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Abstract

Due to both environmental and sensor reasons,
it is challenging to develop computer-assisted algo-
rithms to segment SAR (synthetic aperture radar)
sea ice imagery. In this research, images contain-
ing either ice and water or multiple ice classes are
segmented. This paper proposes to use the image
intensity to discriminate ice from water and to use
texture features to separate different ice types. In or-
der to seamlessly combine spatial relationship infor-
mation in an ice image with various image features,
a novel Bayesian segmentation approach is devel-
oped. Experiments demonstrate that the proposed
algorithm is able to segment both types of sea ice
images and achieves an improvement over the stan-
dard MRF (Markov random field) based method, the
finite Gamma mixture model and the K-means clus-
tering method.

Keywords: Image segmentation, unsupervised
segmentation, Markov random field (MRF), image
feature, expectation-maximization (EM), K-means
clustering, Gamma distribution, mixture model, syn-
thetic aperture radar (SAR), sea ice, texture.

1 Introduction

A major research initiative on the polar regions
is to obtain timely information on the distribution
and dynamics of sea ice [1]. The most impor-
tant tool is satellite-based synthetic aperture radar
(SAR) systems. As an important aspect of mea-
surement, monitoring and understanding of sea ice
evolution during the seasons, the generation of ice
type maps is a fundamental step in interpretation
of these data. Automated segmentation techniques
are expected to improve throughput, reduce costs
and reduce human bias. Unfortunately, as SAR
sea ice imagery is complicated due to the existence
of speckle noise [2] and the difficulty in differen-
tiating different ice types [1] [3], no segmentation

techniques have been reported to achieve satisfac-
tory results. The operational segmentation of SAR
sea ice imagery requires identifying the proportions
of specific multiple ice classes for a certain region
and coding this information in an “egg code” us-
ing the World Meteorological Organization (WMO)
standards (http://www.cis.ec.gc.ca/). Our research
in the current stage is mainly concerned with seg-
menting two types of sea ice imagery. One type is
images containing ice and water which require to sep-
arate ice regions from water regions. Also, images
with multiple ice categories must be segmented into
different ice classes.

A commonly used strategy for segmenting sea ice
images is to first choose a proper set of image fea-
tures and then apply a segmentation method on the
chosen features. For choosing image features, this
paper proposes to use image intensity to discrimi-
nate ice regions from water regions and to use tex-
ture features to separate ice type regions (Section 2).
For choosing segmentation methods, the threshold-
ing method has commonly been applied. The algo-
rithm [4] first selects thresholding values from local
regions and then thresholds the entire image. As it
accounts for the local variance in an image, it meets
success in segmenting the sea ice images which have
an obviously bimodal gray level distribution. There
are some other segmentation methods which have
stronger potential to segment SAR sea ice images.
The finite Gamma mixture model is originally ap-
plied in [5] to estimate proportions of ice types in
a SAR image. This method can be further used
to segment sea ice images. The K-means cluster-
ing method [6] has been widely deployed to segment
various images and is also potential to be applied to
segment SAR sea ice images. The weakness of the
three methods above is that they ignore spatial re-
lationship information among image pixels and it is
difficult to integrate the spatial relationship informa-
tion into them. The segmentation results achieved
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by these methods are often sensitive to image noise
and hence inappropriate for operational purposes.

A Markov random field (MRF) is able to ac-
count for local spatial relationships [7]. There are
various MRF-based segmentation models that have
been developed [8] [9]. However, the application of
MRF models to segment SAR sea ice imagery has
not been commonly represented in the research lit-
erature. A standard MRF model is used as a basis
for the development here (Section 3). The standard
model consists of two components: a region labelling
component and a feature modelling component. The
region labelling component imposes a homogeneity
constraint on the image segmentation process, while
the feature modelling component functions to fit the
feature data. In the standard approach, a constant
weighting parameter is used to combine the two com-
ponents [8] [9]. This model works very well if train-
ing data is available to estimate the parameters of
both components. Under the unsupervised environ-
ment that is required by operational segmentation of
SAR imagery (http://www.cis.ec.gc.ca/), the above
model is unable to work consistently. This is caused
by the constant weighting parameter [8] [9] (Eq. (5))
which is unable to achieve a proper balance between
the two components in the entire segmentation pro-
cedure.

A robust implementation scheme proposed in [10]
is used in this work to combine the two components
by introducing a variable weighting parameter be-
tween them (Section 4). The variable parameter
first functions as learning approximately globally op-
timal model parameters. A balance is then achieved
between the two components such that the spatial
relationship information can be taken into account
to refine the model parameters. This approach is
demonstrated to eventually generate more accurate
segmentation results than the model with a constant
weighting parameter (Section 5).

2 Feature Representation

2.1 Image Intensity

Backscatter in SAR sea ice imagery depends on
the surface roughness as well as the dielectric con-
stant of sea ice or open water. In theory, backscatter
(represented by gray tone) in the SAR imagery plays
an important role in visual interpretation of sea ice
images. However, algorithms based only on tonal
statistics have been demonstrated to have poor sep-
aration for different ice types [11]. This poor type
separation is primarily caused by gray tone varia-
tion which is very common in ice types due to their

roughness and the existence of ridges, rubble, rims
and deformation [12]. Some success has been met
when using variation after filtering [13], but the im-
provement is marginal [14]. Section 2.2 will discuss
the application of texture features to improve classi-
fication between sea ice types.

As open water in seas and oceans generally has
a larger dielectric constant than the ice-infected re-
gions, most of the incident radar energy is reflected
(not backscattered) so that the SAR image in open
water areas looks much darker than the ice regions.
To partition ice regions from water regions, there-
fore, the image intensity is strongly advocated. A
difficulty in this application is that speckle noise of-
ten exists in SAR images, due to that backscattered
radar signal has disturbed by the constructive and
destructive interference of coherent electromagnetic
radiation. The speckle noise can be reduced by us-
ing multiple looks or non-coherent integration [2].
The speckle-reduced sea ice image is however not
constant-piecewise but generally a Gamma distribu-
tion of its pixel values [15]. Denote the site of a pixel
in an image by s and the gray value of the pixel s
by zs and the class label of s by ys. The Gamma
distribution of z with respect to the mean ., of all
pixels belonging to the m-th class (ice/water) is [5]:

Lo ( z )

Tslys =m) = ——a, exp| ——uzs |,
7 N ks |
1

where [ denotes the number of looks.

2.2 Texture Features

Texture is a very important cue in the human vi-
sion system. Texture features have also been proven
to be potential for classifying sea ice types in SAR
imagery [16] [17] [18]. Various texture methods
are available to extract texture features in litera-
tures. For SAR sea ice imagery classification, there
is strongly supportive evidence [16] [17] that the gray
level co-occurrence probability (GLCP) method [19]
is an efficient method to extract texture features
which can achieve superior performance than other
methods.

Although the GLCP method is hoped to capture
consistent feature measurements for the same class
regions in an image, the natural inhomogeneity of
an ice region and spatial variation in the seasonal
measurements will cause variation in the feature re-
sponse. Generally, the feature response can be mod-
elled by a Gaussian distribution function. Even if the
distribution of a feature data is not a Gaussian dis-
tribution, the Gaussian function can still be used to
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approximate it since a close unimodal distribution is
expected. Denote the feature vector extracted from
arandom image (X = z) by F' = f, where F denotes
a random variable and f is an instance of F'. Y =y
stands for a segmented result based on the feature
vector F' = f. That is,

S S V0
p(fsyS_m)_\/@ep{ 20_7]%2 :|7 (2)

where £ and ¥ are the mean and standard devia-
tion for the m-th class in the k-th feature component,
and fF is the k-th feature component of f at site s.

3 Segmentation Model

The segmentation problem can be expressed in the
Bayesian framework. According to the Bayes rule,
the segmentation problem is formulated as

F=fIY =y)PY =y)
p(F = f)

P(Y = y|F = f) is the posteriori probability of
Y = y conditioned on F' = f. p(F = f|Y = y)
denotes the probability distribution of F' = f con-
ditioned on Y = y and functions to fit the feature
data, which is thus referred to as the feature mod-
elling component. P(Y = y) is the a priori prob-
ability of Y = y and is used to describe the label
distribution of a segmented result only, which is nor-
mally referred to as the region labelling component.
p(F = f) is the probability distribution of F = f.

A few assumptions are required to derive an
MRF-based segmentation model. The first assump-
tion is that each component of F = f be independent
on the other components with respect toY =y (con-
ditional independence). Suppose there are K compo-
nents in the feature vector f = {f*|k =1,2,---, K}.
Eq. (3) is then transformed into:

PY=ylF=f)= HkK=1 [p(f5]Y = y)P(Y = y)7

p(F = f)
(4)

where p(f*|Y = y) stands for the probability distri-
bution of the extracted feature component f* con-
ditioned on the segmented result Y = y. As F = f
is known and only the relative probability is of con-
cern when maximizing P(Y = y|F = f), p(F = f)
does not vary with respect to any solution ¥ = y
and hence the denominator can be disregarded.
Suppose the energy form of P(Y = y) is Er and
that of [Tr_, [p(f¥|Y = y)] is Ep. A general energy

Py =yF=p="1 L 3)

form E for P(Y = y|F = f) can be derived from the
product of P(Y = y) and [[r—, [p(f¥|Y = y)]:

E=FEr+aFp, (5)
where « is a weighting parameter to determine how
much Fr and Er individually contribute to the en-
tire energy F.

A concrete form for both Er and Ef is required
for practical segmentation. Most MRF-based seg-
mentation models use the second order pairwise MLL
(multi-level logistic) model for modelling the label
distribution [7]. The energy of the pairwise MLL
model is as follows.

Egr(y) = Z {6 Z 5(%,%)],

s tEN,

(6)

where 8(ys,y:) = —1if ys = i, 0(ys,ye) = 1 if
Ys # Yy, and [ is a constant which can be speci-
fied a priori [7]. Er(y) denotes the energy regarding
image regions.

The forms of p(f*¥|Y = y) may be different re-
garding what features are used. For the task of par-
titioning ice regions from water regions, the inten-
sity feature is used as the single image feature. As
indicated in Section 2.1, the intensity feature can be
modelled using a Gamma distribution. The energy
form Ep of Eq. (1) is written as:

l
Z {—xs —(—1)logzs +llogum}.
1

s,Ys=m m
(M

For the task of segmenting different ice types, the
GLCP features are used as the image features. As
indicated in Section 2.2, the individual GLCP fea-
ture generally can be modelled by a Gaussian distri-
bution. The energy form Er of the product of all
p(fF|Y, = m) can be written as:

K ko k2
EF(f): Z {Z |:(f3 ,le)

k)2
s,Yo=m (k=1 2(0m)

EF(l’) =

(®)

4 Implementation Scheme

To implement the MRF model (Eq. (5)) requires
estimation of four parameters: § (from Eq. (6)), «
(from Eq. (5)), u, o. Estimation of u = {uk } and
o = {ok } for each class requires training data. How-
ever, using an unsupervised environment, training
data is not available. The expectation-maximization
(EM) algorithm [20] is used to estimate p and o and
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is able to obtain a segmentation map. The EM al-
gorithm for the MRF model (Eq. (5)) is outlined as
follows.

1. A random segmentation result is initialized.

2. E-step: Estimate p and o from the feature data
F = f (which can be intensity feature or GLCP
features) based on the segmented image:

= Sk

s,Ys=m

S (k)

s,Ys=m

mTIN—1

3. M-step: Refine the segmentation result based on
the estimated p and ¢ by minimizing Eq. (5)
using the Metropolis sampling with a simulated
annealing scheme [21].

4. Repeat Steps 2 and 3 until a stopping criterion
is satisfied.

The difficulty is that there is no closed-form so-
lution for § and « in the EM algorithm. A com-
monly used strategy [21] is to priorily assign values
to them by experience before executing the EM al-
gorithm. Both parameters § and « function in the
same manner by assigning weights to their corre-
sponding energy components, and hence one of them
can be fixed. Here, 3 is fixed to be 1 and only « is
required to be adjusted. As the weighting parame-
ter « is normally set as a constant parameter, the
segmentation result often falls into three cases.

First, if the constant parameter makes the region
labelling component dominant, the values of esti-
mated parameters u and o may deviate considerably
from the feature data and the segmented result is
not consistent. Second, if the constant parameter
makes the feature modelling component dominant,
spatial relationship information would be ignored in
the final segmented result. Third, if a balance can
be achieved between both components by choosing
a proper constant parameter, the estimated param-
eters are normally not globally but locally optimal.

The root cause is that the MRF-based segmen-
tation model is very easily trapped in local maxima
due to the spatial homogeneity constraint imposed
by the region labelling component. As a result, the
feature modelling component might not be able to
learn the global parameters (i.e. p and o for each
class).

A robust implementation scheme proposed in [10]
is employed here to solve this problem by making the

weighting parameter « vary during unsupervised seg-
mentation. The introduction of the variable weight-
ing parameter should not only enable the segmenta-
tion procedure to learn the global parameters of the
feature modelling component but also impose spa-
tial homogeneity constraint on the label distribution
(through the region labelling component). For such
purpose, the parameter may vary with respect to the
annealing procedure. This work chooses the follow-
ing function for the variable weighting parameter a:

9)

where v, ¢; and ¢y are constants and ¢ represents the
t*h iteration. Experimentally, we have determined
that setting v = 0.9, ¢; = 80 and ¢a = 1/K (where K
is the dimension of the feature space) are appropriate
values for a variety of imagery. Using this function,
the feature modelling component will first (when «(t)
is larger) dominate the MRF model in order to learn
its global parameters and then (when «(t) is close to
o) interacts with the region labelling component to
refine the segmented result. Thus the energy of the
simple MRF model can be rewritten as:

alt)=cr*vy" +c, 0<y <1,

E:ER+OL(t)EF. (10)

5 Experimental Results

5.1 Testing Methodology

Four methods are compared for image segmenta-
tion: (1) the MRF model with a variable weighting
parameter (promoted in this paper), (2) the MRF
model with a constant weighting parameter [8] [9],
(3) the K-means clustering method [6], and (4) the
finite Gamma mixture model followed by a maximum
likelihood classification [5].

The first two segmentation methods are imple-
mented by the EM algorithm: an iteration of E-step
and M-step as discussed earlier (in Section 4). A
fixed number of iterations is used as the stopping
criterion in the following experiments. The tests con-
ducted in this work indicate that segmented results
do not change appreciably after 150 iterations and
the result at the 150-th iteration can be considered
as final. The K-means clustering method is also it-
erative. The clustering procedure stops when there
is no change for the label of every pixel. The initial
seeds for the clustering are chosen randomly. The
stopping criterion of implementing the finite Gamma
mixture model occurs when the coefficient of each
class changes less than 1 percentage (1%).

Following the research in [18], the parameters for
extracting GLCP features are set as follows. The
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three shift-invariant statistics (contrast, entropy, and
correlation) are advocated here. The window size is
7x7. One displacement (6 = 1) and four orientations
(0°, 45°, 90°, 135°) are chosen. The quantization
level is set to 64. Thus, each pixel is represented by
a 12-d vector of GLCP features.

To segment ice and water images, the intensity
feature is used as the only image feature for each
segmentation method. To segment multiple ice im-
ages, there are two sets of features to be compared:
the intensity feature and the GLCP features. The
Gamma mixture model is based on the distribution
of intensity in an image and hence applied only on
the intensity feature. The other three methods will
be applied using both feature sets. All four segmen-
tation methods are provided the number of classes
depending on the specific image.

5.2 Ice and Water Imagery

5000

2500)
2000
1500]
1000]

500
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o o1 oz 03 o4 05 08

Figure 1: (a) Original C-band HH RADARSAT
ScanSAR image (376 x 462 pixels, ©Canadian Space
Agency) with ice (gray) and water (dark gray). (b) His-
togram of the image (a).

The test image shown in Fig. 1(a) was ex-

tracted from the scene of a C-band HH RADARSAT
ScanSAR data (100m pixel spacing, 8 looks) cover-
ing Baffin Bay and Davis Strait acquired on June 24,
1998. It has a unimodal histogram (Fig. 1(b)). Fig.
2(c) shows the result obtained by the K-means clus-
tering method. As the K-means clustering method
does not take into account the spatial relationships,
the segmented result is very sensitive to image noise
and thus has many small or single-pixel regions. The
same problem exists in the result obtained by the fi-
nite Gamma mixture model (Fig. 2(d)). Fig. 2(b)
shows the result by the MRF model using a constant
weighting parameter. It has improvement by remov-
ing most small regions over the K-means method and
Gamma mixture model but still has some small re-
gions. This is because the constant weighting pa-
rameter makes the region labelling component con-
tribute less energy to the whole system than the
feature modelling component so that the final seg-
mented result does not incorporate sufficient spatial
relationship information. The result segmented by
the MRF model with the variable weighting param-
eter can however generate the most uniform regions
(Fig. 2(a)) for water and ice and the preferred rep-
resentation compared to the other three methods.

5.3 Multiple Ice Imagery

The test image shown in Fig. 3(a) is part of
a C-band HH RADARSAT ScanSAR data (100m
pixel spacing, 8 looks) covering Baffin Bay and Davis
Strait acquired on February 7, 1998. This image con-
sists of three ice types: multi-year ice (bright areas),
gray-white ice (light gray areas), and gray ice (dark
gray areas). Its histogram of pixel intensity is uni-
modal. All four methods are applied over the im-
age intensity feature and the GLCP texture features
respectively. Only the segmented results using the
GLCP texture features are shown in Fig. 3 for suc-
cinctness. The image intensity feature is not able to
discriminate the three ice types. Also, as there is
large intensity variance for pixels belonging to the
same ice type, the spatial homogeneity constraint
on neighboring pixels is very important for cluster-
ing the same-class pixels. As a result, the K-means
clustering method (Fig. 3(d)) and Gamma mixture
model are not able to cluster the three ice types due
to their lack of spatial relationship information. The
result by the MRF model with a constant weight-
ing parameter (Fig. 3(c)) has some improvement
over that by the K-means clustering method, but the
means of three ice types are still confused and the
segmentation is poor. The application of the MRF
model with the variable parameter to the GLCP fea-
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Figure 2: The arrangement of images is in the raster scanning order. (a) Segmented result by the MRF model with
a variable parameter (a(t) = 80 * 0.9" 4+ 1). (b) Segmented result by the MRF model with a constant parameter
(v = 8). (c) Segmented result by the K-means clustering method. (d) Segmented result by the finite Gamma mixture

model.

tures is however able to generate the most accurate
result (Fig. 3(b)).

6 Conclusions

The experiments demonstrate that the proposed
segmentation method can be successfully applied to
operational SAR sea ice imagery. In summary, the
work in this paper makes the following contributions:
First, the tonal feature is proposed to be used in
partitioning ice regions from water regions and the
GLCP texture features to segment sea ice types in
multiple ice images; second, the finite Gamma mix-
ture model and the K-means clustering method are
extended to segment SAR sea ice imagery for com-
parison with the MRF-based segmentation model;
third, the MRF-based segmentation model devel-
oped is able to utilize different kinds of image fea-
tures and applied to segment SAR sea ice imagery;

fourth, a variable weighting parameter is introduced
to combine the region labelling component and the
feature modelling component in the MRF-based seg-
mentation model so that it can achieve a consistent
unsupervised segmentation.

Future work will continue to improve the segmen-
tation performance by taking into account other non-
image factors such as season, radar look direction
and incidence angle. A fully automatic segmentation
algorithm is also expected to be developed which is
able to use egg-coded information to generate an en-
tire segmented scene.
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the SAR sea ice images.
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Figure 3: The arrangement of images is in the raster scanning order. (a) Original C-band HH RADARSAT ScanSAR
image (631 x 595 pixels, (©Canadian Space Agency) with multi-year ice (bright areas), rough first-year ice (light gray
areas), and smooth first-year ice (dark gray areas). (b) Segmented result by the MRF model with a variable parameter
(a(t) = 80 % 0.9" + 1/12) using GLCP features. (c) Segmented result by the MRF model with a constant parameter
(o = 6) using GLCP features. (d) Segmented result by the K-means clustering method based on GLCP features.
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