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Abstract—A region-based unsupervised segmentation and clas-
sification algorithm for polarimetric SAR imagery that incorpo-
rates region growing and a Markov random field (MRF) edge
strength model is designed and implemented. This algorithm
is an extension of the successful Iterative Region Growing
with Semantics (IRGS) segmentation and classification algorithm,
which was designed for amplitude only SAR imagery, to polari-
metric data. Polarimetric IRGS (PolarIRGS) extends IRGS by
incorporating a polarimetric feature model based on the Wishart
distribution and modifying key steps such as initialization, edge
strength computation and the region growing criterion. Like
IRGS, PolarIRGS oversegments an image into regions and
employs iterative region growing to reduce the size of the solution
search space. The incorporation of an edge penalty in the spatial
context model improves segmentation performance by preserving
segment boundaries that traditional spatial models will smooth
over. Evaluation of PolarIRGS with Flevoland fully polarimetric
data shows that it improves upon two other recently published
techniques in terms of classification accuracy.

Index Terms—synthetic aperture radar (SAR), image seg-
mentation, complex, polarimetry, Markov random field (MRF),
Wishart, region adjacency graph (RAG), region-based

I. INTRODUCTION

OLARIMETRIC synthetic aperture radar (SAR) imagery
provides useful information in a diverse number of
applications from sea ice monitoring [1], [2] to land cover
classification [3] and agricultural crop identification [4]. There
is now an increasing volume of fully polarimetric data due to
the launch of sensors capable of fully-polarimetric imaging such
as RADARSAT-2. Therefore, automated image segmentation
and classification methods are desired to replace manual
interpretation, which is subjective and labour-intensive.
Automated segmentation and classification of fully polari-
metric SAR imagery has been an ongoing field of research.
Maximum likelihood classifiers based on the assumption
of Wishart-distributed classes have been developed [5]-[7].
Another approach [8], which assumes complex Gaussian class
distributions, also incorporates a Markov random field (MRF)
spatial context model that overcomes some of the effects
of noise by smoothing the segmentation according to local
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interactions between pixel labels. A recent work [9] uses a non-
parametric estimate of the class distributions with a modified
spatial context model that attempts to prevent over-smoothing
of the segmentation result across true class boundaries.

The previously mentioned papers perform segmentation on a
per-pixel basis. Region-based segmentation methods also exist
and are advantageous because they reduce the computation
demand by working on regions instead of pixels, help the
optimization procedure converge more effectively to the global
solution and alleviate problems with noisy imagery by using
region statistics instead of individual pixel values. Several
recent papers advocate region-based image segmentation. Wu
et al. [10] use a region-based Wishart MRF (Region WMRF)
framework for segmentation. The image is oversegmented into
square regions, which are then iteratively refined by the WMRF
model and finally classified with training data. Wu et al.’s
Region WMREF uses a basic MRF spatial context model which
penalizes all class boundaries equally, including true class
boundaries which should not be penalized.

Agglomerative hierarchical clustering [11] is another tech-
nique that oversegments the image into many regions by
clustering over a polarimetric decomposition data space and
merges regions to produce the final segmentation. The recent
spectral graph partitioning [12] (SGP) technique first segments
the image into regions with contour and spatial proximity
information and then groups the regions by spectral clustering.
Neither agglomerative hierarchical clustering [11] nor SGP [12]
use a spatial context model to improve segmentation, although
SGP makes use of image edge information.

The advantage of a region-based approach combined with
an MRF spatial context model has been demonstrated for real-
valued imagery by the recent Iterative Region Growing with
Semantics (IRGS) algorithm [13], which has outperformed
other algorithms when applied to amplitude-only SAR sea
ice imagery [14], generic imagery [15] and optical imagery
of savannah wetlands [16]. IRGS incorporates edge strength
between regions in the spatial context model to ensure that true
class boundaries are preserved as regions grow using a merging
criterion. This is similar to the segmentation energy function
defined in [17] but IRGS incorporates a different edge strength
penalty function to aid in the segmentation process [13]. As
IRGS is an unsupervised algorithm, it requires no training data
prior to segmentation and classification.

This paper presents an extension to IRGS for polarimetric
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SAR imagery. By combining the successful region-based
approach and edge-strength spatial context model of IRGS
with the Wishart distribution model, unsupervised polarimetric
SAR segmentation and classification can be improved. The
proposed technique is suitable for applications where the classes
of interest have a reasonable spatial extent, such as agricultural
classification. As with Region WMRF [10] and SGP [12],
polarimetric IRGS is evaluated on an agricultural data set.
Section II outlines polarimetric SAR imagery, image seg-
mentation, classification and the IRGS algorithm. Section III
details the extension of IRGS to polarimetric IRGS (PolarIRGS).
Section IV describes the fully polarimetric test data. Section V
evaluates PolarIRGS with the test data. Conclusions and
recommendations for future work follow in Section VI.

II. BACKGROUND

A. Polarimetric SAR images

A fully polarimetric radar measures the complex scattering
matrix of the target medium, which in the monostatic case with
a reciprocal medium reduces to a complex scattering vector [5]:

u= [ Shh \/55}“, Sov ]T (1)

The terms Spp, Shy, Sy correspond to the complex
scattering coefficients of the HH, HV and VV polarizations,
respectively. Multi-look processing is often performed for
speckle reduction and data compression of SAR data by
averaging several single-look outer products uu’ [18]:
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where n is the number of looks, u is the &t single-look
scattering vector and T is the conjugate transpose operator. The
polarimetric covariance matrix Z, or a measure that can be
converted to it, is the measurement provided at each pixel from
a multi-look, polarimetric image. The matrix A = nZ has a
complex Wishart [19] distribution [18]:

_ A" 9exp (—tr(C'A))
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where |A| is the determinant of A, tr(C~1A) is the trace of
C!'A, C = E[uuf] and:
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The value of ¢ is the number of elements in u and I' is the
Gamma function. In the case of monostatic polarimetric radar,
g = 3 under the reciprocity assumption [18]. For the Wishart
distribution in Eq. (3) to be nonsingular, n > ¢. Eq. (3) will
be used in Section III to develop PolarIRGS.

B. Region-based Image Segmentation Problem Definition

Let C be the number of segmented classes in the image. Let
S={(i,7)]1 <i < M,1 <j < N} represent a discrete two
dimensional rectangular lattice of size M rows x N columns
(i.e. an M row x N column image) and let s € S represent a
site in the lattice (i.e. a pixel in the image). Let X = {X,|s €
S} be a set of discrete random variables forming a random field
on S, with each X taking a value from £ = {1,...,C} that
indicates the class label of site s. Also, let Y = {Y|s € S}
be a random field on S. Each Y represents a measurement
at site s and can take on a scalar, vector or matrix value.
For the polarimetric data in this paper, each Yy takes on a
positive definite Hermitian matrix which represents the complex
covariance matrix Z, measured at site s (see Eq. (2)).

Label field configuration x = {z,|zs € L,s € S} and
observed image y = {ys|s € S} are realizations of X and Y,
respectively. The domain of ys depends on the type of data
being considered: for a real-valued multichannel image with
d bands, y are d-dimensional vectors (i.e., y = {ys|ys €
R s € S}), while for multi-look polarimetric data, y =
{Zs|s € S}, where the domain of Z, is the cone of positive
definite Hermitian matrices [18].

Image segmentation involves finding an optimal x according
to some criteria on x and y. After segmentation, €2, ...,Q¢
are disjoint subsets of S that denote the C classes in the
label field configuration x. Image segmentation, as defined
here, allows classes that consist of unconnected regions. This
definition of image segmentation is consistent with that given
by Gonzalez and Woods [20, p. 690] and Li [21, p.188] and has
been used in other published work [11] [9] [22]. By allowing
classes that consist of unconnected regions and by not using
any training data to find the optimal x, the segmentation result
is also an unsupervised classification result. Each region is a
connected image segment with a classification label assigned.
Under this definition of image segmentation, the proposed
PolarIRGS algorithm is a combined unsupervised segmentation
and classification algorithm. It is a region-based method based
on the IRGS algorithm [13], which uses a region-adjacency
graph (RAG) [23] to represent the image. Under a RAG
representation, the image is first oversegmented into a number
of disjoint and relatively homogeneous regions that consist
of multiple image sites and the label field is defined over the
RAG [24] instead of the lattice S.

A RAG is represented as G = (V, ), where V denotes the
set of image regions as vertices of the graph and &£ is the
set of arcs that connect spatially adjacent regions. A region
v € V is an image region and S, is the set of image sites
belonging to region v. An arc e € £ represents the shared
boundary between two adjacent regions. The random field for
the label configuration is now defined on G [24] and is denoted
by X* = {X]|X] € £L,v € V}, where the superscript ‘r’
indicates a region-based definition of each term. The region-
based label field configuration x" = {z]|z], € L,v € V} is a
realization of X". Here, z7, is the label for all sites s € S,,.

All regions are mutually separated by region boundaries,
which are comprised of image sites that are not part of any
regions. The division of image sites into boundary sites and



sites that are part of regions follows several rules [25, Sec.
4.2.1]. All sites in the image are either boundary sites or part of
a region and sites that are a part of one region cannot be a part
of any other regions. Additionally, only sites that separate two
regions are boundaries. An arc on the RAG connects regions
v and w if they share a common boundary. These rules are
formalized by the following definitions [25, Sec. 4.2.1]:

D Upey SolUyey 980 = S

2) Yo,w: Sy [0S, =0

N Vww:SNSw=10

4) Yv: 0S8, C UweV’w#v IS,
where 08, is a one-pixel boundary outlining region S,,. Regions
v and w share a common boundary if S, N IS, # .

There are fewer possible configurations of the region-based
label field x” than the pixel-based field as there are far fewer
regions than pixels. In Section II-C, it will be seen that MRF-
based segmentation problems are a combinatorial optimization
problem. Therefore, the region-based approach reduces the
solution search space, leading to better optimization results.
Additionally, region-based segmentation reduces the negative
effects of variation and noise within each region.

C. IRGS Algorithm

This section summarizes the details of the IRGS algo-
rithm necessary for understanding the proposed polarimetric
extension. Additional details are described in previous pa-
pers [13] [15]. Assuming that X" is an MRF with respect to
a certain neighbourhood system on RAG G, the unsupervised
image segmentation and classification problem is formulated as
finding the label field configuration x"* that satisfies [15] [21]:

X" = arg max ply[x")P(x") )
where p(y|x") is the conditional probability density function of
the observed image y given the specific label field configuration
x" and P(x") is the probability of a specific label configuration
and is defined by the MRF model chosen [21]. The operator
arg max selects the label field configuration x” that maximizes
p(y|x")P(x"). The selected configuration is denoted by x"*,
where the superscript * indicates that x"* is the optimal
configuration with respect to Eq. 5. The term p(y|x") is
called the feature model because it models the distribution
of the features (the observation values in y) given x" and
P(x") is called the spatial context model because it models
the probability of the various possible configurations of x",
with some configurations being more likely under the chosen
MRF model. Extending the IRGS algorithm to polarimetric data
involves replacing the feature model and adapting the spatial
context model to match the characteristics of polarimetric data.

Under a class-conditionally independent assumption, p(y|x")
can be written as:

C
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where S, € ; selects the set of sites S, for each region
v that belongs to class i (i.e. {S,|{v|z] = i}}). Although

the segmentation is region-based, (6) is written in terms of
image sites because the calculations are based on individual
site values. The term p(y|z,) describes the probability of
obtaining value y, given that the site belongs to the class
specified by z]. Note that under the region-based definition,
xs = x, for s € S,,.

In order to solve (5), it is converted into an energy function
by taking the logarithm to change products into sums and
changing the sign to give an equivalent minimization problem:

X" = arg min Ey(y,x") + E,(x") 7
where E¢(y,x”) is the feature model term corresponding
to p(y|x”) and Es(x") is the spatial context model term
corresponding to P(x"). E¢(y,x") is derived for polarimetric
data in Section III.

In IRGS, the neighbours for a given region v are all regions
connected to it by one arc in the RAG. The spatial context
energy Fs(x") for this MRF neighbourhood system is [15]:

c-1 ¢
E(x) =8> > > 9V

i=1 j=i+1s€dQNIN;

®)

where g(V,) is the edge penalty term and 0f); comprises all
the boundary sites that separate regions assigned to class ¢ from
regions assigned to other classes. Hence, 0€2; N 0€2; selects the
shared boundary sites between classes ¢ and j. The parameter
[ controls the degree to which the spatial context model is
weighted, with larger [ resulting in smoother segmentations.

At a conceptual level, (8) penalizes segmentations where
adjacent regions are assigned to different classes. For every
boundary site that separates a region of class ¢ from a region
of class j, E,(x") is increased by - g(V). The edge penalty
term g(Vs) is a monotonically decreasing function of Vi,
where V, € [0,1] is a measure of the edge strength at site s.
The penalty is smaller when there is a strong edge between
two regions assigned to different classes than when the edge
is weak. This approach favours assigning adjacent regions to
the same class only when the edge between them is weak,
recognizing that strong edges indicate true class boundaries.

The spatial context energy used in IRGS is similar to the
spatial context energy in the multi-level logistic (MLL) [26]
model except for the addition of the edge penalty term g(V).
The MLL model may over-smooth across true class boundaries
since all boundaries are penalized equally.

The IRGS edge penalty function g(Vy) is [15, Eq. (15)]:

v\ 2
(%)
The only difference between g(V) for PolarIRGS and ¢(V)
for IRGS [15] is the calculation of V for polarimetric data,
which is described in Section III. The term K is a positive value
that controls the strength of the edge penalty term (see [13,
Sec. 3] for details).

IRGS iteratively searches for the configuration of labels that
solves (7). At each iteration, IRGS performs region-merging on

9(Vs) =exp (©))
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Fig. 1.
strength map and 1b) generates the watershed regions and the region adjacency
graph (RAG) from the image. Watershed regions shown here are simplified
and have more arbitrary shapes in practice. 2) Watershed regions are given
initial labels. 3) Regions are relabelled by Gibbs sampling [28]. 4) Regions
with the same label are merged. Steps 3 and 4 repeat for a user-specified
number of iterations. 5) The final segmentation is produced.

the intermediate segmentation to reduce the number of RAG
nodes, which makes subsequent iterations more efficient and
prevents the algorithm from becoming trapped in local minima
in the solution space [13]. IRGS merges adjacent regions with
the same class label in a greedy fashion. It computes a merging
criterion OF [13] for each eligible pair of regions and merges
the pair with the most negative OF. This continues until no
more negative JF are found. Shared boundary sites between
two regions become absorbed into the merged region.

Fig. 1 shows the major steps of the IRGS algorithm. The
algorithm begins with an input image, which is oversegmented
with a watershed algorithm [27] using an edge strength map

= {Vs|s € S}. The RAG is then created with each
watershed region becoming a vertex in the graph. IRGS and
PolarIRGS are not constrained to any particular oversegmenta-
tion algorithm for RAG construction; the Vincent and Soille
watershed [27] was used because it produces a reasonable RAG
for both IRGS and PolarIRGS. After RAG construction, each
region is assigned an initial label to initialize IRGS. IRGS then
enters its iterative phase. At each iteration, Gibbs sampling [28]
assigns each region a label to move the label configuration
toward the optimal solution. Regions are then merged and the
next iteration of IRGS is executed.

The combined segmentation and classification nature of
IRGS is apparent from the preceding description. Each of
the regions is an image segment which is assigned a generic
label from £ = {1,...,C} in an unsupervised fashion as no a
priori data is provided other than the number of classes. The
final output is the label field configuration x"*, which is an
unsupervised classification map of the scene.

III. PROPOSED METHOD

There are three main types of unsupervised classification
algorithms for polarimetric SAR data [18]: statistical (e.g.
clustering), physical and combined physical-statistical algo-
rithms. The proposed Polar[RGS algorithm is an extension

of the statistical type since it combines a statistical model
with a spatial context model. Physical model algorithms use
domain knowledge such as the scattering characteristics of
broad categories of surfaces (e.g. vegetation, buildings and
water) to divide a scene into these categories. The combined
physical-statistical algorithms use both physical and statistical
models. For example, Lee at el. [29] used a Freeman-Durden
decomposition to divide a scene into three categories of
scattering characteristics. Each category is then separately
classified with unsupervised statistical clustering. This paper
is focused on the development of unsupervised statistical
classification. The use of novel statistical techniques such
as PolarIRGS in a combined physical-statistical classification
framework could be investigated in future work.
To implement PolarIRGS, the following must be detailed:

A) Derivation of the feature model energy F(y,x") in (7)
for polarimetric data.

B) Definition of the region merging criterion OF.

C) Calculation of the edge strength measure V,, which is
used by both the watershed algorithm and the edge penalty
function g(Vy) in (8).

D) Initialization method to assign initial labels to all regions.

E) Choice of spatial context weighting parameter 3.

F) Model for labeling the boundary sites that remain after
the region level label configuration x"* is generated to
create the final classification image x.

A. Feature Model Energy

In (3), p(A) can be restated as p(A;|zl, = i) [5]:
|A,|" T exp (—tr(C; TA))
K(n,q)|Ci|?

where C; is the mean polarimetric covariance matrix of class
i. This corresponds to the p(ys|z], = ¢) terms in (6), assuming
that ys = A; = nZ,. In the actual data, y, = Z, but this
can be ignored for the derivation. The feature model energy
E¢(y,x") can be derived by substituting (10) into (6), taking
the natural logarithm and changing the sign:

P(As ey, = i) = (10)
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Eliminating all terms that are not a function of ¢ and substituting
A, =nZ, into (11) gives [5]:

Z Z Z{nln|C | + ntr(C

1=18,€Q;5€S,
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The constant multiplier n can be dropped without affecting
the validity of the energy value, giving the final feature model
energy in terms of C; and Zg:

C
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The term in the sum is the Wishart distance measure derived
by Lee et al. [5].

B. Region-merging criterion

The region-merging criterion OF determines whether two
regions can be merged during region-merging. Region-merging
considers a single pair of adjacent regions with the same class
label at a time. Once a pair of eligible regions is selected, the
algorithm determines the energy for a two region version of
(7), where the energy is calculated with only the two regions in
the pair. The energy for two cases is calculated [13]: when the
two regions are separate classes (unmerged) and when the two
regions are the same class (merged). If the merged case has
lower energy, the regions are merged. Formally, IRGS merges
regions v and w if OE (v, w) < 0, where:

OE(v,w) = Fumerged(V, W) — Eunmerged (v, W) (14)

The two energies in (14) have the following values for
polarimetric data:

Emerged(”, UJ) = Z {hl |C'Uw| + tI'(C;ul’Zs)} (15)
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Eunmerged(va ’LU) = Z {hl ‘CU| + '[I'(C;lzs)}—l-
SES,
> {In|Cyl + tr(C, ' Z:) } +
SESy
By gV (16)
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where C, is the average polarimetric covariance matrix of
region v, and region vw is the union of regions v and w. Since
C, = \SITZSeSv Zs, where |S,| is the cardinality of S,,
OFE(v,w) can simplified by making the following substitution
in (15) and (16) for regions v, w and vw:

> {In|Cy| +u(C; ' Z,)}

sES,

S,|In|C,| + tr(C;* Z Z,)
sES,

= |Sy|In|C,| + tr(C;1|Sv|Cv)

=[S,/ In |Cy| + |S,|tr(T)
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where I is the identity matrix of the same size as Zg. Since
|Svw| = |Su| + |Swl, all terms involving tr(I) sum to zero in
the final merging criterion which yields:

aE(va) :‘Smu| ln |va| - ‘SU| 111 |Cv‘7
|Sw|In|Cyp| = B Z 9(Vs)

s€0S,NIS,,

(18)

C. Edge Strength Measure

Both the watershed [27] step and the edge penalty function
in (8) require an edge strength measure V at each site s. Two
approaches for calculating V; were considered. The first is
the vector field gradient (VFG) [30] that is already used in
IRGS, which works on real-valued images with one or more
channels and computes the gradient magnitude at each pixel.
The second approach is a polarimetric edge strength calculation
for complex polarimetric data, e.g. [31]-[33].

Since the VFG calculation works only on real-valued images,
preliminary tests evaluated several real-valued polarimetric
decompositions for use with VFG:

(1) The amplitudes of the HH, HV and VV channels:

20 log |Shh|
yll = | 201og|Sh.| (19)
201og [ Sy |
(i) The Pauli decomposition [18]:
A 20 log |Shh42r5w|
yel = | 20log [Sun=Sel (20)
20 IOg(2|Shv|)
(iii) The H/a: decomposition [18]:
yWe—[H o]" @1

where H is the entropy and « is the polarimetric scattering
parameter. The H/a decomposition has been used to
initialize other unsupervised polarimetric segmentation
algorithms [7].

The amplitudes of the HH, HV and VV channels (i.e. ylsl)
produced the best overall classification accuracy in the tests
and are therefore used in the VFG computation in this paper.
The amplitude images have a large range of values, so each
channel was clipped to the range of [—40, —5] dB to prevent
large values from dominating the computed gradient range. The
VFG implementation in IRGS expects data to be normalized to
[0,255] and the normalization from [—40, —5] dB to [0, 255]
is done in floating point values to avoid quantization.

A polarimetric edge strength calculation method [31], which
makes full use of the polarimetric information, was also
evaluated but did not lead to consistently accurate classification
results. This approach computes a likelihood ratio [34], known
as the Bartlett distance [35], between pairs of pixels in different
orientations to measure edge strength. Several parameters of the
method [31] were adjusted, including the number of orientations
used, the filter window size and whether number of looks
estimation [36] in each filter window was used. As none of
these adjustments produced consistent results, unlike the VFG
gradient using yLl which did generate consistent results, the
VFG gradient was chosen as the edge strength measure.

D. Initialization

IRGS requires that the statistics of each class (C; in (13))
be initialized before the algorithm begins. Several approaches
are possible. The C; can be set to values from a classification
of a related scene and used as the initial seed values for



a polarimetric K-means algorithm that uses a polarimetric
distance measure [5]. Alternatively, the polarimetric matrices
can be decomposed into H/« parameters and classified by a pre-
determined division of the H-« feature space to obtain a class
map to calculate the initial C; [7]. Both of these approaches
require initial set up with a priori knowledge: a classification
of a related scene or a pre-determined division of the H-a
plane. As IRGS aims to be as automated as possible, several
fully automated approaches were considered:

(i) Assign random labels to each region and compute the

mean C; for each class.

The initial C; from approach (i) are used as the initial

seed for polarimetric K-means [5] to calculate a refined

set of C;.

Run the IRGS region-level K-means [15] on one of:
(a) The HH, HV and VV amplitude image from (19)
(b) The Pauli decomposition image from (20)

(c) The H/« parameters from (21)

(ii)

(iii)

and use the obtained classes to compute the initial C;.
Use the initial C; from one of approaches (iii)(a) - (c)
as the initial seed for polarimetric K-means [5] to find
a second, refined set of initial C;.

Approach (iii)(a) with the amplitude of the HH, HV and
VV (.e. ylsl) channels produced the best overall results across
the image test cases described in Section IV. Thus, it is the
approach used to initialize C; for all results in this paper.

(iv)

E. Spatial context parameter [3 choice

At the beginning of each iteration (step 3 in Fig. 1), the value
of 3 in (8) is automatically modified to change the weighting
of the spatial context model in a data driven manner, which
is described in previous literature [13] [15]. Standard IRGS
requires the Fisher criterion J [37, Sec. 4.10] between two
classes in the intermediate classification to compute a 3 that
adapts to the class separability in the image. However, there
is no Fisher criterion between classes with Wishart-distributed
mean covariance matrices. Future work should investigate
possible analogous measures for Wishart matrices. Currently, 3
in PolarIRGS must be calculated without the Fisher criterion:

B(1) = c180(7)

where 7 is the iteration number to emphasize that S changes
at each iteration. The value of [y(7) is calculated at each
iteration to maintain the expected class boundary length at the
next iteration [38] to preserve the current detail level in the
image. The multiplier ¢; controls the overall smoothness and
level of merging of the algorithm [15]. In this paper, c; =5
since it produced the best results. Previous experiments found
that IRGS is not particularly sensitive to c¢; [39].

(22)

F. Boundary site labeling

After the region-based label field configuration is produced,
the single pixel boundary between regions remains unlabelled.
Each boundary site s is labelled by choosing the label that
minimizes the following energy:

Ty = arg r%ig{ln |Ci| + tr(C;IZS)—&—
B> (1=6(i))}

tEN s NStabelied

(23)

where N, is the eight pixel neighbourhood of site s, Siapeltea 1S
the set of all sites that have been labelled already, and ¢ is the
Kronecker delta function. Eq. (23) labels pixels based on their
similarity to the class statistics and the labels of its neighbours
and is very similar to the MLL model [26].

G. Polarimetric IRGS Algorithm

Table I lists the full PolarIRGS algorithm. The maximum
number of iterations 7 in Step 2 is set to 100. This was found
to be sufficient for convergence [14]. Convergence is achieved
when the label field remains constant on further iterations. This
is easily detected and for all tests in this paper, this occurred
in fewer than 100 iterations.

TABLE I
ALGORITHMIC DESCRIPTION OF POLARIRGS

1. a) Compute edge strength map V = {V;|s € S} to measure edge
strength at all sites using the image feature set defined in (19).
b) Oversegment image with the watershed algorithm [27] and construct
RAG with one vertex for each watershed region.

2. Let 7 be the current iteration number and set 7 = 1. Assign a random
label to each region and run a region-level K-means [15] on y¢ from
(19) to produce an initial classification. From this classification, compute
initial C; (mean polarimetric covariance matrix) for each class .

3. a) Update 8 according to (22).

b) Each vertex v € V is visited once in random order and assigned a
label with Gibbs sampling [28] to minimize (7). This step moves the
segmentation and classification result toward the optimal configuration.
If 7 > Tmaz, g0 to Step 5, where Tynqq is a user-specified maximum
number of iterations.

Compute merging criterion OF with (18) for every pair of regions

with the same label that is connected by one arc in the RAG.

b) Merge the pair with the most negative E. Repeat Step 4a until all

oF > 0.

¢) Go back to Step 3.

5. Label boundary sites using (23) to produce x, the final label field
configuration.

4. a)

IV. DATA

Four-look, fully polarimetric L-band data from NASA/JPL
AIRSAR of Flevoland, The Netherlands [40] is used to evaluate
PolarIRGS. A red-green-blue (RGB) composite of the Pauli
decomposition is shown in Fig. 2(a). PolarIRGS’ unsupervised
classification accuracy was evaluated by four test images shown
in Fig. 2(b):

1) Mask 1: This sub-image was used by Wu et al. [10]
to evaluate their Region-based WMREF technique. The
ground-truth used in this paper to evaluate Mask 1
classification results is shown in Fig. 4(d) and is an
approximate recreation of Wu et al.’s ground-truth as
the original authors could not be contacted. Evaluation of
PolarIRGS on Mask 1 with a similar ground-truth as Wu
et al. allows a comparison to be made between PolarIRGS
and Region-based WMRF.



(a) Pauli RGB composite

Mask 3

Mask 1

Mask 2

Full Image

(b) Sub-images for testing

Fig. 2. The Flevoland 4-look polarimetric L-band scene [40] (AIRSAR
imagery courtesy SIR-C CDROM, A. Freeman - NASA/JPL). (a) The Pauli
RGB composite is a partial visualization of the polarimetric data. (b) The
sub-images correspond to images tested in other papers. Mask 1 was used to
evaluate Region WMREF [10] while Mask 3 was used to evaluate SGP [12].
Mask 2 and the full image are additional test cases in this paper.

2) Mask 2: The ground-truth used to evaluate this sub-
image is a portion of a ground-truth map (which will be
referred to as GT?2 in this paper) that combines information
from [41] and [35]. The portion of GT2 used for Mask 2
is shown in Fig. 5(d).

3) Mask 3: This sub-image was used to evaluate SGP by
Ersahin et al. [12]. The ground-truth used for Mask 3 is
a portion of GT2 and is shown in Fig. 6(d). Ersahin et
al. used the same ground-truth to evaluate SGP. Mask 3
allows for comparison with SGP.

4) Full image: The full image was evaluated by using the
entire GT2 map as ground-truth. This ground-truth is
shown in Fig. 7(b).

The ground-truth map used for Mask 1 and by Wu et al. [10]
is a distinct version of the Flevoland ground-truth from the
GT2 map (although the two maps do not contradict each other).
Thus, Mask 1 is evaluated separately from the other test cases.
None of the ground-truth maps of the Flevoland scene give a
label for every single pixel in the image. Therefore, accuracy
statistics are computed only for pixels of known class. The
legend for the ground-truth maps and classification results is
shown in Fig. 3

V. TESTING AND RESULTS
A. Evaluation Methodology

PolarIRGS was implemented in C++ as a module in the
MAGIC image analysis system [42]. The algorithm was used to
segment and classify the four test cases described in Section IV.

The classification result initially does not have meaningful
labels (i.e., the generic labels assigned by the algorithm is not
associated with the actual name of a ground-truth class). This is
due to the fact that PolarIRGS is an unsupervised segmentation
and classification algorithm (see Section II-B).

To compare with published ground-truth, each generic label
in the unsupervised classification result (one of {1,...,C})
must be associated with a ground-truth class (Stembeans,
Peas, etc.). This is accomplished by finding a mapping of
generic labels to ground-truth class names (e.g. label 2 maps
to Stembeans, etc.) that maximizes the overall accuracy, where
overall accuracy is defined as the percentage of pixels with
ground-truth information that are assigned to the correct
class. This mapping can be found by exhaustively trying all
possible mappings of generic labels to ground-truth labels and
finding the one with highest overall accuracy. However, this
is equivalent to finding the mapping that maximizes the trace
of the classification confusion matrix, which is an assignment
problem [43] that can be solved more efficiently by linear
programming. The generic labels are mapped to ground-truth
labels in this optimal fashion rather than labeling with training
data so that the success of the unsupervised classification
algorithm can be evaluated without introducing uncertainties
due to an imperfect labeling process. As the image segments
have already been given generic labels by PolarIRGS before a
meaningful name is mapped to each generic label, the algorithm
does not use any ground-truth information to generate the
classification.

The overall accuracy and the individual class accuracies (the
percentage of pixels of each class correctly classified) are used
as measures of the quality of a classification algorithm. The
ground-truth does not provide a label for each pixel of the
entire image so the accuracy calculation is limited to only those
pixels where the ground-truth provides a label. Since the Gibbs
sampling in Step 3 is a stochastic process [28] and because the
region-level K-means initialization [15] begins with a random
seed, the algorithm can produce slightly different results on
each execution on the same data. Therefore, PolarIRGS was
run 10 times for each sub-image and the full scene to determine
the stability and consistency of PolarIRGS.

To demonstrate the benefit of including edge strength
information as part of the segmentation cost function, an MLL-
based version of PolarIRGS (PolarMLL) was implemented and
tested. This differs from PolarIRGS only in that g(V,) = 1,
which penalizes all class boundaries equally.

B. Mask 1 Results

The mean accuracy over the 10 executions of Polar[RGS
and the standard deviation of the accuracy are reported in
Table II for Mask 1. PolarMLL results are also included. Results
reported by Wu et al. [10] for their Region-based Wishart-MRF
technique (Region WMRF) are also shown for comparison.
The number of classes for Mask 1 was set to 8 to match
the Region WMREF paper. Table II shows that PolarIRGS is
highly successful for classifying Mask 1: the overall accuracy
is 98.3%. This is higher than PolarMLL and Region WMREF,
although Wu et al. [10] do not report sufficient statistics (i.e.



the confusion matrix) to determine whether this improvement is
statistically significant. The consistency of PolarIRGS over 10
runs of the algorithm is also excellent, with very low standard
deviations across the accuracy values for all classes. In terms
of individual class accuracies, PolarIRGS compares favourably
with Region WMREF, improving upon Region WMREF for 4
classes, although Region WMREF outperforms PolarIRGS for
the other 4 classes. However, the overall accuracy shows that
PolarIRGS has an advantage.

Fig. 4 shows a classification result from one of the ten
runs of the algorithm alongside the Pauli decomposition RGB
and the ground-truth. Fig. 4(b) and Fig. 4(e) show the same
classification result but Fig. 4(e) is masked to remove pixels
where the ground-truth does not provide a label, which is
how the accuracy is calculated for Table II. The classification
result in Fig. 4 matches very well with the ground-truth, with
most pixels being correctly classified. Fig. 4 demonstrates the
effectiveness of the IRGS MRF model: the segment boundaries
correspond very well to the expected boundaries based on
the ground-truth and each segment is contiguous and nearly
noise-free. For this particular case, PolarMLL and Polar[RGS
produce results that are visually similar but PolarIRGS has
higher classification accuracy.

C. Mask 2 Results

Table III reports the accuracy statistics for Mask 2 (as well as
Mask 3 and the Full Image) using PolarIRGS and PolarMLL. It
is clear that including the edge penalty in PolarIRGS improves
the accuracy compared to PolarMLL.

Mask 2 was segmented and classified with 11 classes.

Although this is larger than the number of ground-truth classes
in the Mask 2 area, it was necessary because the ground-truth
does not account for every class in the scene as not all pixels are
labelled; the number of true classes is higher than the number
of ground-truth classes. Since PolarIRGS is an unsupervised
classification algorithm, setting the number of classes equal
to the number of ground-truth classes produced unreasonable
results because the classes found by the classification algorithm
are not guaranteed to correspond only to the ground-truth
classes. Specifying a larger number of classes allows the
algorithm to find the true classes in the image, including any
excess classes not shown in the ground-truth.

Table III indicates that the overall accuracy for Mask 2 is
lower than that of Mask 1. The high standard deviation for
the accuracy of Rapeseed and Grasses in Mask 2 are due to
a single outlier execution of PolarIRGS. The consistency and

accuracy of PolarIRGS are poorer for Mask 2 than for Mask 1.

Increasing the number of classes used for classification (from
8 to 11) makes the solution search space for the optimal label
configuration larger, which means that the algorithm is more
likely to be trapped in various local minima of (7). This results
in lower consistency (as different runs of the algorithm can
be trapped in different local minima) and lower accuracy (as
local minima are not the optimal solution). However, accuracy
remains at over 90% for most classes and overall.

Fig. 5 shows the classification results in the same manner
as Fig. 4. Black or dark gray indicates pixels assigned to

excess classes that cannot be mapped to a ground-truth class
(due to setting the number of classes to 11 when there are
only 8 ground-truth classes). These are classes found in the
image but not represented in the ground-truth labeling. The
classification result shown in Fig. 5(e) compares well with the
ground-truth in Fig. 5(d). Segment boundaries match accurately
and the segments are contiguous and free of noise. Grasses
and Lucerne are confused, as well as Wheat and Rapeseed.
However, the Pauli RGB image shows that such confusion
may be unavoidable: Grasses and Lucerne appear similar, as
do Wheat and Rapeseed. This suggests that there may be
low separability between these classes in the polarimetric data
space.

Fig. 5 shows examples of the role of the edge strength
model. Fig. 5(b) is the result for PolarIRGS, which uses the
edge strength model, and Fig. 5(c) is the result for PolarMLL,
which does not consider edge strength. The four corresponding
circled regions in these two images demonstrate how visible
class boundaries are ignored by PolarMLL, leading to erroneous
region merging:

1) In the centre of the PolarMLL image, the Excess 1 class
grows across the class boundary and erroneously merges
across the boundary with the adjacent Rapeseed region.

2) In the top right, the Grasses segment is merged with Peas.

3) At the top left corner are two small regions identified
as Stembeans which PolarMLL merges across their
boundaries with Potatoes.

4) In the bottom left, a large region of Excess 1 and a large
region of Grasses are merged by PolarMLL and their
combined statistics relabel the class as Peas.

In each of these cases, using the edge strength model preserves
the class boundaries.

D. Mask 3 Results

Mask 3 was segmented and classified with 9 classes, the
same as the number of ground-truth classes and the same
number that Ersahin et al. [12] used to evaluate their SGP
technique using Mask 3. The overall accuracy of PolarIRGS
for Mask 3 in Table III is higher than PolarMLL. PolarIRGS
achieved a higher overall accuracy of 84.4% compared to SGP’s
accuracy of 81.2% [12] for the same sub-image. Individual
class accuracies were not reported for SGP. For PolarIRGS,
several classes have low accuracy (Stembeans, Rapeseed and
Lucerne). In Fig. 6, Rapeseed (orange in the ground-truth) was
assigned the same class as Wheat (pink in the ground-truth).
The Lucerne (cyan) was assigned the same class as Grass, which
may be unavoidable due to the similar appearance of Grass and
Lucerne in the Pauli RGB image (Fig. 6(a)). The Lucerne that
does appear in the classification result is an unidentified extra
class that is not in the ground-truth. It is similar to Potatoes in
the Pauli RGB image but is darker. The algorithm is therefore
finding Potatoes, dark Potatoes and Grass rather than Potatoes,
Lucerne and Grass. Stembeans (red in the ground-truth) in
Mask 3 is grouped together with Potatoes. The small patch
of Stembeans in the upper right of Mask 3 does not have a
strong enough edge with the adjacent Potato patch to remain
separate in the IRGS model.
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Fig. 3. Legend for all ground-truth maps and classification results. Excess classes are distinct classes in the image in regions without ground-truth information.

I

(b) Classification result for 1 run (c) Classification result for 1 run
of PolarIRGS of PolarMLL

(d) Ground-truth, based on [10]  (e) PolarIRGS classification result, (f) PolarMLL classification result,
masked to ground-truth masked to ground-truth

Fig. 4. Mask 1 classification results for PolarIRGS and PolarMLL. PolarMLL is identical to PolarIRGS except it ignores edge strength.

TABLE 11
ACCURACY STATISTICS USING MASK 1 TO COMPARE POLARIRGS, POLARMLL AND REGION WMRF [10]. POLARIRGS GENERATES THE HIGHEST
OVERALL CLASSIFICATION RATE AT 98.2% WHILE REGION WMRF AND POLARMLL GENERATE LOWER OVERALL ACCURACIES OF 95.5% AND 91.9%.

Algorithm PolarIRGS PolarMLL Region WMREF [10]
# of Runs 10 10 N/A

# of Classes 8 8 8

Class Mean Acc. | Std. Dev. Mean Acc. | Std. Dev. Mean Acc. | Std. Dev.
Peas 96.7 0.1 96.3 0.75 98.4 N/A
Beet 87.6 0.2 93.6 43 85.3 N/A
Bare Soil 98.6 0 98.5 0.05 99.8 N/A
Rapeseed 100 0 100 0 99.2 N/A
Lucerne 99.8 ~ 0 95.6 12.7 100 N/A
Potatoes 99.9 ~ 0 100 0.02 100 N/A
Barley 99.1 0.05 93.2 18.1 90.2 N/A
Wheat 100 0 77.7 15.3 90.5 N/A
OVERALL 98.2 0.02 91.9 3.8 954 N/A

N/A = Not Applicable



(a) Pauli RGB composite (b) Classification result for 1 run of (c) Classification result for 1 run of
PolarIRGS PolarMLL

(d) Ground-truth (GT2) (e) PolarIRGS classification result, (f) PolarMLL classification result,
masked to ground-truth masked to ground-truth

10

Fig. 5. Mask 2 classification results with 11 classes. Black or dark gray pixels are excess classes that are not associated with any ground-truth class. Circles

show locations where the PolarMLL labeling smoothes across visible class boundaries that the edge strength model of PolarIRGS preserves.
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(a) Pauli RGB composite (b) Classification result for 1 run of Polar- (c) Classification result for 1 run of Po-
IRGS larMLL

(d) Ground-truth (GT2) (e) PolarIRGS classification result, masked (f) PolarMLL classification result, masked to
to ground-truth ground-truth

Fig. 6. Classification results for Mask 3 with 9 classes. Circles show locations where the PolarMLL labeling smoothes across visible class boundaries that the

edge strength model of PolarIRGS preserves.



TABLE III
ACCURACY STATISTICS FOR (a) POLARIRGS AND (b) POLARMLL FOR MASK 2, MASK 3 AND THE FULL IMAGE. A DASH (-) INDICATES THAT THE CLASS
DOES NOT EXIST IN THE SUB-IMAGE. FOR MASK 3, POLARIRGS (84.4% OVERALL ACCURACY) IMPROVES OVER THE PUBLISHED SPECTRAL GRAPH
PARTITIONING (SGP) METHOD [12] WHICH ACHIEVED 81.2% OVERALL ACCURACY (INDIVIDUAL CLASS ACCURACIES WERE NOT REPORTED IN [12]). THE
FULL IMAGE CLASSIFICATION DOES NOT HAVE ANY KNOWN COMPARABLE PUBLISHED RESULTS FOR UNSUPERVISED CLASSIFICATION.

Sub-image Mask 2 Mask 3 Full Image
# of Runs 10 10 10
# of Classes 11 9 17
Class Mean Acc Std. Dev Mean Acc. | Std. Dev Mean Acc. | Std. Dev
Peas 100 0 - - 99.4 0.6
Stembeans 99.8 0.1 14.3 26.9 92 7.2
Beet 98.6 0.4 96.5 5.1 92.1 9.1
Forest - - - - 100 ~ 0
Bare Soil - - 100 0 83.6 5.5
Rapeseed 91.4 25 0 0 33.6 7.1
Grasses 72.3 9.5 99.8 0 34.6 38.0
Lucerne 100 0 0.2 0 59.2 31.2
Potatoes 99.3 ~ 0 83.3 ~ 0 37.7 9.6
Barley - - - - 69.2 26.0
Wheat 89 3.9 100 0 97.6 5.2
Wheat 2 - - 100 0 60 51.6
Wheat 3 - - - - 79 23.7
Water - - - - 38.9 4.4
Buildings - - - - 93.9 1.4
Overall 91.9 0.2 84.4 0.9 69.8 4.4
(a) PolarIRGS
Sub-image Mask 2 Mask 3 Full Image
# of Runs 10 10 10
# of Classes 11 9 17
Class Mean Acc | Std. Dev Mean Acc | Std. Dev Mean Acc | Std. Dev
Peas 97.7 1.8 - - 70.2 36.8
Stembeans 92.6 0.1 11.1 27.9 71.3 16.2
Beet 91.8 6.5 81.5 16.9 65.8 15.8
Forest - - - - 99.9 0.1
Bare Soil - - 100 0 99.3 ~0
Rapeseed 86.9 10.7 0 0 35.9 4.7
Grasses 85.1 26.5 99.8 0.1 38.4 28.2
Lucerne 30 48.3 0.2 0.2 66.6 23.4
Potatoes 98.7 0.4 75.7 4 14.2 15.2
Barley - - - - 80 1.6
Wheat 87.5 0.2 99.4 1.9 94.8 6.3
Wheat 2 - - 97.4 8.2 20 42.0
Wheat 3 - - - - 90 20.0
Water - - - - 43.6 6.7
Buildings - - - - 94 0.9
Overall 83.2 3.7 79.8 2.8 63.7 2.0

(b) PolarMLL

Although individual class accuracies are not reported in the
SGP paper [12], examination of their visual results reveals
that Rapeseed and Wheat were both mislabelled as Wheat 2,

which would result in nearly 0% accuracy for those two classes.

Lucerne is also confused with Grass in the SGP paper, although
some of it is classified correctly. These classes (Rapeseed
and Wheat, Lucerne and Grass) may be quite similar in the
polarimetric data space since both recent algorithms (PolarIRGS
and SGP) have trouble separating them.

Dramatically improving the accuracy of Mask 3 classification
is possible by using a different method of edge strength
calculation and initialization. For example, when the edge
strength V, was calculated on the H/a decomposition y'/®
from (21) and PolarIRGS was initialized with approach (ii) in
Section III-D, the overall accuracy improves from 84.3% to

93.4%, Stembean accuracy improves from 14.3% to 87.6%,
Lucerne improves from 0.2% to 63.6% and Potato improves
from 83.3% to 97.7% while all other classes remain similarly
accurate. The standard deviations of the accuracies are also all
reduced to less than 1%. These results are not emphasized to
keep the edge strength calculation and initialization method
consistent across all test cases in this paper. As mentioned
in Section III-C and Section III-D, the edge strength measure
and initialization method chosen for PolarIRGS are based on
best overall performance across the three sub-images and the
full-image. However, this test indicates that there is potential
for much better performance provided the user is willing to
tune the algorithm to a specific data set.

The circled regions in Fig. 6 illustrate additional cases
where the edge strength model in PolarIRGS preserves class



boundaries that are ignored by PolarMLL because edge strength
is not considered.

E. Full Image Results

The full image segmentation and classification was per-
formed with 17 classes as the image appeared to contain more
visually distinct classes than the previous sub-images. The full
image results in Table III indicate lower classification accuracy
and less consistency than previous cases. The authors know
of no other papers that reported quantitative accuracies for
an unsupervised segmentation and classification of the full
Flevoland scene, so it is not possible to determine the relative
performance of polarimetric IRGS against other algorithms for
the full image.

There are several reasons for the lower performance in
the full image results. As explained previously, an increased
number of classes leads to a larger solution space with more
possibilities for the algorithm to be trapped by local minima
of (7). The full image is also much larger and contains more
regions to be labelled, which again increases the solution search
space. The larger spatial extent of the image encompasses more
classes that can be confused with each other, such as the Potato
and the Forest class, which appear very similar in the Pauli
RGB image in Fig. 7(a). This is reflected in the classification
result shown in Fig. 7(d), where many of the Potato pixels
were grouped with the Forest class.

Table IV shows the mean confusion matrix [44] for the full
image classification across 10 runs of PolarIRGS. This matrix
was created by taking the element-wise mean of the individual
confusion matrices for each run. This allows examination of
which classes are frequently confused by PolarIRGS. Columns
represent ground-truth classes. The numbers in each column
indicate how many pixels from each ground-truth class are
assigned to each class in the classification result. Table IV
shows that Wheat 2 and Wheat 3 are frequently confused with
each other. The high standard deviation of these two classes
in Table III reflect the fact that under multiple executions of
the algorithm, a pixel can be assigned to one or the other
class, suggesting poor separability between them. Rapeseed is
often erroneously assigned to the three Wheat classes, Grasses
are assigned to Barley and Wheat 3, Potatoes are assigned to
Forest and Water is assigned to Bare Soil and either one of
the Excess classes.

Some of these segmentation and classification errors can be
explained. There are several distinct signatures for Water in
the scene. At the top right corner of the Pauli RGB image in
Fig. 7(a), Water appears blue but dark elsewhere. The bright
part appears to be a wind roughening effect that causes a higher
backscatter return. Wheat 2 and Wheat 3 are poorly separable
because they are actually one class (along with Wheat) that
appear differently enough to be treated as different classes
by the creator of the GT2 ground-truth image. Due to their
similarity, there is no single classification that is the global
minimum of the PolarIRGS energy function. As a result, any
given region of Wheat 2 and Wheat 3 may be assigned to
Wheat 2 or 3 in different runs of the stochastic algorithm and
produces the confusion seen in the matrix. Finally, Potatoes

appear very similar to Forest. Du et al. [22] grouped them
together as one class since they could not be distinguished in
dual-polarization data. Other authors were able to distinguish
between Potatoes and Forest in fully polarimetric data with a
supervised algorithm [41] but supervised algorithms require
training data that tell the system about the expected clusters,
whereas PolarIRGS is fully unsupervised. Even in the more
challenging case of full image unsupervised segmentation and
classification, the segmentation boundaries in Fig. 7(c) visually
match well with the image and there is little noise in the
segments. This indicates the strength of the region-based spatial
context model in IRGS.

When the classification results in the overlapping areas
between Mask 1, Mask 2, Mask 3 and the full scene are
compared, it can be seen that the classification results in these
areas are not the same. This is because the labeling of each
RAG region in a sub-image depends on the labeling of other
regions in the sub-image due to the spatial context model.
Therefore, when two images overlap, the classification result in
the overlapping regions can be different due to the presence of
other non-overlapping regions in the image, which affect the
solution search space and the global cost function in (7). This is
a fundamental property of spatial context models; the algorithm
essentially considers the entire sub-image as a whole to find
the classification result. This global approach helps PolarIRGS
improve upon the results of other published techniques but
does not guarantee that the overlapping areas are labelled the
same way in each sub-image.

However, consistency is still maintained in a number of
cases. Segments classified as Beet and some Grass segments
are generally the same in overlapping regions in all three
masks and the full image. Wheat is also consistent between
the test cases if the three Wheat classes are considered one
class. Segments classified as Potatoes are consistent between
Masks 1, 2 and 3, although the Full Mask results identify the
Potato segments as Forest. However, as noted earlier, Potato
and Forest are difficult to distinguish. In areas where the full
image classification is correct, Rapeseed, Bare Soil and Peas
are consistent with the Mask 1 results.

F. Modified Full Scene Analysis

The observations made in Section V-E about the classification
errors in the full scene classification motivate the need for a
modified analysis. Poor separability and intra-class variation
in polarimetric signatures make it difficult for an unsupervised
algorithm like PolarIRGS to find the proper classification
without a priori information such as training data that tell the
algorithm what clusters to expect. The ground-truth image and
the classification evaluation method were modified to account
for these factors to obtain a more reasonable evaluation of
PolarIRGS’ performance.

The ground-truth image was modified so that only the Water
in the top right corner of the image, where its signature is
constant, was included in the evaluation. Wheat, Wheat 2
and Wheat 3 were grouped as a single Wheat class. Forest
and Potatoes were also merged. Fig. 8(b) shows the modified
ground-truth image. The classification accuracy was evaluated



(e) Classification result for 1 run of PolarMLL
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(f) PolarMLL classification result, masked to ground-truth

Fig. 7. Classification results for the full image with 17 classes. Black or dark gray pixels are excess classes that are not associated with any ground-truth class.

on the same 17 class full image classification result from Fig. 7
but the three Wheat classes were manually merged into one
class. Forest / Potatoes were also merged to form one class.
The merging was done manually because there actually is
more than one signature for the Wheat class and certain Potato
and Forest patches are distinct. Thus, the algorithm cannot be
controlled to automatically merge the classes. The classification
accuracy was computed from the modified ground-truth and
classification result.

Table V shows the result of this modified analysis. The ac-
curacy has increased dramatically. Rapeseed, Grasses, Lucerne
and Barley remain problematic but all other classes have high
accuracies. The classification results are seen in Fig. 8(c)-
(d). Accounting for the limitations inherent in the image data
shows that PolarIRGS is capable of producing very reasonable
classification results.
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TABLE IV
MEAN CONFUSION MATRIX [44] FOR THE FULL IMAGE CLASSIFICATION ACROSS 10 RUNS OF POLARIRGS, SHOWING THE GENERAL TRENDS REGARDING
WHICH CLASSES ARE FREQUENTLY CONFUSED. COLUMNS REPRESENT GROUND-TRUTH CLASSES. THE NUMBERS IN EACH COLUMN INDICATE HOW MANY
PIXELS OF THAT PARTICULAR GROUND-TRUTH CLASS WERE ASSIGNED TO EACH OF THE CLASSES IN THE CLASSIFICATION RESULT.

Ground-truth Classes
g § % @ f I\ ) S
g g
g2 lu U e L 0 B 5 |E|E|E|E|2) 3
[ [ 2 [ o [0 o £ il = = = = @
Peas 10044 0 51 0 0 1 0 0 0 0 0 0 0 0 0
Stembeans 0| 6298 1 1 0 2 0 0 17 0 0 0 0 0 36
Beet 0 6| 10703| 0 0 21 8 0 29 0 0 0 0 0 0
Forest 20| 320 27| 18543 0| 1 1 2| 11135 0| 0| 0 0 0 0
Bare Soil 0 0 0 0| 2765 0 0 0 0 0 0 0 0| 5141 0
Rapeseed 0 0 0 0 19 4706 12 11 55 0 0 0 0 0 0
g Grasses 0 0 0 1| 115 0| 2585| 545 7| 1610 0 0 1| 383 0
g Lucerne 0 0 0 0 59 0| 679] 6224 3] 173 0 0| 419 0 0
'% Potatoes 0 27 59 0 0 0 0 2| 6859 0 0 0 0 0 0
§ Barley 0 0 0 1| 111 0| 2505| 2181 2| 5574 0 0 20 0 0
% Wheat 30 6 11 0 0| 2474 1 0 0 0| 17612 0 0 0 0
Wheat 2 5 0 0 0| 177] 4221 11 ) 35| 518 442 6949| 4429 0 0
Wheat 3 2 0 0 0 0| 2359| 1673 1555 15 0 0| 4632| 18279 0 0
Water 0 0 0 0 0 0 0 0 0 0 0 0 0| 5812 0
Buildings 6 0 2 0 0 15 0 0 2 4 0 0 0 0| 572
Excess 1 0| 192| 667 2 0 0 1 0 2 0 0 0 0| 2196 0
Excess 2 0 0| 105 0| 61| 193 ) 1 9] 173 0| 0 0| 1409 0

(b) Ground-truth
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(c) Classification result for 1 run of PolarIRGS (d) PolarIRGS classification result, masked to ground-truth

Fig. 8. Classification results for the full image with 17 classes using the modified ground-truth and evaluation method of Section V-F. Black or dark gray
pixels are excess classes that are not associated with any ground-truth class.



TABLE V
ACCURACY STATISTICS FOR POLARIRGS FOR THE FULL IMAGE USING THE
MODIFIED GROUND-TRUTH AND EVALUATION METHOD OF SECTION V-F.

Algorithm Polar[RGS
Sub-image Full Image

# of Runs 10

# of Classes 17

Class Mean Acc. | Std. Dev
Peas 99.4 0.6
Stembeans 92.0 7.2
Beet 92.1 9.1
Forest / Potatoes 99.5 0.1
Bare Soil 83.6 5.5
Rapeseed 33.6 7.1
Grasses 34.6 38.0
Lucerne 59.2 31.2
Barley 69.2 26.0
Wheat (combined) 99.2 2.5
‘Water 99.9 0.3
Buildings 93.9 1.4
OVERALL 85.8 3.0

VI. CONCLUSION

This paper has presented an extension of the IRGS algorithm
to use a polarimetric feature model based on the Wishart
distribution. PolarIRGS is unique among polarimetric segmen-
tation and classification techniques in that it is a region-based
algorithm that incorporates edge strength between regions as in
its spatial context model and uses iterative region growing to aid
in successful segmentation and classification. These properties
allow it to compare favourably with and improve upon the
results of other recent techniques. The region-based spatial
context model is very successful at producing contiguous and
noise free segments whose boundaries appear to match well
with the ground-truth. PolarIRGS is well-suited for applications
where classes have reasonable spatial coverage.

Future work could investigate improving the consistency of
the algorithm between different executions for large scenes
and scenes with a large number of classes. The bigger solution
space associated with large scenes and more classes increases
the likelihood for the current algorithm to be trapped in local
minima. This can potentially be addressed by investigating
whether the current Gibbs sampling optimization technique
could be improved or replaced with a more robust technique
if one exists. Another line of future work would determine
whether improvements could be made by using measures
analogous to the Fisher criterion for polarimetric data to set
the value of the spatial context weighting parameter in the
PolarIRGS energy function. Finally, the edge strength measure
used in this paper only makes use of the amplitude information
from the HH, HV and VV channels and future work could
investigate whether polarimetric edge strength measures can
offer improvements once a consistent set of parameters for the
polarimetric edge strength filters can be found.
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