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ABSTRACT 
This paper investigates the statistical characterization of sig- 
nals and images in the wavelet domain. In particular, in con- 
trast to common decorrelated-coefficient models, we find 
that the correlation between wavelet scales can be surpris- 
ingly substantial, even across several scales. In this pa- 
per we investigate possible choices of statistical-interaction 
models. One efficient and fast strategy which describes the 
wavelet-based statistical correlations is illustrated. Finally, 
the effectiveness of the proposed tool towards an efficient 
hierarchical MRF modeling of within-scale neighborhoods 
and across-scale dependencies will be demonstrated. 
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Fig. 1. Illustration of a coefficient in the fine scale (shown by .), whose 
spatial neighbors come from different parents in the caanerrcale. 

are independent, and ideally Gaussian. There is, however, 
a growing recognition that neither of these assumptions 
are accurate, nor even adequate for many image process- 

nature of wavelet coefficient interactions. both within and 
across scales. We propose multiscale and Markov random 
field (MRF) models for the wavelet correlation structures. 

Our motivation is model-based statistical image pro- 
cessing, which requires some probabilistic description of 
the underlying image characteristics. Because of the com- 
plexity of spatial behaviour and pixel interactions, the raw 

1. Marginal Models: 
(a) Non-Gaussian, i.e., heavy tail distribution [3], 
(b) Mixture of Gaussians [3]. 
(c) Generalized Gaussian distribution [2], 
(d) Bessel functions 141. 

Hidden Markov tree models [11. 
2. Joint Models: 

statistics of pixels are extremely complicated and inconve- 
nient to specify. It is much more convenient to consider 
describing the statistics of a transformed image, where the 
transform is chosen to simplify or decorrelate, as much as 
possible, the starting statistics, analogous to the precondi- 
tioning of complicated linear system problems. The popu- 
larity of the wavelet transform stems from its effec- 
tiveness in this task: many operations. such as interpola- 
tion, estimation, compression, and demising are simplified 
in the wavelet domain, because of its energy compaction 
and decorrelative properties [ I ,  21. 

A conspicuously common assumption is that the WT is 
a perfect whitener, such that all of the wavelet coefficients 
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In virtually all marginal models, currently being used in 
wavelet shrinkage [2], the coefficients are treated individu- 
ally and as independent, i.e.. only the diagonal elements of 
wavelet based covariance matrix are considered. This ap- 
proach, however, is not optimal in a sense that WT is not a 
perfect whitening process. 

The latter approach, however, examines the joint statis- 
tics of coefficients. Normally an assumption is present that 
the correlation between coefficients does not exceed the 
parent-child dependencies, e.g. given the state of its parent, 
a child is decoupled from the entire wavelet tree [I]. 

It is difficult to study both aspects simultaneously: that 
is, the development of non-Gaussian joint models with 
non-trivial neighborhood. The study of independent non- 
Gaussian models has been thorough the complementary 
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Fig. 2. RMSE noise reduction as a function of covariance density. It is 
evident how a tiny fraction of coefficients already provides the majority of 
the improvement. 

study, the development of Gaussian joint models, is the fo- 
cus of this paper. The goal, of course, is the ultimate merg- 
ing of the two fields. However for the purpose of this paper, 
we are willingto limit ourselves to simplifying marginal as- 
sumptions (Gaussianity) which we know to be incorrect. but 
which allow us to undertake a correspondingly more sophis- 
ticated study ofjoint models. 

In previous work 151, we proposed a MS model, which 
described the wavelets coefficients as a first-order Markov 
process in scale. The virtue of the model is its ability to 
capture the most significant statistical information between 
tree parents and children, however the interrelationship of 
pixels within a scale is only implicit, and very limited. In 
this paper we extend our work to the proper modeling of 
statistical dependencies on spatial neighbors. 

2. WAVELET SPATIAL NEIGHBORHOODS 

Figure 1 illustrates the arrangement of a typical coefficient 
at a fine scale (right panel) and the corresponding parents 
(left) at the coarser scale. It is immediately obvious that 
first-order neighbors of a pixel are not necessarily spawned 
from the same parent. 

The purpose of these illustrations is to point toward an 
important issue: although two coefficients may be spatially 
close, they can be located on distantly separated branches 
of the wavelet tree. Consequently a standard wavelet quad- 
tree, modeling only parent-child relationships, will only 
poorly represent spatial interrelationships, in those cases 
where they are found to be significant. 

3. WAVELET NEIGHBORHOOD MODELING 

In order to study the exact correlations between wavelet co- 
efficients we considered a variety of prior models based on 
Gaussian Markov random field (GMRF) covariance struc- 
tures. The chosen priors, shown in Figure 3(a),(b) are the 

(b) Thin-piate Model 

Fig. 3. The correlation m m u m  of some wavelet coefficimt, marked 
by ., with all other coefficients W b ) :  Two typical GMRF textures. (c): 

Correlation stlllcture of a horizontal coefficient for the tree texture of (a). 

(d)-(O Correlation Structures for the thin-plate model of (b), for three dif- 
ferent choices of subband and scale. 

tree-bark and thin-plate models. They are spatially station- 
ary, an assumption for convenience only and is not funda- 
mental to our analysis. 

The selected covariance structure I: J is transformed into 
the wavelet domain by computing the 2-D wavelet trans- 
form W .  containing all translated and dilated versions of 
the selected wavelet basis functions: 

CWJ = IVCJW* (1) 

where we have restricted our attention to the set of 
Dauhechies basis functions. 

In past work [51 we have already examined a variety 
of possible wavelet correlation structures to consider: from 
complete independence (diagonal elements only) to full de- 
pendency (entire covariance matrix preserved). with six 
other intermediate variations. Each variation clearly will 
differ in its complexity (matrix density) and statistical accu- 
racy, a comparison which is shown in Figure 2 for the image 
denoising problem. 

It is clear that MSE performance is not even necessarily 
monotonic in matrix density! Furthermore, it is also clear 
that the vast bulk of the benefit is to be held from relatively 
few coefficients. Our god in this paper is a study of prob- 
abilistic models which describe the wavelet random field 
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with a small fraction of coefficients, but which accurately 
absorb each pixel's dependency on the rest of the wavelet 
tree. 

3.1. Hieramhical Representation of Correlations 

Our goal is to obtain a clear neighborhood structure. such as 
for a Markov random field. which is capable of describing 
the statistical interactions of wavelet coefficients. 

Answering this question is challenging because of the 
issues raised in Figure 1: the tree-relationship between a 
pixel and its spatial neighbors is pixel dependent. So notions 
of stationarity, obvious in the spatial domain, become subtle 
(or completely invalid) in the wavelet domain. In short, do 
we need to specify a different neighborhood structure for 
every wavelet coefficient (since each coefficient occupies a 
unique position on the tree), or perhaps one structure for 
all of the 'lower-left" children of parents and another for 
"upper-right" etc.. or is there some degree of uniformity that 
applies? 

We have chosen to begin by studying the problem vi- 
sually, and without any particular spatial assumptions. As 
shown in Figure 3(c)-(fl, we have devised a tool which uti- 
lizes the traditional 2-D WT structure to display the corre- 
lation between any specified coefficient and all other coeffi- 
cients on the entire wavelet tree. Figure 3(c) shows the cor- 
relation of a typical horizontal coefficient (indicated by e) 

of the tree texture, exhibiting a strong vertical correlation 
both within and across scales. Similarly Figure 3(d)-(O dis- 
play correlation structures for the thin-plate model and for 
three different choices of subband and scale. 

In these illustrations the coefficient interactions show a 
clear preference to locality, as must be expected. This local- 
ity increases toward finer scales, which supports the persis- 
tency property of wavelet coefficients [ I ] .  The local neigh- 
borhood definition for any given pixel does not c o n h e  to 
the pixel's subband: it extends to dependencies across direc- 
tions and resolutions. Besides the long range across scale 
correlations, every typical coefficient exhibits strong cor- 
relation with its immediate neighbors both within subband 
and scale. 

It is well-known that the WT is a sparse representation 
of original data by a few essentialcoefficient values [l]. To 
take this fact into account as a sufficient condition, these 
empirical evaluations have been extended to dependency 
structure of those significant coefficients. 

3.2. Significant Coefficients Correlation 

Although intriguing. i t  is not remotely obvious that the cor- 
relation coefficients plotted in Figure 3 necessarily quanti- 
tatively correspond to importance in considering coefficient 
interactions. That is. can we more objectively quantify what 
i t  means for some correlation to be important or significant? 
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Fig. 4. The rame panels as in Figure 3(c)-(o. but now plotting the si~nif-  
icanceof each interrelationship. rather than iU correlation. Significance is 
measured in terms of MSE improvement i from (5). 

For small test problems the wavelet-based covariance 
C w j  can be determined exactly. Suppose two coefficients 
CI, cz are observed in the presence of noise: 

Under the standard independence assumption. if only the 
coefficient variances are kept from the full covariance, then 
their estimation error is given by 

On the other hand, if we model the two coefficients with 
their correct correlation. the estimation error proceeds as 

In other words, the importance of this particular correlation 
can be quantified as the degree to which it affects the ac- 
curacy of the estimation, which although related to the cor- 
relation coefficient, is not proportional to it. We define the 
significance to be the difference of the total MSE under the 
two approaches: - L,u = tr(p1) - tr(p2) (5) 
Figure 4(a) -(d) shows the significance of correlations for the 
corresponding coefficients displayed in Figure 3(c)-(f). It is 
evident from these diagrams that within scale dependency 
range reduces to shorter locality, but across scale activities 
still present up to sweral scales. The computation of sig- 
nificant covariances, thus. confirms that the well-structured 
coefficients dependencies to be hierarchical. 

I - 363 



Fig. 5. Motivated by the significance maps, such as those shown in Fig- 
ure 4. the above panels show one possible derived MRF neighbourhood 
smcture for (a) averticalcaefficien!and (b) a diagonalcoefficient. in  both 
cases. the neighborhwdofa single pixel (4 is shown. 

3.3. Pmposed Model 

According to our achievements of statistical dependencies 
between the wavelet coefficients we propose to model the 
wavelet coefficients not as independent, but as governed by 
MRF stochastic processes. Since correlations are present 
both within and across scales, a random field model for the 
wavelet coefficients with itself needs to be hierarchical. To 
develop the MRF model, we start with a simple structure 
as shown in Figure 5. Figure 5(a) displays the proposed 
model for a typical vertical component (marked as e). which 
is formed based on the following hierarchy: 

1. The first-order neighbors in the vertical subband. 
2. The corresponding second-order neighbors from the 

3. The corresponding first right and first left neighbors 

4. Similar neighborhood structure across scales with 

By symmetry, similar MRF model is proposed for hor- 
izontally aligned coefficients. Figure 5(b) also displays the 
locality considered for a diagonal coefficient. Diagonal co- 
efficients are expected to be less correlated, but across sub- 
band dependencies are clearly observed. 

To obtain the actual Markov random field model co- 
efficients, parameter estimation needs to be done. Fig- 
ure 6 displays the model parameters calculated for a simple 
first-order within- and across-scale neighborhood site for a 
thin-plate MRF 5-level wavelet transformed. The estimated 
parameters are scale dependent. They increase the MRF 
model strength as coefficients dependencies increase from 
coarse to fine resolutions. The within-scale correlations of 
horizontal and vertical subbands are symmetrically identical 
and are stronger than those of diagonal subband. 

horizontal subband, 

from the diagonal subband, 

reduced local activity towards coarser resolutions. 

4. CONCLUSIONS 

A thorough 2-D wavelet statistical study has been presented 
in this paper. An examination of the coefficient correlations, 
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Fig. 6. The MRF model paramelen calculated for a first-order within- 
and mors-scale neighborhood site. The parameten are scale dependent 
and the hierarchical correlation increases from coarser to finer scales. The 
zero-correlation at the root scale is presumably because of lack of data. 

within or across scales. revealed the fact the there exists a 
clear MRF model governing these local dependencies. The 
proposed MRF model exhibits a sparse neighborhood struc- 
ture which absorbs correlation of the given coefficient with 
the rest of the wavelet tree. 

Following the modeling stage. there are two primary on- 
going research directions: (I) evaluating the model accu- 
racy by comparing it with the existing thresholding meth- 
ods, in MMSE sense, (2) devising an estimation or denois- 
ing algorithm, which takes into account this MRF model 
and results in optimum error and low computational cost. 
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