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Abstract
The developmentof user interfacesbasedon vision and
speech requiresthesolutionof a challengingstatisticalin-
ferenceproblem:Theintentionsandactionsof multiplein-
dividualsmustbeinferredfromnoisyandambiguousdata.
We arguethat Bayesiannetworkmodelsare an attractive
statisticalframework for cuefusionin theseapplications.
Bayesnetscombinea natural mechanismfor expressing
contextual informationwith efficientalgorithmsfor learn-
ing and inference. We illustrate thesepoints through the
developmentof a Bayesnet model for detectingwhena
user is speaking. Themodelcombinesfour simplevision
sensors: facedetection,skincolor, skintexture, andmouth
motion.We presentsomepromisingexperimentalresults.

1 Introduction
Human-centereduser-interfacesbasedon vision and

speechpresentchallengingsensingproblems in which
multiple sourcesof informationmustbe combinedto in-
fer the user’s actionsandintentions. Statisticalinference
techniquesthereforeplay a critical role in systemdesign.
This paperaddressesthe applicationof Bayesiannetwork
modelsto thetaskof detectingwhethera useris speaking
to thecomputer. Thisis achallengingtaskwhichcanmake
useof a variety of sensors.It is thereforea goodtestbed
for exploring statisticalsensorfusiontechniques.Speaker
detectionis also a key building block in the designof a
conversationalinterface.

Bayesiannetworks [16, 9] are a classof probabilis-
tic modelswhich graphicallyencodetheconditionalinde-
pendencerelationshipsamonga setof randomvariables.
Bayesiannetworksareattractivefor visionapplicationsbe-
causethey combinea naturalmechanismfor expressing
domainknowledgewith efficient algorithmsfor learning
andinference.They havebeensuccessfullyemployedin a
wide rangeof expertsystemanddecisionsupportapplica-
tions.Oneexampleis theLumièreproject[6] atMicrosoft,
whichusedBayesiannetworksto modelusergoalsin Win-
dowsapplications.

In this paperwe demonstratethe useof Bayesiannet-
worksfor visualcuefusion. We presenta network, shown
in Figure4(c), which combinestheoutputsof four simple

“off-the-shelf” vision algorithmsto detectthepresenceof
aspeaker. Thestructureof thenetwork encodesthecontext
of the sensingtaskandknowledgeaboutthe operationof
thesensors.Theconditionalprobabilitiesalongthearcsof
thenetwork relatethesensoroutputsto thetaskvariables.
Theseprobabilitiesarelearnedautomaticallyfrom training
data.

While Bayesiannetwork modelsare not yet in wide-
spreadusewithin the computervision community, there
is a growing body of work on their application to ob-
ject recognition[11], scenesurveillance[2], video analy-
sis[22, 7], andselectiveperception[19]. Muchof thisear-
lier work reliesuponexpert knowledgeto instantiatenet-
work parameters.In contrast,we haveexploredtheability
to learnnetwork parametersfrom training data. Learning
is akey stepin fusingsensoroutputsat thedatalevel.

This papermakestwo contributions.First,we usea se-
ries of examplesto illustrate the power of Bayesiannet-
works in combining noisy measurementsand exploiting
context. We presenta network architecture(network F in
Figure4(b)) thatcaninfer thefrontal orientationof a face
eventhoughwe haveno explicit posesensor.

Second,we presenta solutionto the speaker-detection
problemwhich is basedon commonlyavailablevision al-
gorithmsand achieves a classificationrate of 91% on a
simpletestset.This resultsuggeststhatBayesiannetwork
classifierscanprovideaninterestingalternativeto thestan-
darddecisiontreeor neuralnetwork classifierscommonly
usedin vision applications.

2 The Speaker Detection Task
Speaker detectionis an importantcomponentof a con-

versationalinterfacefor a SmartKiosk [17, 23, 3], a free-
standingcomputersystemcapableof social interaction
with multiple users.Thekiosk usesananimatedsynthetic
faceto communicateinformation,andcansenseits users
with touch-screens,cameras,and microphones(seeFig-
ure1). In this settingwe would like to modelandestimate
a wide rangeof userstates,from concreteattributessuch
asthepresenceof a useror whetherthey arespeaking,to



moreabstractpropertiessuchastheuser’s level of interest
or frustration.

In a kiosk interface,speaker

Figure 1: The Smart
Kiosk

detectionconsistsof identifying
userswho are facing the kiosk
displayandtalking. In particu-
lar, wewantto distinguishthese
usersfrom otherswho may be
conversingwith theirneighbors.
The public, multi-user nature
of thekiosk applicationdomain
makesthis detectionstepa crit-
ical precursor to any speech-
basedinteraction.

To solve the speaker detec-
tion task,we usea combination
of four “of f-the-shelf” vision
sensors: the CMU face detec-
tor [20], a Gaussianskin color
detector[24], a facetexturede-
tector, anda mouthmotion de-
tector. They are explained in
moredetail below. Thesecom-
ponentshave the advantageof
eitherbeingeasyto implement

or easyto obtain,but they havenotbeenexplicitly tunedto
theproblemof speakerdetection.

In combiningtheoutputsof thesesensorswewould like
to exploit contextual knowledge about their performance
characteristicsandaboutthephysicaldesignof thekiosk.
For example,our kiosk designalignsthecameraaxiswith
the primary viewing directionof the kiosk display. Users
who wantto speakto thekiosk mustbefacingthedisplay
andin closeproximity if they expectto beheard.As a re-
sultof thiscameraplacement,speakinguserswill generate
frontal faceimagesin which lip andjaw motionis visible.
Thusthe detectionof frontal facesprovidesan important
cue for the presenceof speakers. We will show in Sec-
tion 3 thatBayesiannetworksprovide a powerful tool for
integratingvision sensorsandexploiting context.

A completesolution to the speaker detectionproblem
must includean architecturefor searchingan input video
sequenceover all possiblepositions,scales,andorienta-
tions.Thiscouldbedonethroughacombinationof heuris-
tics andbruteforcesearchasin [20]. In this paperwe ad-
dressa simplertask:Givenan imageregion of a specified
sizeandpositionwithin avideoframe,computetheproba-
bility thatit containsaspeaker. Theresultingregion-based
speaker detectorcouldbe the basisfor a globalsearchar-
chitecture.

Eachsensorcan be viewed as an operatorthat takes
an input region andoutputsa scalarfeature.We illustrate

Figure2: Frames10,25,and40 from a sequencein which
a talking headrotatesfrom left to right.

the variationin thesefeaturesusingthe sampleimagese-
quenceshown in Figure2. We appliedeachsensorto two
sequencesof input regionsof lengthseven. The first set
of regions tracksthe faceas the posevariesfrom left to
right acrossthesequence,asillustratedin thefigure. The
resultingfeaturetrajectoriesareplottedwith solid lines in
Figure3. They illustratetheposedependenceof thesensor
outputs.

A secondsetof regionswasobtainedbyscanningawin-
dow from left to right in imagecoordinateswithin a single
frame.Regionnumberfour in thissequencecorrespondsto
themiddle framein Figure2. It is identicalto region four
in theposesequence.Theresultingfeaturetrajectoriesare
plottedwith dashedlines in Figure3. They illustrate the
selectivity of thesensorswith respectto theface.

We see that all four sensorsrespondselectively to
frontal faces,in the sensethat their responsespeakwhen
the input window is centeredon theface.All of themex-
ceptfor the facedetectorarefairly insensitive to thepose
of theface.Theskin color sensorwasthemoststableun-
derposevariation. We now describeeachsensorin more
detail.

Skin Sensor

We employ skincolorasabasiccuefor detectinga visible
facein theinput window, asit is largely unaffectedby the
facialpose.Givenskin color measurementsobtaineddur-
ing a training phase,we fit a singlegaussiancolor model
asdescribedin [24]. Thefeatureis theaverageof thelog-
likelihood over the input region. The solid line in Fig-
ure 3(a) shows the stability of the skin color featureasa
function of the poseof the face. The dashedline shows
a gradualdegradationasthe input region is contaminated
with backgroundpixels.

Texture Sensor

It is well-known thatmany objects,suchaswalls,aresim-
ilar in color to skin. We designeda simple texture fea-
tureto helpdiscriminateregionscontainingfacesfrom re-
gionscontainingeithervery smoothpatternssuchaswalls
or highly texturedpatternssuchasfoliage. A correlation
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Figure3: Plotsof thefoursensoroutputsfor two sequences
of imageregions.Thesolid linesshow theresponseasthe
poseof thefacevaries.Thedashedlinesshow theresultof
sweepingthewindow acrossa singleimage.
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definesthefeature,where � is setto onetwelfth thewidth
of the region of interest— on the orderof facial feature
sizes,andwhere� denotesthegraycomponentof theinput
color image.(In ourexperimentswesimplyusedthegreen
channel.)Wefoundcorrelationin X to bemorestablethan
correlationin Y. Variation in this featureis illustratedin
Figure3(b).

NN face Sensor

The CMU facedetector[20] usesa neuralnetwork (NN)
architectureto searchfor frontal, upright facesin images.
Since we are given a specific image position and scale
to evaluate,we employ the verificationnetwork from the
CMU system.Sincethis network is sensitive to smallpo-
sition errors,it is evaluatedovera fixedrangeof displace-
mentsaroundthedesiredlocationandthehighestscoreis
returned.

Theoutputof thisdetectoris plottedin Figure3(c). The
solid curve shows the continuousoutputof the NN asthe
poseof thefacevaries.Theoutputis highly saturatedand
orientation-sensitive. The featureis equally sensitive to
positionwithin an image(the dashedcurve) andfalls off
rapidlyaroundtheface(region4).

Mouth Sensor

This sensorusesthemotionenergy in themouthregion of
astabilizedimagesequenceto measurechinandlip move-
ment. A weighting mask is usedto identify mouth and
nonmouthpixels insidethe target region. Affine tracking
of the nonmouthpixels is usedto cancelsmall facemo-
tions.Theresidualerrorin themouthregionaveragedover
five framesis then usedas the feature. It is normalized
by dividing by theresidualerrorover theremainderof the
face.This is anapproximationto theopticalflow approach
to lip motionanalysisproposedin [12].

In the absenceof an accuratesegmentationof the face
pixels, the sensoris sensitive to significant head rota-
tion. As the faceposeapproachesa profile view, residu-
alsaroundtheoccludingcontourincrease,biasingthesen-
sor. Thiseffect is apparentin the“jaggedness”of thesolid
curve in Figure3(d).

Weselectedtheskin,texture,neuralnet,andmouthsen-
sorsdescribedaboveon thebasisof their availability, sim-
plicity, andrelevanceto the task. Othersensorscouldun-
doubtedlybeused.In thenext sectionwedemonstratehow
Bayesiannetworks canbe usedto combinethesesimple
sensorsinto amorecomplex speakerdetector.

3 Bayesian Networks for Speaker Detection
A Bayesiannetwork [16, 9] is a directedacyclic graph

in which nodesrepresentrandomvariables,and the ab-
senceof arcsrepresentsconditional independencein the
following formal sense:A nodeis independentof its non-
descendantsgivenits parents.Informally, wecanthink of a
nodeasbeing“caused”by its parents.Figure4(a)givesan
exampleof a simplenetwork which modelsthe presence
of a facein theinput region.

GivenaBayesiannetwork graph,wecanfactorthejoint
distribution overall of thevariablesinto theproductof lo-
cal terms: !#" �%$'&(�*)+)*)+��$-,�� �/.10 !#" �%$ 032 !54 ��$ 0 ��� , where
!54 ��$ 0 � aretheparentsof node $ 0

, and !#" �%$ 0 2 !54 ��$ 0 ���
is the conditionaldistribution of $ 0

given its parents. If
all of thenodesarediscrete(aswe assumethroughoutthis
paper),theconditionaldistributionscanberepresentedas
conditionalprobability tables,calledCPTs. (SeeTable2
for an example.) However, we canalso allow the nodes
to becontinuousandemploy conditionalGaussians.Both
CPTsandGaussianparameterscanbelearnedfrom train-
ing datausingEM. See[13] for moredetails.

There are two computationaltasksthat must be per-
formedin orderto usethesenetworksasclassifiers.After
the network topologyhasbeenspecified,the first task is
to obtain the local CPT for eachvariableconditionedon
its parent(s). Oncethe CPTshave beenspecified(either
throughlearningor from expert knowledge),the remain-
ing taskis inference,i.e.,computingtheprobabilityof one
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Figure4: (a)NaiveBayesclassifier. (b) Polytree(network P)withoutdashedarc,final facedetector(network F) with dashed
arc. (c) Final speakerdetector. Notethattheleavesrepresenttheoutputof sensors,theothernodesrepresenthiddenstates.

setof nodes(the querynodes)givenanothersetof nodes
(the evidencenodes). In speaker detectionthe evidence
nodesarethediscretizedoutputsof thefour visionsensors
andthequerynodeis theprobabilityof adetectedspeaker.
See[9] for moredetailson thestandardBayesiannetwork
algorithms.

Wenow exploretherepresentationalpowerof Bayesian
networks througha seriesof four examples,culminating
in the speaker detectionnetwork. The first example is
the naive Bayesianclassifier (network N) shown in Fig-
ure4(a).Theleavesrepresentobservablefeatures(theout-
putsof oursensors,suitablydiscretized),andtherootnode
representsanunobservedvariable,visible, whichhasvalue
1 if a faceis visible in the input region, and0 otherwise.
Thisnetwork actsasa facedetector.

We areinterestedin computing !#" �76 2 8 � � ��9:� , where
6 representsvisible,

8
representsthecolor-basedskinsen-

sor,
�

representsthefacetexture sensor, and 9 represents
the NN facesensor. This quantitycanbe usedin a deci-
sionrule, suchasinferring thata faceis presentwhenever
!;" �76 �=< �?> !#" �76 �A@ � .

Network N is a poor model for a visible facebecause
it fails to take into accountthe fact that the NN facesen-
sor can only detectfrontal faces. This missing contex-
tualknowledgecaneasilybeincorporatedinto ournetwork
model by meansof an additionalhiddenvariable B , for
frontal. B takesonthevalues1 for frontal faces,0 for non-
frontal faces,and2 for not-applicable(in the casewhere
6 ��@

.)
We can build a separatenaive Bayesclassifierfor B ,

with just onechild, 9 . Whenwe combinethe two classi-
fiersinto asinglenetwork, weendupwith apolytreestruc-
ture(network P).This is shown in Figure4(b)asthegraph
in which thedottededgeis absent.A polytreeis adirected
graphwhoseunderlyingundirectedgraphis a tree,i.e., an
acyclic graph. Intuitively, we can think of a polytreeas
multiple directedtreesgraftedtogetherin sucha wayasto
not introduceany undirectedcycles.

Polytreesaremorepowerful thannaive Bayesmodels,

sincevariablessuchasNN facecanhave multiple parents.
However, the fact that frontal dependsuponvisible (since
!;" � B �DC 2 6 �D@ � �E< ) @ ) is not encodedin network P.
We canmodelthis additionalfactby addingan extra arc,
shown as a dottedline in Figure 4(b). This resultsin a
graphwith anundirectedcycle,whichwewill call network
F (thecompletefacedetectionnetwork).

Network F hassomeinterestingproperties.For exam-
ple,considerthecasewhere9 ��@

, meaningthattheneu-
ral network hasnot detecteda face,but

8 �F<
and

�G�F<
,

meaningthat the skin andtexturesensorshave detecteda
face.In thecaseof network N, thesecontradictorysensor
readingswould have theeffect of reducing!#" �76 �F< � . In
network F, however, thefact that 9 �H@

canbeexplained
awayby the fact that B �I@

despitethe fact that 6 �D<
,

sincewe know that theneuralnetwork cannotdetectnon-
frontal faces.Hencewenotonly increasetheclassification
accuracy on 6 , but wealsoinfer thevalueof B withoutdi-
rectly measuringit. Thephenomenaof explainingaway is
akey propertyof Bayesiannetwork modelsfor cuefusion.

The completevision-basedspeaker detectionnetwork
(network S) is shown in Figure4(c),wherewe have intro-
ducedan additionalmeasurementvariablemouthmotion
( J ) andhiddenvariablespeaking(

8
).

8
is thedesiredout-

put, theprobabilityof a speaker beingpresentin theinput
region. Note that the arcsconnectingspeakingto visible
andfrontalencodethecontextualknowledgeaboutcamera
placementdescribedin Section2.

Notice also that network F can be viewed as being
“pluggedin” asa moduleinto network S. This is because
thevisibleandfrontal nodesseparate (in a certaintechni-
calsense)all of thenodesin network F from theadditional
nodesspeakingandmouth. The ideaof reusingnetwork
componentsby pluggingtheminto largernetworks is for-
malizedin [10] underthe nameobject-orientedBayesian
networks.

4 Experimental Results
We conducted two experiments using a common

dataset.Thefirst experimentcomparedthe facedetection



performanceof networksP andF in orderto quantify the
benefitof themorecomplex network topology. Thesecond
experiment testedthe speaker detectionperformanceof
network S. Our implementationswerebasedon theBayes
NetToolboxfor Matlab5 whichis freelyavailablefrom the
secondauthor.1

Thedatasetfor bothexperimentswasgeneratedfrom 80
five-framevideoclips of faces.For eachclip we manually
labeledtheposition(boundingbox)andpose(frontal,non-
frontal,or notapplicable)of thefacein thefirst frame.We
alsorandomlysampled80non-faceregionsfrom theback-
groundsof theseclips. Weappliedeachof thefour sensors
to these160 regions. The color, texture, andneuralnet-
work sensorswereappliedto the first framein eachclip,
while the mouthmotion sensorusedall five frames. We
discretizedtheresultsusingtwo binsfor theskin detector,
two for theneuralnetwork detector, andthreefor the tex-
turedetector. Weusedhalf of ourdatafor trainingandhalf
for testing. Whentraining,we presentedthe valuesof all
thenodesto thenetwork. Whentesting,we presentedthe
valuesof thesensors,andcomputedthemarginalprobabil-
itiesof thehiddennodes.

4.1 Face Detection Experiment
The first experimentcomparedthe ability of networks

P andF in Figure4(b) to estimate6 and B . We declared
6 �K<

if !#" �76 �K< �L> !#" �76 �M@ � . Equivalently, we
declaredB � 4N"3O#P-4RQ?!;" � B � . An error was countedif
either 6 or B were incorrect. The resultsare shown in
Table1.

Network Train Test
P 72 75
F 95 94

Table 1: Facedetectionresults. Percentageof casesin
which both 6 and B are estimatedcorrectly by the net-
worksof Figure4(b).

It is clear that the full network modelperformsbetter
thanthepolytreemodel.To understandwhy, we examined
theCPTfor the NN facenode,shown in Table2. We can
seethatit haslearnedthattheneuralnetwork is goodatde-
tectingfrontal faces,but not goodat detectingnon-frontal
faces;the generalmodel(but not the polytreemodel)can
exploit this to infer pose,aswe discussedearlier. The in-
creasedexpressivepowerof network F comesat thecostof
morecomplicatedalgorithms(e.g. the join treealgorithm
describedin [9]). Fortunately, anumberof freelyavailable
softwarepackagescontaingoodimplementationsof these
routines.

1Seehttp://www.cs.berkeley.edu/S murphyk/Bayes/bnt.html for more
information.

6 B !#" �%9 ��@ � !;" �%9 �=< �
0 0 0.5 0.5
1 0 0.8377 0.1623
0 1 0.5 0.5
1 1 0.0055 0.9945
0 2 0.9980 0.0020
1 2 0.5 0.5

Table2: The learnedCPTfor theneuralnetwork detector
nodein network G. When the faceis visible and frontal
(fourth row), the probability that the neuralnetwork will
detectit is 0.9945;but whenthe faceis visible andnon-
frontal (secondrow), theprobabilityit will detectit is only
0.1623. Rows with 0.5 in them correspondto valuesof
the parentnodesthat werenever seenin the training data
(becausethey areimpossible).

In this experiment,all of the errorsweredueto incor-
rectly estimatingB for imageswhere 6 �T<

. This reflects
the inherentambiguity in the conceptof “frontal pose”.
Thethresholdon theposeangleusedby thehumanlabeler
is likely to be inconsistentwith that implicitly definedby
theneuralnetwork, resultingin errorsin B . This explains
why theperformanceon thetestsetcanexceedtheperfor-
manceon thetrainingset(asin thepolytreecase).

4.2 Speaker Detection Experiment
In thesecondexperimentwe evaluatedthespeaker de-

tector (network S) using threesetsof testdata. The first
setcontainedregionswith frontal facesequallydividedbe-
tweenspeakingandnonspeaking.Thesecond,nonfrontal
setcontainedfacesat a variety of nonfrontalposes.The
final nonfacesetconsistedof regionsthat did not contain
a face. As before,we computed

8 � 4N"3O#P-4RQU!#" � 8 � in
scoringthenetwork output.Theresultsfor thetrainingand
testingdataaregivenin Table3. Theaveragetestscoreon
faceregionswas91%.

Dataset Train Test
Frontal 100 94
Nonfrontal 93 89
Nonface 94 98

Table3: Speaker detectionresults. Percentageof correct
estimatesof

8
by network S(seeFigure4(c)).

In 90 % of thetestcases,errorsin estimating
8

seemed
to resultfrom estimatingB incorrectly(i.e., B wasincor-
rectandthemouthfeaturesupportedspeaking).This sug-
geststhat the mouthsensorwasfairly reliable for frontal
faces.

Thecontrolledlighting andlack of backgroundmotion
in our datasetundoubtedlycontributed to the successof



thesetwo experiments. We plan to validateour network
designsfutherundermorechallengingexperimentalcondi-
tions, including variablelighting andmoving background
clutter.

5 Conclusions and Future Work
Wehavedemonstratedageneralapproachto solvingvi-

sion tasksin which Bayesiannetworks are usedto com-
bine the outputsof simplesensingalgorithms. Bayesian
networksprovide anintuitive graphicalframework for ex-
pressingcontextual knowledge,coupledwith efficient al-
gorithmsfor learningand inference. They can represent
complex probability models,but their learning rules are
simpleclosed-formexpressionsgivena fully-labeleddata
set.

Context is a particularlypowerful cuein user-interface
applicationssinceit canbeexploitedandreinforcedin the
designof the interface. For thespeaker detectiontaskwe
exploitedtwo contextualcues:thefactthataspeaker’sface
imagewill be frontal, andthe fact that the CMU facede-
tectorcanonly detectfrontal faces.Oneresultis network
F in Figure4(b),which caninfer thefrontal orientationof
a faceeventhoughwe haveno explicit posesensor.

The combinationof multiple vision algorithmsbased
on contextual informationis a featureof many successful
vision systems.For example,the vision-basedkiosk de-
scribedin [5] also exploits the alignmentof cameraand
display axesand usesa combinationof multiple sensing
modules. It includesa clever hardwaredesignfor phys-
ically integrating the cameraand the display. The Kids-
Roomsystem[8] at theM.I.T. MediaLab is anotherrele-
vantexample.

An alternative to fusing many simplesensorsis to de-
signcomplex algorithmsthatjointly measurea largenum-
berof hiddenstates.For example,speakerdetectioncould
alsobeperformedusingtheoutputof a real-timeheadand
lip trackingsystemsuchasLAFTER [14]. In this instance
theprimaryadvantageof our sensorfusionapproachis its
simplicity of implementation.It is quitelikely thatgreater
accuracy couldbeobtainedwith a morecomplex andspe-
cializedsensor.

However, as we move from sensingwell-definedat-
tributeslike speechproductionto moreabstractquantities
suchas the user’s interestlevel, it becomesincreasingly
difficult to imaginedesigninga single highly specialized
sensor. We believe thatthefull powerof theBayesiannet-
work approachwill becomeapparentin this limit.

Ourspeakerdetectionexperimentsusingthenetwork of
Figure4(c) demonstratedclassificationratesof 91% on a
controlledtestset. This resultsuggeststhatBayesiannet-
workscanprovideaninterestingalternativeto thestandard
decisiontreeandneuralnetwork classifiersthat areoften
usedin vision applications.

In future work we plan to add speechsensingto the
speaker detection network and experiment with multi-
modalinference.We will furthervalidateour network de-
signson a large subjectpopulationunderrealisticcondi-
tionsof backgroundclutter. Wealsoplanto exploretheuse
of dynamicBayesiannetworks(DBNs) to capturetempo-
ral attributesof users.Someinterestingpreviouswork in
dynamiccuefusion includestheSERVP [4] andIFA [21]
architectures,coupledHMM models[1], andmixed-state
DBNs [15].

Going beyond low-level cue fusion, we would like to
useBayesnetsasa framework for integratinghigh-level
reasoningwith low-level sensing. With a suitableutility
modelit shouldbepossibleto closetheloopbetweensens-
ing andactionin a sound,decision-theoreticmanner[6].
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