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ABSTRACT

A novel nonlinear volumetric scale-space framework is pro-

posed for multi-scale volumetric data representation. The

problem is formulated as a Bayesian least-squares estimator,

and a quasi-random density estimation approach is introduced

for estimating the posterior distribution between consecutive

volumetric scale space realizations. Experimental results us-

ing both synthetic and real MR volumetric data demonstrate

the effectiveness of the proposed scale-space framework for

three-dimensional representation with significantly better

structural separation and localization across all scales when

compared to existing volumetric scale-space frameworks

such as volumetric anisotropic diffusion and volumetric lin-

ear Gaussian scale-space, especially under scenarios with

high noise levels.

Index Terms— Scale space, random sampling, volumet-

ric representation, multi-scale

1. INTRODUCTION

The physical world is highly complex in nature and consists

of a wide range of structures and phenomena that have differ-

ent semantics and significance at different scales. Therefore,

to study the world in a systematic and analytical manner, as

well as solve physical problems that have significance across

multiple scales, it is intuitive that a multi-scale approach to

data representation is desired for the purpose of modeling and

analyzing complex data. The decomposition and analysis of

volumetric data at different scales has important applications

in a variety of fields such as medical image analysis, 3D re-

construction and visualization, and 3D tracking.

A powerful approach for multi-scale data decomposition

and representation is scale space theory [1], where the multi-

scale structural characteristics of complex data are handled

by decomposing the data into a single-parameter family of

data representations, with a gradual decrease in fine scale

structures between successive scales. Scale space theory has

proven to be highly effective for many different computer

vision applications such as noise compensation [2, 3], edge

identification [2, 4, 5], and segmentation [6].

Existing volumetric scale space frameworks can be di-

vided into two main groups: i) linear and ii) nonlinear scale

space frameworks. First proposed by Witkin [1] and Koen-

derink and Van Doorn [7], a linear scale space framework

has high computational efficiency, making it a good candi-

date for fast multi-scale volumetric representation. However,

the representations produced under linear frameworks exhibit

poor structural localization, as well as undesirable structure

merging at coarse scales, particularly in the case of multi-

object data. To address these issues, nonlinear scale space

frameworks [2, 3, 4, 5] model the structural decomposition

problem using a generalized diffusion framework and encour-

ages diffusion along structures with similar characteristics to

improve structural localization. While considerable advance-

ments have been made in nonlinear scale space, significant

structural delocalization and structure merging continues to

persist for complex data at coarser scales, leading to unsatis-

factory multi-scale representations of complex data, particu-

larly in situations characterized by high noise levels.

Recently, a nonlinear scale space framework was intro-

duced based on quasi-random density estimation theory [8],

where highly relevant data samples are drawn in a stochas-

tic manner to construct statistically robust scale space rep-

resentations of the data that provide strong structural local-

ization and, importantly, low sensitivity to noise. However,

this framework was developed and validated entirely in two

dimensions, and no investigation has been conducted for ex-

tending this framework to higher-dimensional data decompo-

sition and representation. The main contribution of this work

is an extension upon the fundamental theory behind quasi-

random nonlinear scale space theory for robust multi-scale

volumetric data decomposition and representation.

2. PROBLEM FORMULATION

Let X be a set of sites in a discrete lattice £ upon which the

volumetric data is defined and x ∈ X be a site in £, as de-

fined by three-vector x = (x, y, z). Let the observed data I =
{I(x)|x ∈ X}, volumetric gradient Gi = {Gi(x)|x ∈ X},
volumetric scale space representation Li = {Li(x)|x ∈ X},
and residual inter-scale structure Ci = {Ci(x)|x ∈ X} be

random fields on X . The volumetric scale space decomposi-

tion can be expressed mathematically as

Li−1(x) = Li(x) + Ci(x), (1)

where L0(x) = I(x). As such, the volumetric scale space

construction process can be treated as an inverse problem, and



(a) Existing frameworks (b) Proposed framework

Fig. 1. (a) In existing linear and nonlinear volumetric scale

space frameworks, all samples within a local volumetric

neighborhood are used, regardless of relevance. (b) In the pro-

posed volumetric quasi-random nonlinear scale space frame-

work, only samples with high relevancy from across the vol-

umetric data are used to achieve improved volumetric scale

space representations.

can be solved using a general Bayesian least-squares estima-

tion approach:

L̂i (x) = argL̂i
min

{

E

((

L̂i (x)− Li (x)
)2

|Li−1 (x)

)}

.

(2)

Based on (2), the analytical solution for L̂i (x) is given by [9]

L̂i (x) =

∫

Li (x) p (Li (x) |Li−1 (x))dLi (x)

︸ ︷︷ ︸

E(Li(x)|Li−1(x))

. (3)

Unfortunately, the conditional mean of L̂i (x) can be a highly

complicated and nonlinear function of Li−1 (x), and is often

not possible to be solved in an analytical manner. To work

around this issue, a volumetric quasi-random density estima-

tion approach is proposed to estimate the conditional mean

L̂i (x) in a robust manner by utilizing only highly relevant

samples from across Li−1 (x). This volumetric quasi-random

density estimation strategy is fundamentally different from

that used for existing linear and nonlinear volumetric scale

space frameworks, where all samples within a local volumet-

ric neighborhood are used, as illustrated in Fig. 1.

3. VOLUMETRIC QUASI-RANDOM DENSITY

ESTIMATION

The volumetric quasi-random density estimation strategy can

be described as follows. To enable the drawing of low dis-

crepancy samples for p
(
Li(x)|Li−1(x)

)
, a set of n samples

is drawn from a Sobol quasi-random sequence [10] with re-

spect to x. The quasi-random approach is designed to bias

towards those samples with high relevancy for estimating

p
(
Li(x)|Li−1(x)

)
, therefore the distribution p

(
Li(x)

)
is first

constructed to allow for the identification of samples with a

high likelihood of being realizations of p
(
Li(x)|Li−1(x)

)
.
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Fig. 2. A synthetic volume, left, where the orange pixel (at

center) represents the estimation site, blue markers represent

random samples, and red markers represent the selected sam-

ples for density estimation. The corresponding probability

distribution p(Li−1(x)) of the orange pixel is shown in (b).

The PDF based on all samples (shown in blue) is undesirable

as they do not well-represent the relevant samples, whereas

the PDF taken over the selected samples provides a better rep-

resentation of relevant samples.

An example probability distribution p
(
Li−1(x)

)
in a sample

volume at a particular scale is shown in Fig. 2(b).
To identify those samples having a high relevancy, a Gaus-

sian mixture model based on p
(
Li−1(x)

)
is constructed as

follows. The local maxima of p
(
Li−1(x)

)
are detected, de-

noted as Lκ = {L1
i−1(x), L

2
i−1(x), · · · , L

k
i−1(x)} for k max-

ima. The individual Gaussian distributions within the mixture
model are set as having means of Lκ and variances of σ2

Li−1

(usually the noise variance at scale i) respectively. The real-
izable sample set Ω can then be determined by identifying the
Gaussian distribution to which Li−1(x) belongs,

L
γ = max (Lκ) , whereLi−1(x)−σLi−1

≤ L
κ ≤ Li−1(x)+σLi−1

,

(4)

and accepting all samples within σLi−1
of Lγ :

Ω =
{
xj ∋ |Li−1(xj)− Lγ | < σLi−1

}
. (5)

Finally, given Ω, the estimated posterior distribution p̂ (Li(x)|Li−1(x))
can be computed as

p̂ (Li(x)|Li−1(x)) =
p∗ (Li(x)|Li−1(x))

1∫

0

p∗ (Li(x)|Li−1(x)) dLi(x)

, (6)

where the distribution p∗ is used as a measure of sample rele-
vancy for estimating Li(x). In this paper, p∗ is defined as

p
∗ (Li(x)|Li−1(x)) =

1√
2πσLi

∑

k=Ω

f1 (k) f2 (k) f3 (k) exp

(

−1

2

(

Li − Li−1(xk)

σLi−1

)2
)

,

(7)

where f1 (k), f2 (k), and f3 (k) are objective functions that

assess sample relevance based on volumetric intensity, volu-

metric gradient, and volumetric spatial offset respectively:

f1 (k) = exp

(

−
1

ρIi−1

(Li−1(x)− Li−1(xk))
2

)

, (8)



f2 (k) = exp

(

−
1

ρGi−1

(Gi−1(x)−Gi−1(xk))
2

)

, (9)

and

f3 (k) = exp

(

−
1

ρVi−1

‖(x)− (xk)‖2

)

, (10)

where G represents the volumetric gradient. The terms ρIi ,

ρGi
and ρVi

are regularization constants for scale i, where

the spatial parameter ρVi
is user-specified, and ρIi , ρGi

are

defined as the median over local standard-deviations over a

sliding window:

ρIi = median(σIi(j, k)), (11)

ρGi
= median(σGi

(j, k)). (12)

4. EXPERIMENTAL RESULTS

To study the noise sensitivity of the proposed volumetric

scale space framework, which will be referred to as VQRSS,

a synthetic volumetric data set was contaminated by addi-

tive Gaussian noise with a standard deviation of σ = 40%
of the data dynamic range. For comparison purposes, a lin-

ear Gaussian volumetric scale space framework based on

that proposed in [1] (GS) and a nonlinear volumetric scale

space framework based on that proposed in [4] (PM) are also

performed.

The scale space representations of the test volumetric data

at three different scales constructed using the tested volumet-

ric scale space frameworks are shown in Fig. 3. The scales

shown for each tested framework were chosen such that they

have similarly scaled structures. For GS, the scale space rep-

resentations are shown for scales i = 2, 4, 10. For PM, the

scale space representations are shown for scales i = 4, 10, 20.

For VQRSS, the scale space representations are shown for

i = 2, 4, 8.

While all tested frameworks were able to produce scale

space representations with monotonically decreasing fine

scale structures as scale increased, the scale space represen-

tations produced using VQRSS visually exhibit significantly

better structural localization at all scales when compared to

GS and PM. This is most noticeable at the coarsest scale,

where the structural characteristics of the largest box is no-

ticeably degraded (i.e., giving a rounded appearance) for

both GS and PM, while VQRSS produces a representation

that preserves the structural characteristics of the largest box.

Furthermore, both GS and PM exhibit undesirable structure

merging at medium scale, which does not appear in VQRSS.

Finally, VQRSS is noticeably less sensitive than GS or PM to

the presence of noise across all scales.

In the second set of experiments, the volumetric scale

space frameworks were applied to real clinical MR volumet-

ric data to study its effectiveness at decomposing complex

real-world structures. The volumetric scale space represen-

tations constructed using the tested scale space frameworks
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Fig. 3. Scale space representations for a synthetic volumetric

data set contaminated by additive Gaussian noise with a stan-

dard deviation of σ = 40% of the dynamic range of the data.

The scale space representations produced using VQRSS vi-

sually exhibit significantly better structural localization at all

scales when compared to GS [1] and PM [4].

are shown in Fig. 4, with a particular slice from the volu-

metric scale space representations shown at three scales in

Fig. 5. As with the first set of experiments, the volumetric

scale space representations constructed using VQRSS pro-

vide noticeably superior structural localization at all scales.

In particular, compare the representations at the coarse and

fine scales in Fig. 5; whereas the GS and PM both introduce

significant amounts of blurring, the VQRSS clearly produces

piecewise-constant structures, with the fine details removed

but with little to no blurring.

5. CONCLUSIONS

A nonlinear volumetric scale space framework based on

quasi-random scale space theory was proposed for the pur-

pose of multi-scale volumetric data decomposition and rep-

resentation. Experiments using synthetic volumetric data and

real MR volumetric data were performed using the proposed

framework, and it was shown to provide improved structural

separation and localization capabilities when compared to

existing volumetric scale space frameworks. Future work

involves investigating the potential of extending the proposed
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Fig. 4. The volumetric scale space representations (at medium

scale) constructed for the clinical MR data. The volumetric

scale space representations constructed using VQRSS provide

noticeably superior structural localization at all scales.

volumetric scale scale framework for decomposing and an-

alyzing spatial-temporal data such as videos, which holds

another set of challenges related to the temporal aspects.
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