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Frozen-State Hierarchical Annealing
Wesley R. Campaigne and Paul W. Fieguth,Senior Member, IEEE

Abstract—There is signi�cant interest in the synthesis of
discrete-state random �elds, particularly those possessing struc-
ture over a wide range of scales. However, given a model on
some �nest, pixellated scale, it is computationally very dif�cult
to synthesize both large and small-scale structures, motivating
research into hierarchical methods.

In this paper we propose a frozen-state approach to hierar-
chical modeling, in which simulated annealing is performed on
each scale, constrained by the state estimates at the parent scale.
The approach leads to signi�cant advantages in both modelling
�exibility and computational complexity. In particular, a complex
structure can be realized with very simple, local, scale-dependent
models, and by constraining the domain to be annealed at
�ner scales to only the uncertain portions of coarser scales,
the approach leads to huge improvements in computational
complexity. Results are shown for a synthesis problem in porous
media.

Index Terms—Simulated annealing, random sampling, image
synthesis, hierarchical algorithms

I. I NTRODUCTION

T HE synthesis of large, binary random �elds has become
an area of substantial interest, particularly so in the study

of porous media [1]–[3], materials characterized by complex,
multiscale, binary structures, for which two examples are
shown in Figure 1. Although these images may appear simple,
due to their binary nature, porous media and other related
natural images (such as label �elds in remote sensing) may
in fact be near-fractal in nature, meaning that their challenge
lies in the structures occupying a huge range of scales. Thus
rather than continuous-state textured images (Brodatz etc.),
which are more common in the literature, the focus of this
paper is explicitly on the large-scale discrete-state case.

The essential challenge is how to construct a model for a
given �eld in order to arti�cially synthesize further random
samples, for two reasons:

1) Although it would be preferable to studyphysical
samples, there is considerable time and expense as-
sociated with sample preparation and high resolution
imaging. Furthermore aspects of sample preparation
(cutting, polishing, exposure to air) may alter the original
sample. Worst of all, the ultimate goal is to study
three dimensional samples, for which thousands of re-
peated cutting/polishing passes is completely impracti-
cal, and three-dimensional imaging by MRI or tomo-
graphic methods so far yields samples at only very low
resolution.

2) In order to analyze the macroscopic, aggregate behaviour
of a material, we need multiple,large samples to study.
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(a) Sinteredglassbeads (b) Carbonaterock

Fig. 1. Two examples of large8192 � 8192 microscopic images having
complex, multiscale structure.

Algorithm 1 Basic annealing
k ( 0
Randomly initializex0

while not convergeddo
xk+1 ( Metropolis Sampler(xk ; E; Tk )
k ( k + 1

end while
q = k

A great number of approaches and methods have been pro-
posed [2], [4], [5], however all of these methods suffer from
either limits on modeling complexity, such that subtle features
of the porous medium cannot be represented and synthesized
by the selected model, or a limit on computational complexity,
such that computational complexity limits the size or accuracy
of the produced sample. In this paper we report on an approach
which offers tremendous improvements in both modeling
and computational complexity, allowing rapid synthesis of
huge multiscale two-dimensional samples, and offering the
possibility of large-scale three-dimensional synthesis.

The standard approach to image sampling is based on
simulated annealing [6], which is summarized in Algorithm 1,
in which we repeatedly visit the pixels of a random �eld, using
the Metropolis or Gibbs [7] sampler to update each pixel on the
basis of an energy functionE and an annealing temperature
Tk .

In most cases, a given pixel in a random �eld most strongly
interacts with its local neighbours, and therefore it is excep-
tionally dif�cult (i.e., slow) to synthesize structures large in
size relative to the local neighbourhood.

In response to this observation, we are motivated to model
a binary �eld in some sort of hierarchical representation, for
reasons of computational ef�ciency, to be able to synthesize
large structures in an easier fashion at a coarser scale. There
are two fundamental ways in which to construct a hierarchy:
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1) Top-down, in which the hierarchy beings at a coarse
scale, with the coarse-scale elements repeatedly re�ned
at �ner scales.

2) Bottom-up, in which the hierarchy begins at the �nest,
pixellated scale, and where some sort of grouping or
aggregation leads to coarser representations.

For discrete-state Markov Chain Monte Carlo (MCMC) prob-
lems [8], the bottom-up approach is considerably more com-
mon (such as Swendsen-Wang [9] and region-grouping [10]
methods), in contrast to continuous-state image process-
ing problems, in which top-down approaches dominate
(wavelets [11]–[14], Laplacian pyramids [15] etc.). Thereare
two reasons for this distinction:

1) In the continuous-state case, a coarse scale can represent
a smooth, low-resolution image, which is then nudged
and re�ned towards �ner scales. However a discrete
hierarchy does not allow for a smoothly-varying rep-
resentation or for small re�nements in state value from
scale to scale.

2) In a top-down representation, a coarse-scale state ele-
ment represents some square subset of the �nest-scale
domain. Since the �nest scale will normally not be made
up of piecewise-constant squares, the imposition of a
regular grid from a top-down structure is not a natural
�t, as opposed to the adaptive, irregular regions produced
by bottom-up approaches.

Despite the above limitations and liabilities, this paper pro-
poses a top-down hierarchical approach for the modeling
and synthesis of binary random �elds. Indeed, our proposed
approach is able to synthesize huge8192 � 8192 images
possessing multi-scale structures on regular computers ina
few hours of computation time.

We need to be clear that existing methods such as wavelet
image synthesis, random �elds synthesis using Fast Fourier
transforms, and fast texture rendering methods from the com-
puter graphics literature are all effective in their �elds,ef�-
ciently producing rendered images satisfying aesthetic require-
ments, but which cannot however be argued to quantitatively
satisfy a scienti�c discrete-state model. In scienti�c image
synthesis we require a veri�able model, therefore heuristic
image synthesis and enhancement methods are inappropriate.

There are two key contributions of this paper, one for each
of modeling and computational complexity. First, a top-down
hierarchy gives us a regular grid on a sequence of scales;
the random �eld on each scale can be modeled by a scale-
dependent model. Since even large-scale phenomena are local
on a suf�ciently coarse scale, it is possible to use relatively
simple, local models on all scales to represent complex
behaviour. Next, we propose a “frozen-state” approach, by
which con�dent portions of coarser scales are frozen in place
and cannot be modi�ed at �ner scales. This has advantages
both in modeling, preventing �ner-scale models from undoing
or eroding structures put into place at coarser scales, and also
a great advantage computationally, in that at any given scale
only those “unfrozen” state elements need to be simulated.

The frozen-state hierarchy, introduced above, will be dis-
cussed in Section II. The simple, scale-dependent local model

Algorithm 2 Basic Top-Down Annealing

Randomly initializexM
0

s ( M
while s � M do

Iteratively anneal xs
1; xs

2; : : : ; xs
q at temperatures

T s
1 ; T s

2 ; : : :
if s > 1 then

xs� 1
0 ( � s� 1(xs

q)
s ( s � 1

end if
end while

will be discussed in Section III. Modeling and computational
considerations will be discussed in Sections V and VI, respec-
tively. Finally a set of results will be presented in SectionVII.

II. FROZEN-STATE TERNARY HIERARCHIES

For reasons of multi-scale modeling and computational
ef�ciency, we wish to work on a discrete-state, top-down
hierarchy. That is, if

x i;j 2 f 0; 1g; (i; j ) 2 L (1)

is some given, two-dimensional binary random �eld on lattice
L , then we construct

xs
i;j ; (i; j ) 2 L s such thatL 1 � L; x 1 � x (2)

that is, where scales = 1 is equivalent to the �nest scale.
At each scale we will suppose the existence of some energy
function E s, implying a Gibbs prior [7] onxs:

p (xs) =
1
Z

e� E s (x s ) (3)

If we de�ne an interpolation operator

xs  � � s �
xs+1 �

; (4)

then a top-down simulation proceeds as shown in Algorithm 2,
whereby we begin with a coarse grid, having relatively few
elements and proceed, scale by scale, to �ner grids. Related
approaches have been proposed in the past [16]–[18] but suffer
from two particular problems:

1) From a computational perspective, the algorithm ends
with some number of MCMC passes onx0, the �nest
scale. Because the number of elements inx0 is the
same as inx, the computational complexity of the
entire hierarchical algorithm is likely to be dominated
by the �nest scale, and the degree of improvement over
a regular, non-hierarchical method will depend on the
number of iterations needed for convergence.

2) Secondly, from a modeling perspective, the more trou-
bling question is how to prevent the MCMC model on
some scale from undoing the structures created by a
model on some coarser scale. Such a structure undoing
can occur for at least two reasons:

� Annealing Schedule: if the MCMC annealing
schedule begins at too warm a temperature, then
the sampling at some scales can, in one pass,
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Algorithm 3 Ternary, Frozen-State Top-Down Annealing

Initialize xM +1
0 ( grey

q ( 0
s ( M
while s > 0 do

xs
0 ( � s(xs+1

q )
Gs ( grey subset ofxs

0
xs

1(Gs) ( random initialization
Iteratively annealxs

2(Gs); xs
3(Gs); : : : ; xs

q(Gs) at temper-
aturesT s

1 ; T s
2 ; : : :

s ( s � 1
end while

randomize the entire domain and undo all coarser-
scale results. On the other hand, if the MCMC
annealing schedule begins at too cold a temperature,
the model at the current scale is prevented from
making any changes, leading to mis-convergence.

� Model Locality: the purpose of the modelE s at
each scales is to model those phenomenalocal
to that scale. Thus the model at one scale may be
quite different from that at another. Therefore if the
model at scales is permitted to fully converge, the
converged result is likely to be quite different from
the converged result at another scale. Therefore not
only the annealing schedule, but the also permitted
number of iterations, must be tuned at each scale.

On the basis of the above criticisms, we introduce a novel
frozen, ternary-state hierarchy, which highly effectively deals
with both of the computational and modeling issues above. As
opposed to the binary state of (1), we introduce an intermediate
“grey” value

xs
i;j 2 f 0; g;1g; (i; j ) 2 L s: (5)

The scale-to-scale interpolation operator� is unchanged from
before, however the top-down simulation, shown in Algo-
rithm 3, differs crucially from the previous approach in Algo-
rithm 2, in thatonly those pixels whose parents at scales+ 1
are greymay be changed or updated by the MCMC sampling
at scales, whereas children of parent elements which are “0”
or “1” remain unchanged (frozen). Proposing such a ternary
model has a huge impact on computational complexity and
modeling:

� Computationally,now only a (possibly small) fraction of
state elements at a given scale are involved in the MCMC
sampling process. In many cases, the fraction of pixels
which need sampling at the �nest scale is a tiny fraction
of the total.

� For modeling,because coarser “white” and “black” struc-
tures are forcibly preserved, therefore there is no need
to tune the annealing schedule or number of iterations,
greatly simplifying the annealing step at each scale,
relative to previous approaches.

An illustration of the ternary hierarchy is shown in Figure 2.
A given binary, �nest-scale image is repeatedly sub-sampled
to construct the hierarchy. The subsampling needs to be the
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Fig. 2. The principle of ternary decomposition: a given binary image can
be represented at coarser scales, such that each element on a coarser scale is
selected on the basis of whether its descendants areall black, all white, or
mixed.

inverse of the interpolation operator, preserving black and
white regions only where the entire subset is black or white,
respectively:

xs+1
i;j =

8
<

:

0 If all children of xs+1
i;j at scales are “0”

1 If all children of xs+1
i;j at scales are “1”

g Otherwise
(6)

A more comprehensive illustration is shown in Figure 3,
which shows the coarsi�cation of two images, one containing
relatively large spheres, and the other small spheres. We imme-
diately observe some striking behaviours with corresponding
observations:

1) The representation becomes increasingly “grey” at
coarser scales, as the size of the coarse scale pixels
begins to exceed the size of �nest-scale structures.
) Therefore the model is easily initialized as all-grey

at some suf�ciently coarse scale.
2) The appearance of white seed pixels, forming the centres

of �nest scale spheres, takes place on a scale dependant
on the sphere size. Thus the large spheres appear on
scales 5 to 6, whereas small spheres appear on scale 4.
) The model is inherently scale sensitive, and is

naturally able to model scale-dependent structures,
as evidenced by the very different statistical patterns
in the two rows in Figure 3.

3) At �ne scales, the grey pixels lie only on the interface
between white and black.
) In most cases the interface between white and black

will be only a tiny fraction of the total number of
pixels. Therefore only a small fraction of the total
number of pixels need to be simulated at the �ne
scales, precisely those scales having large numbers
of pixels.

With the ternary hierarchy de�ned, in principle, the follow-
ing sections describe the proposed histogram model, followed
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Fig. 3. Two illustrations of downsampling a given binary imageper the ternary representation of Fig. 2. At coarser scales the downsampled image will
become increasingly “grey”, as the size of individual coarsepixels exceed the characteristic lengths of structures at the �nest scale.

by results outlining both the modeling and computational
advantages of this method.

III. H ISTOGRAM MODEL

We have established the principle of a ternary hierarchy,
such that at any given scale white and black structures are
frozen or �xed in place, with only a grey subset remaining to
be determined. These grey pixels may become black or white,
and therefore frozen at �ner scales, or may remain grey.

What is required is a statistical model which is compatible
with describing the behaviour of an subset of grey pixels in
a hierarchy. The key insight is that the hierarchical structure
allows a great simpli�cation to the model: because coarser
scales have modeled and created any structures which were
apparent at those larger scales, at some intermediate scale
the statistical model is responsible only forrelatively local
phenomena. That is,non-local phenomena, which are large
relative to the current scale, will have been modeled in alocal
way on some coarser scale.

Therefore rather than non-local models, based on
chordlengths or correlations [2], [4], we are free to choosea
comparatively simple model dependent on only local patterns.
Ignoring Ising/Potts models, which are unable to represent
even local patterns or textures, the simplest possible approach,
known as a local binary pattern [19] (a generalization of co-
occurrence matrices [20]), is essentially to preserve the joint
histogram of a given pixel and its neighbours.

That is, is we de�ne the neighbourhood ofxs
i;j to be

N s
i;j � L s (7)

then our model needs to store the conditional probabilities

Pr(xs
i;j jxs

k;l ; 8(k; l ) 2 N s
i;j ) (8)

The model we have adopted is a modi�cation of the local
histogram model discussed in [16], [18]. Based on our tests,it
is adequate to de�ne the neighbourhood to contain the nearest

eight pixels, from which it follows that the model at each scale
s is represented by39 = 19683 probabilities, which can be
plotted as a histogram. An exception takes place at the �nest
scale, which is forced to be binary, in which case29 = 512
probabilities are stored.

An illustration of such scale-dependent histograms can be
seen in Figure 4. The horizontal axis is somewhat arbitrary
as it contains, in no signi�cant order, the 19683 possible per-
mutations of nine ternary pixels. After a brief study, however,
a very clear structure emerges from the seemingly irregular
histograms. At the �nest scale (top), the vast majority of nine
pixels are either all black (left) or all white (right). At the
fourth scale, most of the domain is still all-black, however
signi�cant probabilities can be seen associated with individual
white (seed) pixels. As we proceed to coarser scales the white
pixels disappear entirely, the likelihood of all-black regions
decreases, and grey becomes more prevalent.

Let �H s represent the learned histogram model at scales,
andH (x) an operator returning the histogram ofx. We wish
to develop an energy function, for use in annealing, which
penalizes the difference or inconsistency between a simulated
�eld xs and its target histogram:

E s(xs) = kH (xs) � �H sk =
X

i

(H i (xs) � �H s
i )2

p
�H i + �

(9)

where the denominator serves to allow for greater �exibility
in large histogram entries, and� is a small term to prevent
division by zero for entries of zero in�H .

A slight modi�cation to (9) is needed, as illustrated in
Figure 5. Speci�cally, those portions ofxs that are frozen,
structures created at scales coarser thans, should not be
involved in the considerations at scales, and therefore those
portions of the �eld should not be included in the calculated
histogram.

Therefore, if

Gs+1 = f i jxs+1
i = gg (10)
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Fig. 4. The histogram model data for selected scales from the small spheres
training image in Figure 3.

represents the grey elements of the parent �eldxs+1 , then

Gs
� = � s(Gs+1 ) (11)

represents those elements ofxs which are un-frozen, which
are eligible for annealing. However because a given pixel
contributes to the histogram entries of its eight neighbours,
we need to consider the elements ofxs in Ĝs

� , those elements
of Gs

� plus their neighbours, as illustrated in the right panel of
Figure 5. Therefore both the target and observed histograms
are computed over̂Gs

� , and (9) is modi�ed as

E s(xs) =


 H

�
xs(Ĝs

� )
�

� �H s


 (12)

At this point we have an energy functionE s(xs) as a function
of scales, based on the scale-dependent histogram learned
from training images, as in Figure 3.

IV. M ETHODOLOGY

The overall use of the proposed method, in practice, is to
build a model from some training image,y, by iteratively
coarsening it according to (6) until we reach a scale whereys

is entirely unde�ned (“grey”), since beyond this scale there
is nothing further to model. We de�ne this coarsest scale as
M + 1 . For each scale,s 2 1; 2; : : : ; M , we need to acquire
and store a target histogram for that scale,�H s, using

�H s = H
�

ys(Ĝs
� )

�
: (13)

(a) Mid-ScaleImagexs (b) CountedPixels Ĝs
�

Fig. 5. In annealing down the hierarchy of scales, at a given scale only
the grey pixels in (a) may be changed; all white or black pixelsare frozen.
Therefore only those pixels that lie inside the histogram neighbourhood of a
grey pixel, i.e., the pixels highlighted in (b), enter into the energy function at
that scale.

The histogram setf �H 1; �H 2; : : : ; �H M g forms the model input
into the random sampler. Using these target histograms in
conjunction with (12) as the energy function, we can then run
Algorithm 3 to produce random samples through simulated
annealing.

The formal convergence properties of the histogram energy
function are unknown. While it has been proven that a
logarithmic cooling schedule would, in principle, guarantee
a global minimum [7], such a schedule is neither practical nor
strictly desired. For all of the results presented in this paper,
an exponential cooling schedule was used with decay factors
ranging between 0.99975 at the coarsest scale and 0.992 at
the �nest. At each scale, the annealing was started at a super-
critical temperature and continued until full convergence,
which we de�ne very conservatively as 25 iterations with no
state changes.

V. A DVANTAGES IN MODELING

Because large-scale and small-scale structures emerge at dif-
ferent scales, and with adifferentmodel learned at each scale,
we do not require a single model to capture all phenomena
simultaneously.

Indeed, because the ternary hierarchy freezes large-scale
structures determined by coarser scales, the model at a given
scale is responsibleonly for the new structures at the given
scale, those previously unresolved at coarser scales. Therefore
the model at a scale is in no way responsible to preserve large-
scale structures, as they are frozen, nor does it even need to
be consistent with the coarser models. This enables the use
of arbitrarily high starting temperatures are each scale. The
model at each scale is iterated to full convergence. Because
each scale is fully converged, the temperature schedule in no
way needs to be �nely tuned.

Furthermore, in the ternary representation it is only the
descendants of grey pixels from the parent scale which need
modeling, as all white and black regions have been committed
and frozen. As suggested by the images in Figure 3, we fre-
quently observe large regions of grey having a simple structure
(coarse scales),or small grey regions with complex structure,
but only rarely do we have complex, non-local behaviour for
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Fig. 6. Ternary hierarchical sampling results, with models learned from the large and small spheres images of Figure 3. The rather complex image of mixed
spheres in the bottom row has a trivial model, nothing more thanthe average of the models from the top two rows. The reader can observe large spheres
being seeded in scale 5 in the top and bottom rows, and the smallspheres seeded in scale 4 in the bottom two rows. Such a heterogeneous, hybrid model is
a huge advantage of the hierarchical representation.

grey. Therefore at every scale it is a comparatively simple,
local model that is needed.

Such model locality in hierarchical representations has been
observed in the past. In particular, a past approach to hierar-
chical sampling [17] asserted a chordlength model [2], [4],in
which the model tests the distribution of the lengths of black
and white chords. The chordlength model was truncated to test
only chords up to a length ofn pixels, and the reconstructed
samples were found to be very nearly independent ofn, for
all n > 10 pixels. In other words, only the local portions of
the model were signi�cant and instrumental in sampling.

We maintain, therefore, that there is a highly complementary
relationship between hierarchical models and simple, local
energy functions. As opposed to a single-scale model, which
needs toexplicitly account for structure size by encoding the
size of an object into the model, in a hierarchical model the
size of an object is representedimplicitly on the basis of the
scale at which it appears.

Although such an implicit representation may not seem
impressive, imagine constructing a statistical model allowing
a mixture of large and small spheres. A single-scale model
becomes rather complex, possibly involving hidden layers or
additional labeling, whereas hierarchically the sum of large
and small sphere models leads to the creation of seed pixels
at both large and small scales, thus leading to the interesting,
heterogeneous result shown in Figure 6. Such a hybrid model
can be formed, in general, as long as the two structures being

mixed are scale-resolved, since their behaviour is actually
asserted by separate models on separated scales.

VI. A DVANTAGES IN COMPUTATION

There are very compelling computational bene�ts, in many
ways paralleling the preceding discussion on modeling. The
frozen hierarchy speci�cally leads to three key computational
bene�ts:

1) The method does not need carefully tuned annealing
schedules;

2) At each scale, it is onlylocal structures which need to
be synthesized;

3) The number of pixels to sample at each scale is modest.
First, in terms of annealing schedules, because the large-scale
structures from coarser scales are frozen in place, therefore the
current scale isunable to destroy those structures, therefore
there is no problem in starting with a hot annealing tempera-
ture. The implementation of this method does not, therefore,
rely on many repeated runs to tune annealing parameters.

Second, the relatively local structures being synthesizedat a
scale mean that state information does not need to propagate
long distances. Because an iterative local model essentially
implies information being communicated via a random walk,
the number of iterations required is roughly quadratic in the
scale of structure to be simulated [21], so simulating only
local structures leads to a huge reduction in iteration count,
and therefore relatively quick annealing schedules can be used,
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Fig. 7. The energy behaviour for the “large spheres” result of Fig. 6. The
starting values of energy and temperature at each scale have been normalized.
A convergence criterion (25 iterations with no changes) is used to determine
when to stop annealing at each scale. As scale proceeds from coarse to �ne,
the computational cost of each annealing iteration across the image increases
while the importance an individual pixel has on the overall result decreases.
Thus, to balance computation time where it is most needed, the cooling rate
is increased for �ner scales.

as can be seen in the top panel of Fig. 7. In particular, Fig. 7
emphasizes the rather small number of iterations required at
�ne scales, a bene�t following directly from the hierarchical
nature of our modeling approach.

Next, in the ternary representation it is only the descendants
of grey pixels from the parent scale which need sampling, as
all white and black regions have been committed and frozen.
As is implied by the images in Figs. 3 and 6, the grey pixels
normally represent a declining fraction of the random �eld as
we head to �ner scales. Indeed, as can be seen in Fig. 8, for
all three “spheres” test cases, the fraction of pixels to sample
reduces to a tiny fraction of 1% to 5% at the �nest scale.
Therefore at the �nest scale we may simulate only atiny
fraction of the pixels, a major reduction in complexity from
non-hierarchical and other non-frozen standard hierarchical
approaches, which still do some simulation of the entire �nest
scale. The bottom panel of Fig. 7 shows the modest fraction of
computational complexity spent at the �nest scale, despitethe
fact that the �nest scale possesses more pixels than all other
scales combined.

The overall reduction in complexity is the product of the
reduction in iterations and the reduction in the fraction of
pixels to be sampled. The consequence of the above improve-
ments is enormous, relative to standard single-scale annealing.
Problems which take days or weeks to converge with standard
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Fig. 8. The number and fraction of pixels to simulate as a function of scale,
for the small/large/mixed spheres results of Fig. 6. The fraction of pixels being
simulated decreases to a tiny proportion of the whole as the scale becomes
�ner. Although the overall fraction of white pixels is the same in all three, they
are more condensed for the large spheres — fewer pixels lie on boundaries
between black and white — and consequently its fraction decreases more
quickly. The curves for the mixed spheres result is, unsurprisingly, consistently
halfway between the other two.

annealing, or which require carefully tuned sampling patterns
and energy functions to make convergence possible at all,
converge in minutes to hours with our proposed approach.
A number of examples will be given in the following Results
section.

VII. R ESULTS

We have simulated 64-million pixel (8192� 8192) images
on standard PCs in two hours, opening the possibility for
far larger images, or large three-dimensional simulation on
larger workstations. Figures 9 and 10 compare two such
64-million pixel samples with their training images. The
similarity between the sampled and original microscopic
images is stunning, preserving much of the structure on
multiple scales. Comparing the two-point correlation and
chordlength distributions of the samples with the originals
(Figs. 9(c,d) and 10(c,d)) offers an objective measure for the
quality of result, as the models do not explicitly contain either
distribution. Figure 11 shows how these two samples compare
with each other in the number of pixels to simulate — and,
thus, the overall computational effort needed — as a function
of scale. Because the sintered glass beads have a much greater
pore-solid interface than the carbonate rock, the computational
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(a) Original (training) image (b) Samplingresult (8192 � 8192, 14 hours)
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Fig. 9. Comparison of a full-size sampling result with the original image for sintered glass beads. The morphology of the simulated image captures behaviour
over an incredibly wide range of scales, as con�rmed by both the two-point correlation and chordlength distributions. The only notable deviation occurs at a
chordlength of roughly 70 pixels, which corresponds to the maximum diameter of the glass beads: a hard limit which is observable only at the �nest scale
with a wide spatial view — precisely the type of property thata hierarchical model composed of local, scale-dependent observations is unable to capture.

burden is somewhat greater in the glass-bead case. In general,
the time required to generate a sample is dominated by the
number of pixels to simulate at the �nest scale.

Two other examples give explicit comparisons with past
methods. Figure 12 compares our proposed frozen-hierarchical
approach with regular �at annealing and with a previously-
proposed hierarchical approach [18]. Even afterdaysof com-
puting time, the �at annealers are, for all intents and purposes,
unable to converge. Past hierarchical approaches are far more
convincing in their convergence, however their sensitivity to
annealing schedule means that �ne scales have the ability to
destroy coarse-scale structure, and therefore there is a constant
challenge in parameter tuning, leading to pixellation and noise
effects.

Next, to give a more comprehensive comparison to the
results of [18], Figure 13 gives a zoom-in comparison of
the performance of the hierarchical methods, relative to the
original 8192 � 8192 sample. The strength of hierarchical

modeling is clear here, in that the details of �ne-scale bound-
aries require a completely different model from the large-scale
morphology, and the hierarchical approach offers such scale-
dependent models.

A further comparison to real textures is shown in Figure 14,
based on three binarized Brodatz textures [22]. The qualityof
reproduction varies from excellent (D75) to poor (D108). The
complexity and density of structure in D104 and D108 causes
the ternary representation to become all gray in only a few
levels of coarsi�cation, meaning that only very limited large-
scale structure can be represented. In particular, becauseour
method captures only local behaviour at each scale, it has
dif�culty in representing highly-correlated nonlocal details,
such as the long lines in D108. Where the texture �ts our
proposed structure, in D75 and to some degree in D104, the
synthesis is effective.

Lastly, we seek to test the potential of the proposed method
to be used in nonstationary multi-model settings. Rather than
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(a) Original (training) image (b) Samplingresult (8192 � 8192, 2 hours)
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Fig. 10. Comparison of a full-size sampling result with the original carbonate rock image. The sample is nearly indistinguishable from the original unless
examined at full resolution. The sample and original two-point correlation and chordlength distributions match well within the expected degree of variability
for other physical samples of this medium.
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Fig. 11. Comparison of the number and fraction of pixels to simulate for the results in Figs. 9 and 10. The greater sparsity of the carbonate rock leads to a
much sharper drop-off in the fraction of pixels to simulate as the scale becomes �ner.
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(a) Training Image (b) Ternary-Hierarchical
(Histogram,2 min, 20 sec)

(c) Flat Annealing (d) Flat Annealing
(Chord-Length,3 days) (Chord-Length+ Two-Point,3

days)

(e) Binary-Hierarchical (f) Binary-Hierarchical
(Chord-Length,5 min) (Chord-Length+ Two-Point,15

min)

Fig. 12. A comparison of our proposed ternary-hierarchical method (b) with
regular, �at annealing (c, d) and regular binary-hierarchical annealing [18] (e,
f). Our approach outperforms the others by a wide margin, both in terms of
computational complexity and in terms of reproduced morphology.

averaging two models, as was done in Fig. 6, we created two
complementary models, and partitioned the physical space of
the image as being represented by one model or the other. The
image is still sampled all at once; the sampler, when visiting
a pixel, chooses which model to invoke based on the pixel's
location. The only awareness each model has of the other
comes from the overlap of the local neighbourhood to pixels
on either side of the model boundary, giving each model a one-
pixel-width window of in�uence on the other — a very small
overlap, but one that exists atevery scalein the hierarchy, and
so, in physical terms, starts much wider but narrows as the
sampler moves from coarse to �ne.

Figure 15 shows the result of this test, remarkable in the
absence of any artifacts along the partition boundary. The
two models are of entirely opposite natures, have no prior
information about each other, and the image receives no spe-
cial treatment along the boundary, nevertheless the boundary
has a very natural, organic appearance. The hierarchical one-

pixel overlap gives the two models suf�cient in�uence over
each other to produce a compromise along the boundary
that both can accept. Such versatility to produce meaningful
results, both when averaging together individual models and
when sampling from models separately on a regional basis,
highlights the potential for extending the frozen-state method
to model phenomena of even greater complexity or nonsta-
tionarity.

The substantial advances offered by the proposed method
should make it of keen interest in a variety of annealing prob-
lems. Certainly for binary porous media, the huge potential
of a method able to simulate 100-million pixel domains is
to perform such simulation in three dimensions, which is the
subject of future work.
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Fig. 14. An illustration of the application of our method to three binarized
Brodatz textures. Since our approach models locally at each level of a
hierarchy, we are unable to capture highly correlated, nonlocal, �ne scale
phenomena, as is clearly seen in D104 and D108, whereas the local structure
in D104 and the pattern in D75 are represented well.
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