
Towards a Novel Approach for Texture Segmentation of SAR Sea IceImageryDavid A. Clausiyz, M. Ed JerniganyDepartment of Systems Design EngineeringyDepartment of Geography (Earth Observation Laboratory)zUniversity of Waterloo, Waterloo, Ontario N2L 3G1dclausi@monet.uwaterloo.ca (519)885-1211 x5342Abstract: Texture is an important aspect of identi-fying sea ice types in SAR imagery. The traditionalgrey level cooccurrence matrix has limitations thatprevent its use for segmentation purposes. The Ga-bor �lter, based on characteristics of the humanvisual system, is an alternative approach that cangenerate an improved texture feature set. Texturesegmentation applied to a di�cult image demon-strates the versatility and appropriateness of theGabor approach when compared to the cooccur-rence features. I. INTRODUCTIONExceptional volumes of data transmitted from satelliteand aerial radar platforms demand the automated in-terpretation of remotely sensed imagery in a cost andtime-e�ective manner. There is no known algorithmcapable of performing consistent identi�cation of thevarious visually distinct formations found in SAR seaice imagery. The remote sensing community recognizesthat texture is an important aspect of automated seg-mentation of such imagery.A common texture feature approach for this applica-tion is the grey level cooccurrence matrix (GLCM). Agrey level cooccurrence linked list (GLCLL) [3] is usedto alleviate the computational demands of the GLCM.Even though the linked list dramatically reduces thecomputational demands, the cost of computing cooc-currence probabilities is still quite expensive. Also, themethod has not been demonstrated to be su�cientlyrobust to solve the SAR sea ice segmentation problem.Is there any method that could generate texture fea-tures that are more reliable for discriminating SAR seaice imagery with a reduced computational load?1Funding for the primary author provided by Natural Sci-ences and Engineering Research Council of Canada and the Fac-ulty of Engineering, University of Waterloo.

One common theme in texture analysis is the genera-tion of features at multiple resolutions, a methodologybased on known characteristics of the human visualsystem (HVS). A �lter that is often used to performmulti-resolutional analysis is the Gabor function. Thispaper will �rst motivate and describe the use of Gabor�lters. Then, Gabor �lters are compared to cooccur-rence probabilities in the context of a di�cult texturesegmentation problem.II. BACKGROUNDInvestigations into the biological vision response to tex-tural patterns have lead to the following fundamentalunderstandings. Hubel and Wiesel [4] determined thatvision systems are tuned to distinguish di�erent orien-tations. Campbell and Robson [2] extended this modelto include frequency sensitivity as well. This lead totheir hypothesis that the HVS is based on multipleindependent �lters each tuned to a di�erent orienta-tion and frequency pair. Recently, research dealingspeci�cally with texture perception has substantiatedthese observations. Rao and Lohse [6] determined thatonly three major characteristics are required for tex-ture identi�cation: repetition (ie. frequency), direc-tionality (ie. orientation), and complexity (based onthe regularity of the observed texture).Gabor �lters are the �lter of choice for texture segmen-tation algorithms [1, 5]. Functionally, the Gabor �lteris the product of a sinusoid with a Gaussian function.Practically, the Gabor �lter can be \tuned" to speci�corientations (�) and frequencies (F ). The �nite e�ec-tive extent of the �lter is controlled by the standarddeviations (�x,�y) of the 2-d dimension Gaussian. A2-d Gabor �lter is expressed as:h(x; y) = g(x; y) exp(2�j(Ux + V y))
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0.1(b) F = 22.6cpd, � = 6.36 pixelsFig. 1: 1-d Gabor functionswith real and imaginarycomponents.where F = pU2 + V 2, � = tan�1(U=V ), and g(x; y) isa two-dimensional Gaussian:g(x; y) = 12��x�y exp ��12 �x2�2x + y2�2y�� :The complex exponential may be divided into real [hr(x; y)]and imaginary [hi(x; y)] components. Examples of 1-dGabor �lters are illustrated in Fig. 1. All frequencies(cycles per dimension or cpd) are based on a dimensionof 256 pixels. In the frequency domain, the Gabor �l-ter is represented by a Gaussian centred on (F ,�) withextensions inversely proportional to (�x,�y).For a Gabor �lter to work optimally, the input signalf(x) is a pure sinusoid. In this case, only one Ga-bor �lter tuned to the correct frequency is required foridenti�cation. For example, given a signal comprisedof sequential sinusoids (Fig. 2) a single �lter can betuned to identify one part of the signal. This responseis based on calculating the magnitude following �lter-ing with both the real and imaginary components ofthe Gabor signal, ie.y(x) =p[hr(x) � f(x)]2 + [hi(x) � f(x)]2where `�' denotes the convolution operator. Since theDC gain of these Gabor �lters is nearly zero they gen-erate su�ciently scale invariant measurements.Unfortunately, pure sinusoids do not make up the tex-tural characteristics of natural imagery such as SARsea ice imagery. Typically, SAR sea ice imagery has
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0.5(a) Sequential pure sinusoids: 22.6 and 11.3 cpd [f(x)].(b) Response [y(x)] of (a) to �lter represented in Fig. 1(b).Fig. 2: Tuned �lter response.a more stochastic appearance, encompassing possiblymore than one dominant F . Also, within the same tex-ture, the value of F may may change gradually withinlocal regions. In these cases, it is necessary to use mul-tiple �lters in order to capture the true essence of thetexture. III. METHODSGiven that an overwhelming number of (F , �, �x, �y)combinations can be used, a method to reduce thenumber of �lters is required. This can be done by im-plementing the Gabor function in the form of a wavelet�lter bank [5]. In this form, �lter center frequenciesare separated by one octave (a doubling of frequency).Orientations can be set according to the four funda-mental directions f0,45,90,135 degreesg. Bandwidthsare set to allow full coverage in the frequency domainwith minimal overlap. Thus, with increasing centrefrequency, the bandwidths in the frequency domain in-crease causing their spatial extents to be decreased.This is an appealling characteristic since shorter timeintervals are mapped to higher frequencies and longertime intervals are mapped to lower frequencies. InFig. 1, doubling of the frequency leads to doubling thespatial extent (�) which maintains preferred spatial lo-calization.When segmenting a SAR sea ice image, this mappinghas tremendous potential. A wavelet transform couldbe applied so that compressed wavelets would identifymulti-year ice types and dilated wavelets would iden-tify smooth ice types. The characteristic line patternsof pressure ridges would have oriented frequency com-ponents that a �lter could be \tuned" to isolate. Gen-erally, the wavelet approach can take a signal, breakit down into component pieces, and the manipulationof these pieces can yield features that represent char-acteristics of the various textures that appear in theimage. Such multi-resolutional �ltering gives the op-portunity to dissect an image and isolate the essential



Fig. 3: Original 256x256 image.details necessary for segmentation.IV. TESTING AND RESULTSIn order to compare the Gabor and cooccurrence prob-ability methods, an image comprised of Brodatz tex-tures is used (Fig. 3). This image is di�cult to segmentfor a number of reasons: boundaries are not geometri-cally regular, di�erent resolutions are required to rec-ognize the di�erent textures, and one of the textures isrepresented at three separate spatial locations. Thesecharacteristics mimic conditions often found in SARsea ice imagery.The cooccurrence probabilities were determined for �= f0,45,90,135g degrees, a pixel separation distance ofone, and grey level quantization level of 64. Contrast,correlation, and entropy are the statistics of choicesince these measurements utilize the essential informa-tion found in the cooccurrence probabilities [3]. Trialsusing di�erent window sizes were used: 8x8, 16x16,and 32x32. The Gabor �lters were set up in a waveletfashion following the functionality in [1] and the con�g-uration in [5]. Gaussian smoothing was performed onthe image feature maps. Thus, each pixel in the imageis represented by a N -dimensional feature vector whereN represents the number of �lters. The K-means algo-rithm is used to cluster the feature vector data. Then,an iterative Fisher linear discriminant is used to im-prove the classi�cation.The results for the Gabor segmentation is found in

Fig. 4: Gabor wavelet segmentation.Fig. 4. All four texture classes are recognized. Al-though some boundary problems are noticed, the re-sults are quite successful.The best results for the cooccurrence probabilities oc-curred with a 16x16 window (Fig. 5). However, all theboundaries in the image were erroneously determinedto belong to the same class. The 8x8 window result wastoo detailed and could not resolve the resolution of thewood texture since darker grains were classi�ed to adi�erent class than the lighter portions of this texture.Using a 32x32 window resolved this resolution problembut completely destroyed boundary identi�cation dueto considerable blurring. Both the 8x8 window and32x32 window did not identify the class representedwith the smallest area. In order to capture the bestof both resolution worlds, the 8x8 and the 16x16 fea-ture sets were combined, however, this feature set alsogenerated poor results.V. DISCUSSION AND CONCLUSIONSThe Gabor wavelet �ltering and the cooccurrence prob-ability approaches for texture feature extraction can becompared in a number of di�erent ways.� Gabor frequency domain �ltering is computation-ally faster. For the above implementation, the co-occurrence features (with 16x16 windows) tookapproximately three times as long per featurewhen compared to the Gabor technique.



Fig. 5: Cooccurrence segmentation (16x16 window).� The Gabor function mimics critical aspects of theHVS. The moment statistics of the cooccurrenceprobabilities can perform a similar task [3].� The identical Gabor �lter con�guration can besuccessfully applied to a wide variety of imagery.In contrast, there is considerable uncertainty aboutwhich parameters to choose for the cooccurrenceprobabilities from image to image.� To implement the cooccurrence technique withanything but f0,45,90,135g degrees of orientationis awkward. The Gabor �lters can easily operateusing any orientation. This is important becausethe resolving capacity of the HVS is estimated tobe about 30 degrees [4].� Gabor �lters use a Gaussian weighting. The uni-form distribution used by the cooccurrence ap-proach leads to poorer boundary identi�cation.A Gaussian neighbourhood could be used, how-ever, the updating ability of the GLCLL approachcould not be used simultaneously [3].� The Gabor wavelet �ltering is inherently multi-resolutional. The cooccurrence technique coulduse multiple windows, but a priori selection ofwindow sizes would be di�cult.� In order to run at a reasonable speed, cooccur-rence probabilites require grey level quantizationwhich may destroy important information. Ga-bor �lters operate at the same speed for any greylevel quantization.
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