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Abstract

Pipeline surface defects such as cracks cause major
problems for asset managers, particularly when the pipe
is buricd under the ground. The manual inspection of
surface defects in the underground pipes has a number of
drawhacks, including subjectivity, varving standards, and
high costs. Automatic inspection svstem using image
processing and artificial intelligence  techniques can
overcome many of these disadvantages and offer asset
managers an opporiunity to significantly improve quality
and reduce costs. A recognition and classification of pipe
cracks using image analysis and neuro-fuzzy algorithm is
proposed. In the pre-processing step. the cracks in the
pipe are extracted from the honogenous background.
Then, based on a prior knowledge of cracks, five
normalised features are extracted. In the classification
step, a neuro-fuzzy algorithm is proposed that emiplovs a
trapezoidal fuzzy membership function and modificd error
backpropagation (EBP) algorithm.

1. Introduction

Municipal infrastructure systems are eroding due to
aging. excessive demand, misuse. mismanagement. and
neglect. as shown in Figure 1. Closed Circuit Television
(CCTV) surveys of underground pipes are used widelv in
North America to assess the structural integrity of pipes
(1]. CCTV surveys are conducted using a remotely
controlled vehicle carrying a television camera through an
underground pipe. The data acquired from this process
consist of a videostream, photographs of specific defects,
and records produced by technician. The diagnosis of
defects depends largely on the experience. capability. and
concentration of the operator, making the detection of
defect error prone. An automated underground pipe
inspection system is required. which can extract and assess
the structural condition of pipcs to ensure accuracy,
efficiency. and economy of underground pipe
examination. :
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ie' - Underground pipe image showing a rg hole,
scanned by PSET (Core Corp.) in the city of Albuquerque.

In this paper, a defect detection methodology based
on the local detection of linear -structures and a neuro-
fuzzy algorithin is proposed. The main effort .is
concentrated on the investigation of image processing
algorithins for detection of cracks, and artificial
intelligence technique for classification of severity of
these cracks. The scanned images for this study are
obtained by Pipe Scanner and Evaluation Technology
(PSET) surveys for major cities in North America.

2. PSET Surveys

Pipe scanner and evaluation technology (SSET) is an
innovative technology for obtaining images of the interior
of pipe [2]. PSET is developed by TOA Grout, CORE
Corp., California. and the Tokyo Metropolitan
Government’s  Services (TGS) Company. PSET is a
system that offers a new inspection method minimizing
some of the shortcomings of the traditional inspection
equipment that relies on a CCTV inspection. This ‘is
accomplished by utilizing scanning and gyroscopic
technology. Typical scanned images of underground pipe
with various defects are shown in Figures 2(a) and 2(b).
The major benefit of the PSET system over the current
CCTV technology is that the enginecer will have higher
quality image data to make critical rehabilitation



Fgure 2(a). Pipe image showing a joint and few minor
cracks.

Figure 2(b). |be im wing a joint and multiple
cracks, most severely above the joint.

decisions. Although underground imaging technology has
made substantial strides in recent years, the basic mcans of
analysis are unchanged: a technician is required to identify
defects on a monitor. The research of this paper sceks to
address this latter Himitation.

3. Image Analysis

In the computer vision literature one can find various
techniques addressing different types of data, including
natural and artificial textures. synthetic aperture radar
tmages. and magnetic resonance images [3.4.5.6]. In
analysing underground pipe scanned image dala, one
needs to consider complications due 1o the inhereni noise
in the scanning process. irregularly shaped objects (roots,
cracks. and holes) as well as the wide range of pipe
background patterns. One of the major problems is 1o
detect cracks that are camouflaged in the background of
correded areas, debris, patches of repair work. areas of
poor lighted conditions.

In the past 20 years, many approaches have been
developed 1o deal with the detection of linear features on
optic {7.8] or radar iinages [9.10]. Most of them combine
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Figure 3(a). Thresholded responses of the crack detectors
for minor cracks in the underground pipe.
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Figure 3({b). Thresholded responses of the crack detectors
for multiple cracks in the underground pipe.

two criferia: a local criterion evaluating the radicmetry
on sone small neighborhood surrounding a target pixel to
discriminate lines from background and a global criterion
introducing some large-scale knowledge about the
structures to be detected. Concerning the local criteria,
most of the iechniques used for pavement distress
detection in scanned images are based either on
conventional edge or line detectors [11.12). These
methods evaluate differences of averages, implying noisy
results and variable false-alarm rates }13].

The approach taken in this study for detection of
cracks falls within the scope of the Bayesian framework. It
is based on the fusion of the results from two detectors D1
and D2, both taking the statistical properties of image into
account. Crack detector DI is based on the ratio edge
detector [14], widely used in coherent imagery. Detector
D2 uses the normalised centered correlation between two
populations of pixel [15]. The detection results are post-
processed to provide candidate segments. Threshold
responses of the crack detectors after fusing and linking
operations are shown in Figures 3(a) and 3(b).
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Figure 4. Convergence characteristics of the error backpropagation algorithm.

4. Feature Extraction

Sciection of an appropriate set of features is one of
the most important tasks for any defect classification
system. The primary goal of feature extraction is to obtain
features that maximise the similarity of objects in the same
class while at the same time maximising the
dimensionality reduction of data, computational efficiency
and reduction of memory requirements of the classifier.
This is particularly important when neural networks are
used to perform the classification tasks as the
dimensionality reduction of the input not only removes the
redundancy of the data but also enables the use of a
smaller size network structure which can be trained easier
and has improved generalisation capability.

The salient features of the data can be extracted
through a mapping, such as Fourier transform. discrete
cosine transform. Karhunen-Loeve (KL) transform, or
principal component (PC) method. from a higher
dimensional input space to a lower dimensional
representation space. The efficiency of a chosen mapping
approach is judged based on the degrec of data
compaction subject to the constraint that the original data
can be reconstructed with minimal distortion. Based on
this criterion, the following features or attributes that
characterize each object are extracted after appropriate
transformations:

Hough transform features,
Morphological analysis features.
Amplitude and shape statistics,
Regression analysis features, and
eigenvector analysis features

After extracting over 25 f{catures. thorough
optimisation and ranking are performed to reducc the
classification dimension down to 5. depending on the

stage in hierarchical classification [16].
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5. Defect Classification

Underground pipe defects appear in the form of
randomly shaped cracks. The decision making of the pipe
condition by human experts is based on very complicated
rules such as “if the total area of crack is A, then it gives a
penalty f to the decision, if the total area of crack is B,

_ then it gives a penalty g to the decision, if a pipe has f

g,---, k penalties then the final decision of the pipe is p”
class.” To set all these complicated rules, many efforts and
time consuming discussions would be required by human
experts. In practice, carrying out this task would be even
harder if different criteria existing among the experts
about the defects were taken into account. Therefore, there
has been a lack of normalization in assessment of
underground pipe condition.

For such a complicated decision rule problem, the
solution is based on the use of a neural network paradigm
that can mimic the human reasoning [17]. The benefits of
the neural network is the generalization ability [18] about
the untrained samples due to the massively parallel
interconnections and easiness of implementation for any
complicated rule or mapping problem.

5.1. Classification using EBP algorithm

In this section crack classification using an EBP
algorithm [19] is discussed. Conventional EBP algorithm
used a fixed learning rate and momentum factor, thus to
reduce the learning time and to avoid local minima these
parameters must be determined adaptively. A variable
learning rate and momentum factor is used by iteratively
updating weights, resulting in the -modified EBP
algorithm. In the modified EBP algorithm, the learning
rate 7. momentum factor o, and weight o are updated by
the following equations, respectively:
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Figure 5. Neuro-Fuzzy network with trapezoidal membership function.
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where €. B. . and y denote constants and m represents the
iteration step. Subscripts j and & signify the jth neuron of
the input (hidden) layer and 4th neuron of thc hidden

(output) layer. respectively. E » represents the total error

function at the pth layer. In Figure 4, the convergence
characteristics of the conventional and modified EBP
algorithins are shown. The network is constructed by five
input neurons, seven neurons in the hidden layer. and three
output neurons for three classes of crack defects.
Parameter values are selected experimentally: in the
conventional algorithm, the learning rate and momentum
factor are set to 0.7 and 0.15, respectively, whereas in the
modified algorithm, 0.5 and 0.2. respectively. Figure 4
shows that the modified EBP algorithm converges much
faster than the conventional one.

5.2. Classification using Neuro-fuzzy algorithm

To increase the recognition rate, a neuro-fuzzy
algorithm is employed that combines neural networks and
the fuzzy concepts. Neural networks have learning
capability and the fuzzy concepts can absorb variability in
feature values. The fuzzy concept can be combined with
neural networks in various ways. In this study the fuzzy
concept is applied simply in converting feature values into
fuzzified data. which are inputs to the modified
backpropagation neural network algorithm. In the

402

proposed neuro-fuzzy algorithm the fuzzy data is used as
inputs to neural networks. Sometimes, variation of feature
values is large, and then it is difficult to classify defects
correctly based on these feature values. To solve this
problem, each defect feature value is first converted into
three fuzzy data [20], then learning is performed with
these 3/ fuzzy data using the modified EBP algorithm.
Finally, defects are classified using the modified
backpropagation algorithm.

To convert five normalised features into 15 fuzzy
data, the MAX and MIN values are determined that are the
maximum and minimum feature values for entire data set,
respectively. As shown in Figure 5, three membership
functions denoted by S (small), ‘A (medium), and ‘L’
(large) are generated. Note that these membership
functions are specified by AZ/V and MAX, as shown in
Figure 5. Then three fuzzy data is computed for each
feature values and uses these data as the input data to

neural networks. In Figure 5 pg(x;). p,,(x;), and
4, (x;)are three fuzzy data of an input feature value
(x,). corresponding to linguistic variables of ‘S, ‘AL,
and ‘L’. respectively. The trapezoidal membership
function, as shown in Figure 5. locates at the average
value of features of the same defect, and has a maximum
value of 1 over the limited range that is specified by the
standard deviation of the fcature value. To generate a
linguistic variable the average and standard deviation of
the feature values of the defect is computed. Then the
interval between MIN and MAX is uniformly divided into
several subintervals, where MIN and MAX represents the
minimum and maximum of average values of the specific
feature, respectively. The membership function of each
image is centered at the average value of the features of
the defect. Variation of feature values for the same image
is allowed by employing the trapezoidal membership
function, i.e. the width at the top of the trapezoidal

membership function is set to 07;, where 0; denotes the



CLASSIFICATION METHOD

CLASSIFICATION RATE (%)

Euclidean Distance Method

> 81.1

Error Backpropagation Algorithm

Fuzzy Algo rithm

Neuro-Fuzzy

Trapezoidal

Triangular Membership Function

Trapezoidal Membership Function

Triangular Membership Function

Membership

»

88.2

83.2

>

85.7

» 91.7

Table 1. Classification rate by various methods

standard deviation of the ith feature value. Note that for
input data greater (smaller) than MAY (AIN) the
membership value is clipped to 1 (0). These membership
functions for 50 images are stored in a database for ncural
network learning.

6. Experimental Results

Underground pipe colour images of 256x236 pixels
are used to test the proposed approach. Fifty samples are
used for training and twenty-{ive samples for testing. For
each crack type twenty-five 256x256 images are obtained
with different illumination and background conditions,
each image uniformly quantized to eight bits. All the
feature values used for training and testing are the
normalised values.

For performance comparison with the proposed

newro-fuzzy algorithm, conventional algorithms such as.

Euclidean distance method., EBP algorithm, and fuzzy
methods with triangular and trapezoidal membership
functions are simulated.

In the modified EBP algorithm to reduce the
computational complexity and to avoid local minima
problem. the lcarning rate and momentum factor are
varied adaptively. In the input fayer. there exist five nodes
for five featurcs. but three neurons in output layer for three
class of pipc defect. The number of nodes in the hidden
layer is determined cxperimentally. In the proposed ncuro-
fuzzy algorithn fifteen fuzzy data is used in the input
layer and in the hidden and output layer the same number
of neurons are used as i the modified EBP algorithin.
. Table | shows the classification results by the proposcd
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neuro-fuzzy algorithm and other conventional algorithms.
From Table 1 it can be observed that the proposed neuro-
fuzzy aigorithm using a trapczoidal membership function
yields better classification results than the Euclidean
distance method, EBP algorithm, and fuzzy-based
algorithms.

7. Conclusion

In this study, an underground pipe defect
classification using a neuro-fuzzy algorithm is proposed
that combine the conventional backpropagation algorithm
and the fuzzy concepts. In the pre-processing step, the
cracks are detected from the background of the pipe
surface, and then five crack features are extracted. These
features are fuzzified and applied to the modified
backpropagation algorithm in the classification step.
Simulation results show that the proposed neuro-fuzzy
algorithm using a trapezoidal membership function gives
better classification results than the conventional
algorithms. Further research will focus on development of
efficient learning and classification algorithms for a large
set of underground pipe images.
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