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Abstract

As the volume of digital video captured and stored con-
tinues to increase, research efforts have focused on content
management systems for video indexing and retrieval ap-
plications. A first step in generic video processing is shot
boundary detection. This paper addresses a novel algo-
rithm for abrupt shot (cut/pause) detection - especially on
frames with similar statistics - based on the wavelet trans-
form and content entropy. The algorithm has been success-
fully tested on some video categories including sport and
live videos. Its quantitative performance has been com-
pared to other known methods including pixel, histogram,
frequency domain and statistics difference. In each test, the
proposed wavelet method outperforms the others.

1. Introduction

Recent increased interest in multimedia research has
drawn upon the development of video indexing and re-
trieval. A first step towards the semantic based video in-
dexing and retrieval is detection of elementary video struc-
tures. Research on video content processing can be based
on automatically detecting the boundaries between camera
shots. A shot is a temporally continuous sequence of frames
from one camera. There are a number of different types of
transitions or boundaries between shots such as cut, fade,
dissolve, wipe and so on. A cut is an abrupt change that
occurs between two consecutive frames. A fade is a slow
change in brightness usually resulting in or starting with
a solid black frame. A dissolve occurs when the images
of the first shot get dimmer and the images of the second
shot get brighter, with frames within the transition showing
one image superimposed on the other. A wipe occurs when
pixels from the second shot replace those of the first shot
in a regular pattern such as in a line from the left edge of
the frames. Of course, other types of gradual transition are
possible [2]. Cuts/pauses may separate frames with similar
statistical information and have no significant differences in

histograms, objects, colors or edges. In such videos, we can
benefit from unique features of wavelet transform -such as
multi-resolution decomposition- and content entropy.

In this paper, we propose a method of shot boundary de-
tection on cut videos using wavelet transform and entropy
features. In Section 2, existing methods are reviewed. The
proposed pause detection algorithm is explained in Section
3 and experimental results are shown in Section 4.

2. Existing Techniques

Many algorithms have been proposed for detecting video
shot boundaries including pixel difference [2], statistical
differences, color histograms [6], compression differences,
edge tracking [5], motion vectors, block matching and
transform coefficients methods [3]. Pixel differences tech-
niques are the easiest way to detect significant differences
between two frames, but this method is very sensitive to
camera and object motion and generates many false posi-
tives. Statistical methods expand on pixel differences by
breaking images into regions and comparing statistical mea-
sures of the pixels in those regions. These techniques are
tolerant of noise but are slow and also generate many false
positives. Histograms are the most popular methods which
are used to detect shot boundaries [2]. Histogram meth-
ods offer a good trade off between algorithm accuracy and
speed [2].

3. Pause Detection Scheme

The proposed pause detection scheme (PDS) utilizes the
discrete wavelet transform (DWT) and entropy features for
locating cuts in a video stream.

3.1. Use of wavelets and entropy

Wavelet and entropy concepts capture unique features
that can be used for content analysis of frame sequences in
video streams. The DWT has a number of advantages over
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other transforms. The DWT breaks down a signal in the
same manner as the human visual system (HVS). The DWT
generally can be implemented with lower computational
costs. The DWT also offers efficient energy compaction [4].
The multi-resolution characteristics of the transform is suit-
able for video applications.

Since Shannon’s work in 1948 [8], entropy is used as
a major tool in information theory. Interesting approaches
involving direct use of entropy for signal processing appli-
cations can be found in areas such source seperation, blind
de-convolution, source coding, image alignment and detec-
tion of abrupt changes. In many applications, a measure of
complexity of underlying probability density functions, or
a measure of dependence between components or signals,
allows the design of an optimal processing scheme, possi-
bly in non-stationary contexts [8]. Thus, entropy-based ap-
proaches might be useful for such problems [7], because a
pause in a video is such an abrupt change.

3.2. The Proposed Pause Detection Scheme

The Pause Detection Scheme (PDS) utilizes the DWT
and entropy features for locating the cut frames in video
stream. PDS is developed based on statistical informa-
tion of frame’s content. Different wavelet basis may be
used. They are chosen base on the content type (sport, live,
news and so on); ’haar’ basis is one most popular basis that
widely used in video processing. It is used for all presented
results in this paper.

PDS is developed in MATLAB 7.7 for processing of AVI
and WMV file formats. In this paper results for ”watch” and
”sport” videos are presented. ”watch” is a video of running
clock, in length of 1162 frames and 640× 480 pixels frame
size, with minimum difference in frame sequence (some-
times, just in clock hands). ”sport” video is a basketball
game with length of 902 frames with 640×480 pixels frame
size. ”watch” video is selected because of its static property,
it has minimum variation and no significant changes before
and after pause, and ”sport” video has dynamic property
such as live videos.

In this scheme, after loading the video file, for every
frame in video stream; we apply the following procedure:

• Step 1: Extract the difference of current and previous
frames in video stream.

• Step 2: Apply the wavelet filter to the difference frame
and compute the sub-bands coefficients.

• Step 3: Compute the entropy in each sub-band as well
as the mean of coefficients in each sub-band.

• Step 4: Find the pause detection index (PDI) values
by the inner product of entropy and mean of each sub-
band.

Figure 1- 3 show the procedure steps. Figure 1(a)- 1(b) show
the frame before and after pause. Figure 1(c)- 1(d) show
DWT coefficients of frame 209 and 210 (Step 2). These
results are based on ”watch” video in length of 1162 frames.

(a) frame #209 (b) frame #210

(c) Coefficients of frame #209 (d) Coefficients of frame #210

Figure 1. (a)-(b) last frame before pause
(#209) and first frame after pause (#210) for
”watch” video. (c)-(d) wavelet sub-band (A,
H, V and D) coefficients of frame #209 & #210.

In Figure 2, E(A), E(H), E(V) and E(D) vectors are en-
tropy measurements extracted from wavelet sub-band coef-
ficients in approximation (A), horizontal (H), vertical (V)
and diagonal (D) sub-bands (Step 3). For entropy measure-
ment, we have applied equation 1 to each sub-band coeffi-
cients for every frame difference. W k

ij is wavelet transform
value corresponding to index (i,j) in each level that can be a
negative value.

E(k) = −
Nk∑

i=1

Mk∑

j=1

(W k
ij)

2 log(W k
ij)

2

k ∈ {A, H, V, D} (1)

Equation 2 is used to extract the mean value of wavelet
coefficients in each sub-band. Mk and Nk are sub-band
dimension of each frame (Step 3). Figure 2 shows the ex-
tracted entropy and mean value of wavelet sub-band coeffi-
cients.

M(k) =
1

Nk × Mk

Nk∑

i=1

Mk∑

j=1

W k
ij

k ∈ {A, H, V, D} (2)

ME =
∑

k=A,H,V,D

M(k) ·
∑

k=A,H,V,D

E(k) (3)

Equation 3 shows the product (ME) of summation of en-
tropy and summation of mean value in all sub-bands that
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can be used as PDI for each frame. Results are shown in
Figure 3 (Step 4). Indeed ME represents rate of frame se-
quence changes both in time and frequency domains.
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Figure 2. Extracted entropy and mean fea-
tures for all video frames sequence in each
sub-band [Step 3].
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Figure 3. Product of summation of entropy
and mean in all sub-bands (PDI) for ”watch”
video [Step 4].

The ”watch” video has been paused at frames 209, 474,
742 and 917. We observe some other peaks comparable to
the PDI values around paused locations in Figure 3. These
peaks occur at the frames with rapid moving or vibration
in frame objects. In our sample ”watch” video, for four
seconds at the beginning, there is distortion in the frame’s
scenes. A post processing stage is used to improve the de-
tection performance and remove the undesirable peaks.

3.3. Enhancing performance

To enhance the performance of system, a post-processing
stage is added to improve the accuracy of shot detections.
The following figures show the PDS system outputs for
”sport” video. Figure 5(a) shows the PDI plot for ”sport”
video and corresponding index values.

A post-processing Gaussian filter of length n+1 is ap-
plied to ME. Figure 5(b) shows the fixed PDI plot after filter-
ing. The result is improved and unexpected peaks have been
removed. In this case, three pauses are detected via suitable
selected thresholds. In the ”sport” video, the paused frames
are located at frames number 105, 301, and 602; these are
indicated with stars in the Figure 5(b).

(a) frame #301 (b) frame #302

(c) Coefficients of frame #301 (d) Coefficients of frame #302

Figure 4. (a)-(b) last frame before and first
frame after pause for ”sport” video. (c)-(d)
wavelet sub-band (A, H, V and D) coefficients
of frame #301 and #302.

4. Testing

In this section, we compare our method with five well-
known methods; then evaluate the results of these methods.

4.1. Comparison Methods

For performance evaluation of proposed scheme and
comparison with other cut detection methods, we have im-
plemented five well-known methods, including pixel, color
histogram, DCT, statistical mean and standard deviation dif-
ference methods. As the source codes of these algorithms
are not available, they were implemented in the same en-
vironment by ourselves. Figure 6 and Figure 7 show the
results for implemented methods on test videos; triangles
on top x axis determine the exact pause indexes.

• Pixel Differences: This is the simplest method to de-
termine cuts. The difference between corresponding
pixels of two consecutive frames is computed. If the
difference is greater than the threshold, a cut is as-
sumed [2]. Figure 6(a) and Figure 7(a) show the results
of this method for ”watch” video and ”sport” video re-
spectively.
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(b) after filtering

Figure 5. PDI for ”sport” video with pause lo-
cations at 105, 301 and 602; In (a) some un-
expected peaks have been shown and in (b)
unexpected peaks have been removed.

• Statistical Differences: Statistical methods expand on
the idea of pixel differences by breaking the images
into regions and comparing statistical measures of the
pixels in those regions [2]. Mean and standard devi-
ation are two statistical measurements which are used
in this method. Figure 6(b)- 6(c) and Figure 7(b)- 7(c)
show the results of mean standard deviation difference
methods for ”watch” and ”sport” videos respectively.

• Histogram: The histogram method computes 64 bin
gray level histograms of the two images and Euclidean
or Chi-square distance is used to find the histogram
difference [2]. Figure 6(d) and 7(d) show the results of
this method for ”watch” and ”sport” videos.

• DCT differences: This method uses differences in the
discrete cosine transform coefficients of frames. The
same 15 DCT coefficients from each block of frame is
taken and concatenated to produce a vector. The dif-

ference is computed by subtracting the vectors of con-
secutive frames. If this difference exceeds the thresh-
old, declare a possible cut [1]. Figure 6(e) and 7(e)
show the results of this method for ”watch” and ”sport”
video respectively.

4.2. Evaluation

For evaluation, we have chosen recall and precision cri-
teria [2]. Recall and precision criteria are commonly used
in the field of information retrieval. Recall is defined as
the percentage of desired shots that are retrieved among all.
Precision is the percentage of retrieved shots that are de-
sired shots. To make comparisons among algorithms just
based on recall and precision criteria is difficult, so for each
application a trade-off must be defined between recall and
precision. Here, we have defined the product of recall and
precision to combine the benefit of each measure. If recall
and precision both have high values, their product will be
increased, and if both of them are low, then the product will
be decreased. This motivates to use of the product of recall
and precision for evaluating the algorithms.

Figure 8 and 9 show the recall/precision product as
a function of threshold. One hundred evenly distributed
thresholds in steps of 0.01 from 0.01 to 1 are used. Then the
product of recall and precision for each algorithm is calcu-
lated over all threshold levels. So, these figures illustrate the
robustness of the threshold for each method. Some meth-
ods have narrow ranges of the threshold that are overstated
and some other methods decay rapidly out of the overstated
ranges. Thresholds that generate peak results should be con-
sistent from video to video, but this is only apparent in the
wavelet result.

Some implemented methods are very sensitive to thresh-
old value and their result significantly varies with differ-
ent thresholds. It means that our approach is more robust
than other methods to the threshold level. Figure 10 shows
comparison chart on summation of recall/precision product
for different methods. This chart shows that our proposed
method is less sensitive to threshold value and the summa-
tion of recall and precision product over 100 threshold is
greater than other methods for ”sport” and ”watch” videos.

5. Conclusion

The proposed algorithm based on entropy and wavelet
transform shows better results among compared cut de-
tection methods especially for pause detection that scenes
have no significant changes before and after pause such as
”watch” video. In such scenes, most of cut detection meth-
ods such as histogram, statistical and transform-based meth-
ods can not detect the cut precisely, but we can detect such
cuts with unique feature of wavelet transform and entropy.
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(c) Standard Deviation Difference
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(d) Histogram Difference
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(e) DCT Difference
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(f) Wavelet-Entropy Difference

Figure 6. Experimental results (PDI) for
”watch” video. The X axis shows the frame
numbers and the Y axis shows normalized
output of each method. (f) has better results
because there are fewer unexpected peaks.
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Figure 7. Experimental results (PDI) for
”sport” video. The X axis shows the frame
numbers and the Y axis shows normalized
output of each method. (f) has better results
because there are fewer unexpected peaks.
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(c) Standard Deviation Difference
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(d) Histogram Difference
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(f) Wavelet-Entropy Difference

Figure 8. Product of recall and precision re-
sults of implemented algorithms (a)-(f) for
”watch” video; the X axis shows threshold
value between 0 and 1, and the Y axis shows
normalized product of recall and precision
within 100 threshold levels. (f) is less sen-
sitive to thresholds.
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(b) Mean Statistic Difference

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Standard Deviation Statistic [BCB]

Threshod Value

No
rm

ali
ze

d p
rod

uc
t o

f re
ca

ll a
nd

 pr
ec

isio
n v

alu
e
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(f) Wavelet-Entropy Difference

Figure 9. Product of recall and precision re-
sults of implemented algorithms (a)-(f) for
”sport” video; the X axis shows threshold
levels between 0 and 1, and the Y axis shows
normalized product of recall and precision
within 100 threshold levels. (f) is less sen-
sitive to thresholds.
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On the other hand, threshold adjustment is more robust
in this method with a post-processing modification. We
may improve this method by using different wavelet basis
and filters. This method is suitable for off-line processing
and not recommended for noisy videos or videos with
disorderly scenes like traffic observation camera. We can
extract different features from the estimated wavelet and
entropy vectors to cover other shot detection types such as
fade, dissolve and wipe.
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Figure 10. Recall Precision Product Sum-
mation (RPPS) of implemented methods.
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