76.04
BRINT2 CS CM (MS9, NNC) 96.92 95.14 93.66 92.29 84.77 71.02

CLBP CSriu2
r,p CMriu2

r,p (MS9, NNC) 95.95 93.66 88.36 81.71 53.43 26.81

LBPriu2
r,p (MS3, NNC) [2] 90.72 79.17 60.74 45.81 25.02 12.55

LBPNT
r,p,k (MS9, NNC) [18] 94.35 90.81 84.95 75.49 47.04 30.38

dis(S + M)rir,p (NNC) [15] 92.92 79.63 54.93 37.43 18.06 9.12

LTPriu2
r,p (MS9, NNC) [29] 96.74 95.76 89.63 81.50 53.45 26.37

NRLBPriu2
r,p (MS9, NNC) [20] 85.76 82.69 77.38 69.68 49.07 32.06

customized to the separate test suites, our multi-scale BRINT2
descriptor produces what we believe to be the best reported
results on all three suites, regardless whether NNC or SVM
is used. We would also point out that except for the proposed
BRINT, CLBP CSM [25] and CLBC CSM [35] approaches,
the remaining descriptors listed in Table VI require an extra
learning process to obtain the texton dictionary, requiring
additional parameters or computational burden.

The preceding discussion allows us to assert that the pro-
posed multi-scale BRINT2 approach outperforms the conven-
tional multi-scale CLBP approach on the Outex test suites. We
now wish to examine the robustness of our method against
noise to test applicability to real-world applications, thus the
original texture images from Experiment #1 have been subject
to added Gaussian noise.

Table VII quite clearly shows the noise-robustness offered
by the BRINT approach: similar classification rates are seen
in the near-absence of noise (SNR=100), however the de-



10 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. X, NO. X, 2014

TABLE XI
COMPARING THE CLASSIFICATION ACCURACIES (%) OF THE PROPOSED BRINT CS CM WITH THE CONVENTIONAL CLBP CSriu2

r,p CMriu2
r,p AND TWO STATE-OF-THE-ART APPROACHES ON THE ORIGINAL BRODATZ DATABASE. ALL OUR

RESULTS ARE REPORTED OVER 100 RANDOM PARTITIONINGS OF THE TRAINING AND TEST SET. THE HIGHEST CLASSIFICATION SCORE IS HIGHLIGHTED IN BOLD.

Multiple Scale
Methods MS2 MS3 MS4 MS5 MS6 MS7 MS8 MS9
BRINT1 CS CM (SVM) 99.72 ± 0.42 99.78 ± 0.32 99.76 ± 0.30 99.78 ± 0.29 99.67 ± 0.32 99.54 ± 0.34 99.44 ± 0.39 99.37 ± 0.44

BRINT1 CS CM (NNC) 99.85 ± 0.22 100.00 ± 0.00 99.98 ± 0.09 99.88 ± 0.21 99.79 ± 0.25 99.59 ± 0.34 99.39 ± 0.41 99.22 ± 0.49

BRINT2 CS CM (SVM) 99.88 ± 0.28 99.93 ± 0.14 99.93 ± 0.16 99.82 ± 0.25 99.74 ± 0.35 99.67 ± 0.29 99.46 ± 0.37 99.31 ± 0.45

BRINT2 CS CM (NNC) 99.66 ± 0.47 99.81 ± 0.34 99.85 ± 0.23 99.77 ± 0.28 99.69 ± 0.32 99.69 ± 0.31 99.54 ± 0.39 99.45 ± 0.44

CLBP CSriu2
r,p CMriu2

r,p (NNC) 99.70 ± 0.44 99.72 ± 0.33 99.81 ± 0.31 99.68 ± 0.24 99.59 ± 0.35 99.59 ± 0.36 99.35 ± 0.38 99.29 ± 0.43

DLBP+NGF [21] (SVM) 99.16 (DLBPr=3+NGF) 99.54 (DLBPr=2+NGF)
LBP [2] (NNC) 98.48 ± 0.52

TABLE VIII
RESULTS OF MCNEMAR’S TEST FOR STATISTICAL SIGNIFICANCE ANALYSIS (AT A SIGNIFICANCE LEVEL OF 0.025)

BETWEEN THE RESULTS OF THE THE PROPOSED BRINT AND THOSE BY THE STATE-OF-THE-ART METHODS ON THE

OUTEX TC12 000 TEST SUITE INJECTED WITH ADDITIVE GAUSSIAN NOISE (CORRESPONDING TO THE RESULTS ON

THE OUTEX TC12 000 SHOWN IN TABLE VII). THE
√

MARK INDICATES STATISTICALLY SIGNIFICANCE EXISTENCE.

THE BRACKETED VALUES ARE THE MCNEMAR CHI-SQUARE STATISTICS AND THE p VALUES (a=0.000, b=0.004).

BRINT2 CS CM (MS9) (Proposed)
Features SNR=100 SNR=30 SNR=15 SNR=10 SNR=5 SNR=3
CLBP CSriu2

r,p CMriu2
r,p (MS9)

√
(35.7, p = a)

√
(25.3, p = a)

√
(48.7, p = a)

√
(157.6, p = a)

√
(562.0, p = a)

√
(303.9, p = a))

LBPriu2
r,p (MS3)

√
(216.0, p = a)

√
(405.6, p = a)

√
(864.0, p = a)

√
(1163.1, p = a)

√
(1277.5, p = a)

√
(455.8, p = a))

LBPNT
r,p,k (MS9)

√
(66.4, p = a)

√
(36.2, p = a)

√
(75.5, p = a)

√
(335.1, p = a)

√
(534.3, p = a)

√
(262.0, p = a))

dis(S + M)rir,p (MS3)
√
(161.6, p = a)

√
(677.6, p = a)

√
(1077.1, p = a)

√
(1539.1, p = a)

√
(1491.2, p = a)

√
(589.2, p = a))

LTPriu2
r,p (MS9)

√
(40.5, p = a)

√
(8.2, p = b)

√
(117.8, p = a)

√
(222.7, p = a)

√
(496.1, p = a)

√
(288.5, p = a))

NRLBPriu2
r,p (MS9)

√
(232.9, p = a)

√
(205.5, p = a)

√
(201.2, p = a)

√
(356.6, p = a)

√
(550.7, p = a)

√
(248.4, p = a)

TABLE IX
BRINT PERFORMANCE AS A FUNCTION OF NOISE DENSITY RATIO (ρ), COMPARED WITH SEVERAL RECENT

STATE-OF-THE-ART LBP VARIANTS. THE OUTEX TC12 001 TEST SUITE IS USED FOR EXPERIMENTS. FOR EACH TEST

SALT-AND-PEPPER NOISE WITH DIFFERENT NOISE DENSITY RATIO (ρ) WAS ADDED, AND THE HIGHEST

CLASSIFICATION ACCURACY HIGHLIGHTED IN BOLD. THE NNC CLASSIFIER IS USED.

Classification Accuracies (%)
Features ρ = 5% ρ = 10% ρ = 20% ρ = 30% ρ = 40%

BRINT2 CS CM (MS9) 98.63 96.55 92.64 84.54 74.26

CLBP CSriu2
r,p CMriu2

r,p (MS9) 92.96 90.53 82.20 69.77 50.88

dis(S + M)rir,p [15] 94.77 93.22 76.67 54.81 43.33

LTPriu2
r,p (MS9) [29] 92.89 91.99 86.11 77.71 64.19

NRLBPriu2
r,p (MS9) [20] 88.63 88.96 83.87 78.98 67.11

gree to which BRINT outperforms LBP [2], CLBP [25],
LBPNT

r,p,k [18], dis(S + M)rir,p [15] and LTPriu2
r,p [29] becomes

more and more striking as SNR is reduced, with classification
rates more than 40% higher over all state-of-the-art methods
in comparison at very low SNR.

Certainly the results in Table VII are consistent with the
expected relative behavior of BRINT1 and BRINT2. The
larger value of q in BRINT1, corresponding to greater pixel
averaging, leads to poorer performance at high SNR, where
excessive averaging is not desired, and persistently stronger
performance at low SNR, where the averaging becomes an
asset.

In addition to the result table shown in Table VII we also
show the results of the statistical tests for significance we
performed. The results are given in Table VIII, where the
check sign indicates that a statistical significant difference
between two results according to McNemar’s test [37] was
found. Clearly, it can be observed from Table VIII that the
differences between the proposed BRINT approach and the
state-of-the-art results are all statistically significant.

Fig. 10 plots the classification results as a function of
scale, contrasting the classification behaviors of the proposed
BRINT2 and conventional CLBP descriptors under high noise
(SNR=5). The strength of using multiple scales rather than a
single scale is clearly seen, as is the significant performance
improvement of BRINT2 over CLBP.

TABLE X
COMPARING THE PERFORMANCE OF DIFFERENT DESCRIPTORS ON THE OUTEX TC12 001 TEST SUITE INJECTED WITH

MULTIPLICATIVE NOISE. FOR EACH TEST MULTIPLICATIVE NOISE WITH ZERO MEAN AND VARIANCE υWAS ADDED,

AND THE HIGHEST CLASSIFICATION ACCURACY HIGHLIGHTED IN BOLD. THE NNC CLASSIFIER IS USED.

Classification Accuracies (%)
Features υ = 0.02 υ = 0.05 υ = 0.1 υ = 0.15 υ = 0.2 υ = 0.3

BRINT2 CS CM (MS9) 95.90 93.31 90.76 88.06 85.95 72.82

CLBP CSriu2
r,p CMriu2

r,p (MS9) 93.31 90.44 83.77 72.06 63.56 47.43

dis(S + M)rir,p [15] 89.98 76.39 49.72 39.40 29.26 22.99

LTPriu2
r,p (MS9) [29] 95.97 92.08 82.85 72.50 61.39 47.25

NRLBPriu2
r,p (MS9) [20] 84.03 80.56 72.08 65.88 56.46 47.25
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Fig. 10. A comparison of classification performance under severe noise (SNR=5),
both (a) as a function of the single scale used, and (b) as a function of the number of
scales. The strength of BRINT2 over CLBP is clear, as is the benefit of forming features
over as many scales as possible.

Finally, Table IX and Table X compare the classification
performance of our proposed BRINT2 CS CM descriptor
with several recent state-of-the-art methods in the presence
of salt-and-pepper noise and multiplicative noise respectively.
It is observed from Table IX and Table X that our pro-
posed BRINT2 approach performs consistently better than
all state-of-the-art methods. As the noise level increases,
the performance gain of the proposed approaches over other
approaches in comparison becomes more significant, clearly
demonstrating the robustness of BRINT to both impulsive
noise and multiplicative noise.

D. Results for Experiment # 2

The classification results on the original Brodatz databases
are listed in Table XI. The proposed BRINT1 method with a
NNC classifier performs the best at 100% accuracy, however
honestly all of the tested methods achieve very high classifica-
tion accuracies here, since all 24 tested textures are relatively
homogeneous and have small intra-class variations caused by
rotation and illumination variations, a relatively easy problem
for classification.

Instead, the noise-corrupted Brodatz database is expected to
introduce greater challenges, with results listed in Table XII.
We specifically compare with DLBP+NGF [21], which is one
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TABLE XII
A COMPARISON OF CLASSIFICATION ACCURACY (%) ON THE BRODATZ24 DATASET WITH ADDITIVE GAUSSIAN NOISE.

FOR EACH NOISE LEVEL THE TWO HIGHEST MEAN CLASSIFICATION ACCURACIES ARE HIGHLIGHTED IN BOLD.

RESULTS ARE REPORTED OVER 100 RANDOM PARTITIONINGS OF THE TRAINING AND TEST SETS. THE SVM

CLASSIFIER IS USED.

Classification Accuracies (%)
Features SNR=100 SNR=30 SNR=15 SNR=10 SNR=5 SNR=3
BRINT1 CS CM (MS7) 99.00 ± 0.46 98.09 ± 0.78 96.60 ± 0.76 95.47 ± 0.90 91.27 ± 1.44 84.15 ± 1.63
BRINT1 CS CM (MS9) 98.60 ± 0.48 97.81 ± 0.59 96.42 ± 0.88 95.36 ± 0.96 91.00 ± 1.41 85.56 ± 1.62
BRINT2 CS CM (MS7) 98.95 ± 0.60 98.07 ± 0.65 96.84 ± 0.89 94.94 ± 1.36 89.59 ± 1.19 81.67 ± 1.80

BRINT2 CS CM (MS9) 98.60 ± 0.52 97.68 ± 0.68 96.55 ± 0.89 94.50 ± 1.37 89.65 ± 1.27 82.31 ± 1.69

CLBP CSriu2
r,p CMriu2

r,p (MS7) 98.94 ± 0.62 97.05 ± 0.75 94.53 ± 1.12 91.16 ± 1.43 82.50 ± 1.78 72.02 ± 2.10

CLBP CSriu2
r,p CMriu2

r,p (MS9) 98.68 ± 0.71 97.17 ± 0.86 94.65 ± 1.10 91.10 ± 1.47 83.39 ± 1.85 73.10 ± 2.19

DLBP2+NGF [21] 99.35 ± 0.00 99.31 ± 0.00 95.77 ± 0.00 92.33 ± 4.65 83.84 ± 4.48 NA
LBPriu2

r,p (MS3) [2] 96.88 ± 0.82 91.56 ± 1.42 85.24 ± 1.79 80.56 ± 2.15 65.79 ± 1.92 50.40 ± 2.22

TABLE XIII
COMPARING THE CLASSIFICATION SCORES (%) ACHIEVED BY THE PROPOSED APPROACH WITH THOSE ACHIEVED BY

RECENT STATE-OF-THE-ART METHODS ON THE CURET DATABASE. SCORES ARE AS ORIGINALLY REPORTED, EXCEPT

THAT MARKED (∗) WHICH WAS TAKEN FROM [4].

CUReT Published in

NNC
BRINT2 S M (MS9) 97.86 This paper
BRINT2 CS CM (MS9) 97.06 This paper

SVM
BRINT2 S M (MS9) 99.19 This paper
BRINT2 CS CM (MS9) 99.27 This paper

NNC

CLBP CSM [25] 97.39 TIP 2010
CLBC CSM [35] 95.39 TIP 2012
LBPVu2

P,RGMP/2-1
PD2 [38] 96.04 PR 2010

dis(S+M)rir,p [15] 98.3 PR 2012
DNS + LBP24,3 [19] 94.52 TIP 2011
VZ-MR8 [5] 97.43 IJCV 2005
VZ-Patch [6] 98.03 TPAMI 2009
Lazebnik et al. [10] 72.5(∗) TPAMI 2005
MultiScale BIF [7] 98.6 IJCV 2010
RP [3] 98.52 TPAMI 2012

SVM
Hayman et al. [31] 98.46 IMAVIS 2010
Zhang et al. [4] 95.3 IJCV 2007
LBPNT

r,p,k (MS9, SVM) [18] 98.07 PRL 2012

of the few LBP-based approach to claim noise robustness. Cer-
tainly DLBP+NGF significantly outperforms LBPriu2

r,p [2], and
slightly better than CLBP CSriu2

r,p CMriu2
r,p , however in cases

of higher noise (lower SNR) the proposed BRINT approaches
significantly outperform both CLBP and DLBP+NGF.

The CUReT database contains 61 texture classes with each
class having 92 samples imaged under different viewpoints and
illuminations, a greater classification challenge than Brodatz.
Table XIII compares performance with the state of the art,
where the proposed BRINT2 with nine scales using SVM
produces the highest classification score.

Table XIV tests classification robustness to noise. The
results firmly demonstrate the noise tolerant performance of
the proposed methods. To the best of our knowledge, the
DNS+LBP24,3 [19] is the only LBP related method which
claims noise tolerance and has reported CUReT results. Our
proposed methods consistently and significantly outperform
LBP, CLBP, DNS+LBP [19] and LBPNT

r,p,k [18], with the
relative performance difference increasing as the noise level
increases.

Although the DNS+LBP24,3 [19] approach sacrifices some
performance in classifying noise-free textures for the sake
of obtaining noise robustness, this is not the case for our
proposed approach. Fig. 11 shows classification performance
on the KTHTIPS2b database, demonstrating that our proposed
approach outperforms comparative state of the art, while
simultaneously maintaining noise robustness.

Finally, Table XV illustrates the effect of introducing a
Gaussian pre-smoothing filter, showing results with and with-

TABLE XIV
CLASSIFICATION ACCURACIES (%) ON THE NOISE-CORRUPTED CURET DATABASE. FOR EACH TEST, THE FOUR

HIGHEST MEAN CLASSIFICATION ACCURACIES ARE HIGHLIGHTED IN BOLD. ALL RESULTS ARE REPORTED OVER 100

RANDOM PARTITIONINGS OF THE TRAINING AND TEST SETS.

Classification Accuracies (%)
Features SNR=100 SNR=30 SNR=15 SNR=10 SNR=5 SNR=3
BRINT1 CS CM (MS7, SVM) 98.61 ± 0.66 97.20 ± 0.95 95.98 ± 0.67 94.05 ± 0.67 89.90 ± 1.24 85.86 ± 1.84
BRINT1 CS CM (MS9, SVM) 98.65 ± 0.66 97.52 ± 0.60 96.26 ± 0.86 94.68 ± 1.00 90.65 ± 1.28 86.47 ± 1.70
BRINT1 CS CM (MS7, NNC) 96.67 ± 0.75 94.76 ± 0.83 92.86 ± 1.03 90.00 ± 2.56 85.02 ± 1.24 78.54 ± 0.99

BRINT1 CS CM (MS9, NNC) 96.81 ± 0.72 95.39 ± 0.84 93.69 ± 1.09 90.92 ± 2.55 86.11 ± 1.17 80.45 ± 1.05

BRINT2 CS CM (MS7, SVM) 98.70 ± 0.43 97.28 ± 0.73 95.07 ± 0.84 93.90 ± 0.87 89.26 ± 1.23 84.49 ± 1.54
BRINT2 CS CM (MS9, SVM) 98.75 ± 0.53 97.32 ± 0.63 95.70 ± 0.96 94.07 ± 1.20 90.00 ± 1.23 84.98 ± 1.84
BRINT2 CS CM (MS7, NNC) 96.57 ± 0.71 94.48 ± 0.96 92.31 ± 0.89 89.99 ± 1.12 83.35 ± 1.19 77.04 ± 1.24

BRINT2 CS CM (MS9, NNC) 96.78 ± 0.71 94.90 ± 0.71 92.83 ± 0.87 90.46 ± 1.11 84.48 ± 1.27 78.33 ± 1.26

CLBP CSriu2
r,p CMriu2

r,p (MS7, SVM) 98.24 ± 0.78 95.92 ± 0.92 92.65 ± 0.84 90.16 ± 0.86 82.27 ± 1.25 74.77 ± 1.54

CLBP CSriu2
r,p CMriu2

r,p (MS9, SVM) 98.40 ± 0.47 95.75 ± 2.25 92.82 ± 1.00 90.58 ± 1.14 83.13 ± 1.32 75.42 ± 1.41

CLBP CSriu2
r,p CMriu2

r,p (MS7, NNC) 95.05 ± 0.82 90.89 ± 1.20 86.51 ± 0.99 81.66 ± 1.24 73.34 ± 1.45 64.18 ± 1.23

CLBP CSriu2
r,p CMriu2

r,p (MS9, NNC) 95.19 ± 0.86 91.12 ± 1.22 86.58 ± 1.04 82.35 ± 1.18 73.55 ± 1.45 64.77 ± 1.26

DNS+LBP24,3 [19] (NNC) 91.57 ± 1.18 87.37 ± 0.76 83.28 ± 1.20 81.04 ± 1.19 72.71 ± 0.97 NA
LBPriu2

r,p (SVM) [2] 92.54 ± 0.99 87.18 ± 0.99 81.23 ± 1.24 77.10 ± 1.18 67.14 ± 1.65 58.20 ± 1.41

LBPNT
r,p,k (MS9, NNC) [18] 91.56 ± 1.56 85.99 ± 1.09 78.98 ± 1.25 74.90 ± 0.91 65.74 ± 0.88 56.31 ± 1.11

LBPNT
r,p,k (MS9, SVM) [18] 95.14 ± 0.91 89.12 ± 0.97 85.68 ± 1.78 82.43 ± 1.16 72.70 ± 1.58 63.61 ± 1.26

LTPriu2
r,p (MS9, NNC) [29] 92.22 ± 1.28 90.15 ± 1.38 86.66 ± 1.26 84.85 ± 0.91 77.48 ± 1.67 70.67 ± 1.90

LTPriu2
r,p (MS9, SVM) [29] 98.05 ± 0.83 95.99 ± 0.56 93.38 ± 1.54 91.24 ± 1.51 86.50 ± 1.01 79.00 ± 1.39

45

50

55

60

65

70

75
Results for the KTHTIPS2b database

C
la

s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y
 (

%
)

67.2

55.7

65.3

60.3

64.7

69.6

66.3

52.7

60.7

70.3

64.3

BR
IN
T1
_S
_M

BR
IN
T1
_C
S_
CM

BR
IN
T2
_S
_M

BR
IN
T2
_C
S_
CM SIF

T
MW

LD LB
P

VZ
-M
R8

VZ
-Jo
int

CL
BP

Comparison

Fig. 11. Classification performance of the proposed approach with various state-of-the-
art results on the KTHTIPS2b texture material database. The BRINT results are based
on nine scales and NNC. All results are computed by us, except for those of MWLD
and SIFT, which are quoted from [40].

out pre-smoothing. We observe that the proposed BRINT2
is only very modestly improved, if at all, by pre-smoothing,
due to the noise robustness inherent in the method. We also
observe that LBPNT

r,p,k [18] performs poorly, regardless of
SNR or filtering, whereas the proposed BRINT2 gives the
highest performance at high SNR, and at lower SNR only
a modest difference is present between BRINT2 and the
Gaussian+CLBP CSriu2

r,p CMriu2
r,p method.

Results in Table XV confirm the noise robustness of the
proposed BRINT approach, emphasizing that no smoothing
is necessary. The absence of spatial smoothing is a significant
advantage for BRINT, as local spatial information is important
for texture classification, whereas pre-smoothing can suppress
important local texture information, a serious drawback for
texture recognition in low-noise situations.

V. CONCLUSIONS

The multi-resolution LBPriu2
r,p and the more recent

CLBP CSriu2
r,p Mriu2

r,p descriptors have been proved to be two
powerful measures of image texture [2], [25]. However, they
have also been shown to have serious limitations including
the instability of the uniform patterns, the lack of noise
robustness, the inability to encode a large number of different
local neighborhoods, an incapability to cope with large local
neighborhoods, and high dimensionality (CLBP) [13], [21],
[23]. In order to avoid these problems, we have presented
BRINT, a theoretically and computationally simple, noise
tolerant yet highly effective multi-resolution descriptor for
rotation invariant texture classification. The proposed BRINT
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TABLE XV
CLASSIFICATION ACCURACIES (%) ON THE NOISE-CORRUPTED CURET DATABASE, COMPARING THE METHODS WITH

OR WITHOUT PRE-GAUSSIAN SMOOTHING. ALL RESULTS ARE REPORTED OVER 50 RANDOM PARTITIONINGS OF THE

TRAINING AND TEST SETS. FOR EACH TEST, THE HIGHEST MEAN CLASSIFICATION ACCURACIES ARE HIGHLIGHTED IN

BOLD. FOR GAUSSIAN SMOOTHING FILTER, A 7 × 7 FILTER MATRIX WITH σ = 1.5 IS USED. FOR CLASSIFICATION,

THE SVM CLASSIFIER IS USED.

Classification Accuracies (%)
Features SNR=100 SNR=30 SNR=15 SNR=10 SNR=5 SNR=3
BRINT2 CS CM (MS9) 98.75 ± 0.53 97.32 ± 0.63 95.70 ± 0.96 94.07 ± 1.20 90.00 ± 1.23 84.98 ± 1.84

Gaussian+BRINT2 CS CM (MS9) 98.33 ± 0.66 97.84 ± 0.33 96.82 ± 0.75 94.73 ± 0.92 91.59 ± 1.19 87.52 ± 1.82

CLBP CSriu2
r,p CMriu2

r,p (MS9) 98.40 ± 0.47 95.75 ± 2.25 92.82 ± 1.00 90.58 ± 1.14 83.13 ± 1.32 75.42 ± 1.41

Gaussian+CLBP CSriu2
r,p CMriu2

r,p (MS9) 98.21 ± 0.44 97.61 ± 0.55 96.48 ± 0.86 94.55 ± 0.56 91.80 ± 0.83 87.80 ± 0.96
LBPNT

r,p,k (MS9) [18] 95.14 ± 0.91 89.12 ± 0.97 85.68 ± 1.78 82.43 ± 1.16 72.70 ± 1.58 63.61 ± 1.26

Gaussian+LBPNT
r,p,k (MS9) [18] 92.88 ± 1.35 90.05 ± 0.93 87.00 ± 1.77 82.94 ± 1.02 76.50 ± 1.67 69.95 ± 1.35

LTPriu2
r,p (MS9) [29] 98.05 ± 0.83 95.99 ± 0.56 93.38 ± 1.54 91.24 ± 1.51 86.50 ± 1.01 79.00 ± 1.39

Gaussian+LTPriu2
r,p (MS9) [29] 97.55 ± 0.83 96.52 ± 0.94 95.88 ± 1.16 93.68 ± 0.76 89.04 ± 1.47 84.68 ± 0.97

descriptor is shown to exhibit very good performance on popu-
lar benchmark texture databases under both normal conditions
and noise conditions.

The main contributions of this work include the develop-
ment of a novel and simple strategy — circular averaging be-
fore binarization — to compute a local binary descriptor based
on the conventional LBP approach. The proposed approach
firmly puts rotation invariant binary patterns back on the map,
after they were shown to be very ineffective in [2], [34].
Since the key advantage of the traditional LBP approach has
been its computational simplicity, in our opinion a complicated
or computationally expensive LBP variant violates the whole
premise of the LBP idea. Our proposed BRINT is firmly
consistent with the goal of simplicity and efficiency.

The proposed BRINT descriptor is noise robust, in contrast
to the noise sensitivity of the traditional LBP and its many
variants. Furthermore the proposed idea can be generalized
and integrated with existing LBP variants, such as conventional
LBP, rotation invariant patterns, rotation invariant uniform pat-
terns, CLBP, Local Ternary Patterns (LTP) and dis(S+M)rir,p
to derive new image features for texture classification.

The robustness of the proposed approach to image rotation
and noise has been validated with extensive experiments on six
different texture datasets. This noise robustness characteristic
is evaluated quantitatively with different artificially generated
types and levels of noise (including Gaussian, salt and pep-
per and multiplicative noise) in natural texture images. The
proposed approach to produce consistently good classification
results on all of the datasets, most significantly outperforming
the state-of-the-art methods in high noise conditions.

The current work has focused on texture classification.
Future interest lies how to exploit the proposed descriptor for
the domain of face recognition and object recognition.
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