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Abstract— Cell segmentation and/or localization is the first
stage of a (semi)automatic tracking system. We addressed
the cell localization problem in our previous work where we
characterized a typical blood stem cell in a microscopic image
as an approximately circular object with dark interior and
bright boundary. We also addressed the modelling of adjacent
and dividing cells in our previous work as a deconvolution
method to model individual blood stem cell as well as adjacent
and dividing blood stem cells where an optimization algorithm
was combined with a template matching method to segment
cell regions and locate the cell centers. Our previous cell
deconvolution method is capable of modelling different cell
types with changes in the model parameters. However in cases
where either a complex parameterized shape is needed to model
a specific cell type, or in place of cell center localization, an exact
cell segmentation is needed, this method will not be effective.

In this paper we propose a method to achieve cell boundary
segmentation. Considering cell segmentation as an inverse
problem, we assume that cell centers are located in advance.
Then, the cell segmentation will be solved by finding cell regions
for optimal representation of cell centers while a template
matching method is effectively employed to localize cell centres.

I. INTRODUCTION

Hematopoietic Stem Cells (HSCs) form blood and immune

cells and are responsible for the constant renewal of blood.

To produce new blood cells, HSCs proliferate and differen-

tiate to different blood cell types continuously during their

lifetime. Hence they are of substantial interest in stem cell

therapy and cancer research. To classify HSCs to different

groups, they must be observed/tracked over time and their

key features including cell size, shape, and motility must be

extracted. Manual tracking of such data is an onerous task

and automated methods are in high demand.

Advanced techniques in digital image processing and

pattern recognition must be applied to a huge number of

bio-cellular images in digital cytometry systems to improve

our understanding of cellular and inter-cellular events and to

achieve significant progress and new discoveries in biological

and medical research.

Cell segmentation in microscopic images as an object

segmentation problem remains an attractive and challenging

task due to the often corrupted or blurred images, high noise,

the presence of clutter, and the difficulties of adapting and

extending available image segmentation approaches [1], [2],

[3], [4]. A variety of semi-automatic or automatic methods
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Fig. 1. Unprocessed microscopic cell image.

have been proposed for cell segmentation. Geusebroek et al

[5] introduced a method based on Nearest Neighbor Graphs

to segment the cell clusters. Meas-Yedid et al [6] proposed a

method to quantify the deformation of cells using snakes.

Kittler [7], Otsu [8] and Wu [9] have used thresholding

methods. The mean shift procedure method was proposed

by Comaniciu et al [2] for cell image segmentation for di-

agnostic pathology. Watershed has been used by Markiewicz

et al [10] for segmentation of bone marrow cells.

In this paper, the cell segmentation problem is formu-

lated as an inverse problem and a watershed deconvolution

algorithm is proposed to segment the individual FDPC1

Cells. The proposed method has been successfully applied

for modelling HSCs and identifying their locations in phase

contrast microscopic images.

To produce the data for this study, cell samples are first

extracted from mouse bone marrow and cultured in custom

arrays having up to forty wells. The cells are then imaged

through a 40X DIC using a digital camera (Sony XCD-

900). Images were sampled every three minutes over the

course of several days. A small fraction of a typical FDPC1

microscopic image is depicted in Fig. 1.

II. THE PROPOSED METHOD

In our previous work [11] we characterized a typical HSC

in a microscopic image as an approximately circular object

with a darker interior and a bright boundary. The proposed
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Fig. 2. Sample cell template.

cell model works well to localize a specific HSC phenotype,

however the performance of the algorithm drops if there

is significant illumination variations during phase contrast

imaging. Moreover, [11] is developed for a specific HSC

phenotype and performs poorly for the phenotypes that do

not maintain a uniform bright boundary and dark interior.

Thus it performs poorly where DIC microscopic imaging

that causes non-uniform contrast over the cell boundary is

employed for visualization. In [12] we introduced a more

general model which is robust against noise and can be

applied to the different HSC phenotypes.

Although our previous methods [11], [12] perform sat-

isfactory for locating non-dividing and dividing cells, they

are not capable of accurately modelling dividing or crowded

cells. As a result they might fail to precisely locate the

adjacent cells and in turn are prone to generate erroneous

results in such cases. In [13] we show that locating the

cell centres is essentially an inverse problem which can be

addressed in the form of a deconvolution approach. To solve

the problem, we proposed to find a set of cell shape pa-

rameters for optimal representation of cell segmented areas.

Thus the inverse problem was solved using an optimized

ellipse fitting method and considering each ellipse centroid

as a cell center. The proposed method effectively models

dividing and crowded cells, and it can potentially be used

for modelling different cell types by changing the model

parameters. However in the following cases this method will

not be effective:

• A complex parameterized shape is needed to model a

cell,

• In place of cell center localization an accurate segmen-

tation of cell boundary is required.

In this paper we propose a method to achieve cell boundary

segmentation. Considering cell segmentation as an inverse

problem, here again we address the solution in the form

of a deconvolution approach. The key differences between

this method and the method presented in [13] is that in the

previous approach in [13]

• We assumed that cell areas containing individual or

groups of cells are segmented in advance.

• Then, the cell center localization was solved by finding

a set of cell shape parameters for optimal representation

of cell segmented areas.

In contrast, in the proposed method herein

• We assume that cell centers are located in advance.

• Then, the cell segmentation will be solved by finding

cell regions for optimal representation of cell centers.

The proposed method consists of cell template generation,

template matching, cell center localization, and watershed

segmentation.

III. CELL TEMPLATE GENERATION AND TEMPLATE

MATCHING

In contrast with our proposed mathematical cell template

in [11] that was introduced based on attributes of a specific

HSC phenotype such as uniform bright boundary and dark

inside, here using user interactions a more general cell

template applicable to different cell types will be generated.

In this way user selects some cells in a few frames of

the video clip by clicking on the upper-left and lower-right

corners of a rectangular box that the cell is surrounded in.

The selected cells are averaged to generate the cell template:

Mtpl =
1

Nc

Nc
∑

n=1

Mn
rect (1)

where Mtpl and Mn
rect are 2-Dimensional matrices. Then the

cell template is convolved with unprocessed image frame Ik

to generate a correlation map

Cmap = Ik ∗ Mtpl (2)

Cell template and the correlation map obtained by applying

the cell template are depicted in Fig. 2 and 3(a) respectively.

The brighter pixels in the correlation map show the highly

correlated points which are more likely to be a cell centre.

To locate the cell centres and remove the unlikely cell centre,

we find the local maxima in the correlation map

LMaxmap = localmaxima(Cmap,Wd) (3)

where Wd is the window size to be locally searched for the

local maxima. The cell centre map as depicted in Fig. 3(b)

is finally generated by theresholding the local maxima map

CCmap = T (LMaxmap, τ) (4)

where T is thresholding function and τ is the threshold.

IV. EDGE DETECTION AND COARSE SEGMENTATION

An edge image as depicted in Fig. 4(a) will be obtained

applying Canny edge detector to the original image

G = Canny(Ik) (5)

Cell areas then are coarsely segmented using morphological

operators. This is accomplished by dilating a disk as mor-

phological mask over the edge map

IS = G⊕M ≡ {Gi+Mj : Gi ∈ G, Mj ∈ M} =
⋃

Mj∈M

G+Mj

(6)
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Fig. 3. (Left) Correlation map that is obtained by convolving the cell template depicted in Fig. 2 and original image in Fig. 1. (Right) Located cell centers
obtained by finding local maxima in (Left) and thresholding the local maxima map.

where G is the edge image, M is the mask, and

G+Mj
≡ {Gi + Mj : Gi ∈ G} (7)

is the translation of G along the Mj . Very small regions

that are not likely to be a cell region will be removed after

dilation. A coarse segmented image is depicted in Fig. 4(b).

V. WATERSHED DECONVOLUTION

As can be observed in Fig. 4(c), for the exact segmen-

tation of cell boundaries, cell centers obtained by template

matching are superimposed on a coarsely segmented binary

image as global minima. The watershed method, as a hybrid

region-boundary based segmentation approach, will then be

used to partition the coarse segmented image by filling up

the local minima, superimposed located cell centers, into

disjoint homogeneous regions associated to individual cells.

Therefore catchment basins represent cell regions, whereas

watershed lines demonstrate the cell boundaries.

Let IS = (D, g) be the coarsely segmented image, where

D is a digital grid and function g : D −→ N assigns

an integer value to each d ∈ D, and g(d) is gray level

of d corresponds to altitude in topographic context. Let

Mc = {mt| t ∈ [1, TMc
]} be the set of cell centers in

cell centre map CCmap consisting of TMc
centers which are

superimposed as local minima on coarse segmented image.

The set of points d ∈ D which are topographically closer to

a cell center mi than to any other cell center mj construct

the cell region C(mi) which is associated with the cell center

mi.

C(mi) =
{

d ∈ D| ∀j ∈ I\{i} : g(mi) + S(d,mi) <

g(mj) + S(d,mj)
}

(8)

where S(d,mt) is the topographical distance between d and

mt. The watershed of g is a set of points which do not belong

to any cell region and represents the cell boundaries W :

W (g) = D \
(

∪i∈[1,TMc ]C(mi)
)

(9)

The exact segmentation applying the watershed is depicted

in Fig. 4(d). Fig. 4(e) shows superimposed cell centers and

cell boundaries on the original image. As we can observe,

cell boundaries are perfectly segmented for individual and

dividing cells.

VI. RESULTS

In this section we show a visual representation of different

stages of the application of the proposed watershed deconvo-

lution method to a typical cell image for cell segmentation.

The proposed watershed deconvolution method is applied

to the original image sequence. A typical FDPC1 cell

image and a cell template generated by user interactions

are depicted in Figs. 1 and 2 respectively. The correlation

map and thresholded local maxima map representing cell

centre locations are depicted in Figs. 3(Left) and (Right)

respectively.

In the next step, cell boundaries are detected by applying

Canny edge detector to the original image as depicted in

Fig. 4(a). A coarse segmentation of cell regions is shown in

Fig. 4(b).

Superposition of cell centres on coarsely segmented image

is depicted in Fig. 4(c). Boundaries of labelled cell regions

(Fig. 4(d)) and located cell centres (Fig. 3(Right)) are super-

imposed on the original cell image as depicted in Fig 4(e).

As we can observe, not only the cell centres are precisely

located but cell boundaries with arbitrary different shapes are

accurately segmented.

The proposed method is applied to different FDPC1 image

sequences with arbitrary shapes and generated promising

results. As can be observed in Fig. 4, the proposed watershed

deconvolution method is able to identify both non-dividing

and the challenging dividing cells so that the cell centres and

boundaries are precisely located for each case.

VII. CONCLUSIONS AND DISCUSSIONS

Detection and boundary segmentation of adjacent and

dividing cells are very difficult and challenging tasks. In our
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(a) (b) (c)

(d) (e)

Fig. 4. (a) Edge detection applying Canny edge detector to the original image in Fig. 1. (b) Dilating the edge image in (a) by a disk shape morphological
operator. (c) Superimposing the cell centers in Fig. 3(b) on the dilated image in (b) as global minima. (d) Segmented cell regions applying the watershed
segmentation to (c). (e) Segmented cell boundaries in (d) and cell centers in Fig. 3(b) are superimposed on the original image in Fig. 1.

previous work we explained cell localization in the form of

an inverse problem. In this paper cell boundary segmentation

was addressed as an inverse problem represented in the form

of a deconvolution problem. Our proposed method solves the

segmentation problem by optimally constructing cell regions

associated with cell centres using an optimized watershed

method. This is a generic method, capable of segmenting

different cell types having arbitrary shapes.
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