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ABSTRACT 
This paper investigates the statistical characterizationof mul- 
tiscale wavelet coefficients corresponding to random signals 
and images. Virtually all approaches to wavelet shrinkage 
model the wavelet coefficients as independent; we challenge 
that assumption and demonstrate several cases where sub- 
stantial correlations may be present in the wavelet domain. 
In particular, the correlation between scales can be surpris- 
ingly substantial, even for pixels separated by several scales. 
Our goal, initiated in this paper, is to develop an efficient 
random field model describing these statistical correlations, 
and demonstrate its effectiveness in the context of Bayesian 
wavelet shrinkage for signal and image denoising. 

1. INTRODUCTION 

This paper investigates the correlation structure of wavelet 
coefficients corresponding to various random fields. Specif- 
ically, we are interested in studying Bayesian methods of 
wavelet shrinkage for the purposes of image denoising. 

There has been a tremendous amount of activity and in- 
terest in the applications of wavelet analyses [ 1, 21 to sig- 
nals, in particular methods of wavelet thresholding and 
shrinkage [3, 41 for the removal of additive noise from cor- 
rupted signals and images. The fundamental motivation be- 
hind these approaches is that the statistics of many real- 
world signals, when wavelet transformed, are substantially 
simplified. However, virtually all Bayesian shrinkage meth- 
ods model the wavelet coefficients as independent Gaussian 
random variables, an assumption which we challenge. 

Modeling wavelet coefficients as independent is sensi- 
bly motivated by the fact that the wavelet transform is an ef- 
fective whitener for a wide variety of random processes [4]. 
However the wavelet transform is not a perfect whitener - 
that is, the wavelet coefficients normally do possess some 
degree of correlation, both within and across scales. This 
fact is not unknown in the literature, as established by Flan- 
&in [5] for fractional Brownian motion, by recent works 
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using hidden Markov models [2] and steerable pyramid cor- 
relation models [6] that similarly-sized coefficients tend to 
cascade along the branches of the wavelet tree. However 
by and large such wavelet coefficient correlations have been 
ignored. 

This paper concentrates on studying the exact within- 
scale and across-scale statistical dependencies of the wavelet 
coefficients for a variety of wavelets and random fields, with 
examples provided for both 1-D and 2-D signals. The re- 
sults show the whitening effect of the wavelet transform to 
be quite clear - even for highly correlated spatial processes 
the coefficients within a scale can be nearly unrelated, how- 
ever the correlation between scales is surprisingly substan- 
tial, even for pixels separated by several scales. Some of 
the most interesting results with additional details are high- 
lighted. 

2. DEVELOPMENT 

The wavelet transform Wf of a signal f is a process in 
which low and high frequency components of f are repre- 
sented by separate sets of coefficients, namely the approxi- 
mation { a ~ )  and the detail {dj), 1 5 j 5 J .  If, as usual, 
we define the linear operators H and G as high- and low- 
pass filters respectively, then clearly the coefficient vectors 
may be recursively computed in scale as 

Having defined the sets of {aj) and {dj), we can recur- 
sively calculate the within-scale and across-scale 
covariances from the covariance Caj,aj at the finest scale 
j = 1 as follows: 

(3) 

etc. 
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Vannucci and Corradi [7] proposed a link between the 
2-D wavelet transform of C,,,,, and the overall covariance 
matrix of I-D wavelet coefficients, Cwf . Having this well- 
defined variance-covariance structure of the wavelet coeffi- 
cients, one can assess the extent of correlntioii between the 
coefficients at the same scale or different resolutions 

An cxponential correlation structure is common for real 
imagcs and remotely-sensed ficlds, so we will assume that 
the second-order statistics of the finest-scale signal f are 
given by f N (0, E,), that is, f is zero mean and has co- 
variance structure 

(4) 

with parameter T controlling the correlation length between 
two pixels Our chosen distribution for now has constant 
corrclation length and is spatially stationary, this assump- 
tion is for convenience only and is not fundamental to our 
analysis. 

With the covariance structure Cf determined, we trans- 
form it  into the wavelet domain by computing the wavelet 
kernel W ,  containing all translated and dilated versions of 
the selected wavelet basis functions The covariance struc- 
ture of the wavelet-decomposed signal is then 

Cw, = W C f W T .  (5) 

3. RESULTS-1D 

After generating the I-D wavelet transform kernel W we 
find C w f  as in (5). For convenience in understanding the 
results, the resulting variances are normalized, so that the 
inter-coefficient relationships are measured as correlation 
coefficients -1 5 p 5 1. For the purpose of this paper we 
show the results o f  simulation with the piecewise linear fam- 
ily of Haar basis functions. Our simulations with other bases 
functions, such as the Daubechies wavelets which are more 
regular, exhibit a stronger decorrelation effect within scale, 
nevertheless the qualitative structure is similar, and the 
across-scale correlations are 110 le 

The resulting correlation is a block matrix, with the block 
diagonals showing the within-scale autocorrelations and off- 
diagonal blocks containing the cross-correlations between 
{ a ,J )  and { d j  ) , 1 5 j 5 J ,  in different resolutions. 

Figure 1 summarizes the magnitudes of the correlation 
coefficients between a typical detail coefficient and its spa- 
tially local neighbors, both within the same scale and across 
scales. We see most clearly that the within-scale correla- 
tions tends to decay very quickly, consistent with the under- 
standing that the wavelet transform is whitening the original 
signal which supports the notion of fast, the dependencies 
across different resolutions surprisingly remain strong, even 
for coefficients located several scales away from each other. 
This result confirms that although the wavelet coefficients 
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Fig. 1. The extent of correlation between a typical coeffi- 
cient of 1-D WT at scale s = j and its adjacent coefficients 
within the same scale and across several resolutions towards 
both parents and children. 

are expected to be uncorrelated, there exist cases for which 
the correlation can be quite significant. 

4. RESULTS-2D 

We extended our joint-statistical study of the 1-D wavelet 
coefficients to 2-D wavelet transform. Since the size of the 
covariance matrix for even a small n x n image increases 
dramatically to n2 x n2, the empirical results were limited 
to considering the correlation structure of 32 x 32 images. 

Figure 3 illustrates the correlation structure of 2-D 
wavelet coefficients of a 3-level wavelet decomposition. The 
main diagonal blocks show the autocorrelation of coeffi- 
cients located at the same scale and at the horizontal, verti- 
cal and diagonal orientations respectively. Due to the 
column-wise 2-D to 1-D data stacking, large magnitude au- 
tocorrelations of the vertical coefficients (labeled as v) tend 
to concentrate near the main diagonal, whereas those of the 
horizontal coefficients (labeled as h) are distributed on the 
diagonals n pixels apart. 

Figure 2 presents the two-dimensional parallel of Fig- 
ure 1, showing the correlation pattern for a typical horizon- 
tal detail coefficient. It is significant to notice that regardless 
of the orientation, the large magnitude correlations at any 
sub-band are basically arranged in lines following the ori- 
entation of the sub-band. The strong horizontal correlation 
of the horizontally aligned coefficients is apparent, even for 
pairs of coefficients across different resolutions, as are the 
inter-scale correlations. By symmetry we can expect sim- 
ilar correlation structures for the vertical coefficients, but 
clearly in the vertical direction. 
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Fig. 2. Summary of correlation in 2-D wavelet domain be- 
tween a horizontal coefficient and its spatially local neigh- 
bors at the same scale, but different orientations and across 
scales but the same orientation. 

5. WAVELET-BASED BAYESIAN LEAST SQUARE 
THRESHOLDING 

Our primary research goal is the development of a 
multiscale-based Bayesian denoising algorithm, which ex- 
plicitly takes into account some prior model of the true cor- 
relation structure exhibited by the wavelet coefficients. 

As is clear from Figures 1 and 2, there is a clear local- 
ity to the correlation structure and the covariance matrix is 
highly structured. In order to consider these statistical de- 
pendencies we implement a method that estimates the orig- 
inal coefficients by explicit use of wavelet covariance struc- 
ture. Due to the linearity of the wavelet transform, Bayesian 
Least Square (BLS) method which explicitly takes into ac- 
count the wavelet coefficients covariance structure is con- 
sidered and is given in (6). 

The goal is to estimate f - N ( 0 ,  Cj) from noisy observa- 
tion g,  where additive noise v - N ( 0 ,  R)  is uncorrelated 
with original data f .  

We only need to re-consider (6) in the wavelet domain. 
It is clear that wavelet transform is a linear operation, hence, 
BLS still applies in that domain. To transform the covari- 
ance structure we only need to substitute ( 5 )  into (6). We 
would have the orthogonal wavelet transform of BLS 
method as 

We considered an ensemble of parameterized Gaussian 
Markov Random Fields (GMRF) with predefined covari- 
ance structure. In order to perform appropriate compar- 
isons and also to emphasize on importance of considering 

Table 1. MSE measure of noisy observation g and denoised 
images obtained by BLS method and different covariance 
structures, compared with spatial domain BLS and wavelet- 
based Wiener thresholding 

wavelet coefficients correlation - within-scale and across- 
scale, three different structures of WCfWT were consid- 
ered in BLS estimate: 

1. WT-BLS 1 : Decorrelated coefficients 

First, only diagonal elements of W C j  WT were used, 
while all other elements were replaced with zero. In 
this case, indeed, wavelet transform was assumed as 
a whitening process, i.e., all coefficients were consid- 
ered as independent. 

2. WT-BLS2: Within-scale correlated coefficients 

Next, a partial correlation was taken into estimation 
process. In fact, the coefficients at every scale and 
for each orientation were considered to be correlated. 
However, across-scale correlation was ignored, i.e., 
the parent-child relation was disregarded. 

3. WT-BLS3: Within-scale and across-scale correlated 
coefficients 

Finally, the complete covariance structure as shown 
in Figure 3 was used by our wavelet-based BLS algo- 
rithm. 

The wavelet-based BLS algorithm was implemented 
with each of these three approaches. As expected, the third 
method, i.e., full covariance structure outperforms other two 
alternatives. Table 1 illustrates the MSE of denoised im- 
age for each case obtained for four different GMRFs. The 
equivalence between wavelet-based BLS3 and that of spatial- 
based BLS3 (SBLS) indicates the optimality of considering 
the complete wavelet coefficients correlation structure. It 
is also clear that our BLS3 outperforms the wavelet-based 
Wiener thresholding [ 91. 

As clear from Figure 4, WT-BLS3 which uses full co- 
variance matrix outperforms other methods in psycho-visual 
appearance of denoised image. Since our BLS algorithm 
modifies all frequency components of image, the result looks 
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Fig. 3. Correlation structure of an exponentially correlated 
image decomposed into the 3-level wavelet domain. The 
main diagonal blocks show autocorrelation of coefficients 
located at the same scale and at the horizontal, vertical and 
diagonal orientations respectively, whereas the off diagonal 
blocks illustrate cross-correlations within or across scales. 

blurred. This smoothness can be reduced by leaving the ap- 
proximate coefficients unchanged, as most of wavelet-based 
denoising algorithms do. 

6. RESEARCH DIRECTIONS 

According to our achievements of statistical dependencies 
between the wavelet coefficients we propose to model the 
wavelet coefficients not as independent, but as governed by 
a Markov random field. There are several directions and 
challenges associated with this kind of undertaking: 

By coupling the wavelet coefficients, the shrinkage 
problem is complicated considerably, in that the pro- 
cessing of the wavelet coefficients now depends on 
all others, in precisely the same way that inverting a 
banded matrix is much harder than a diagonal one. 

0 There exists past literature on the use of wavelets for 
the preconditioning of linear systems problems [8]. 
Such preconditioning is mathematically very similar 
to the wavelet change of basis in wavelet shrinkage, 
and may have insights to offer. 

Since correlations are present both within and across 
scales, a random field model for the wavelet coeffi- 
cients with itself needs to be hierarchical. The de- 
velopment of Markov random field methods on hier- 
archies has some past literature, but is still relatively 
new. 

Fig. 4. Denoised image by BLS method with variety of 
covariance structures compared with wavelet-based Wiener 
filtering. Fifth-ordered GMRF (tree texture). 
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