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Abstract—There is significant interest in the synthesis of
discrete-state random fields, particularly those possessing sted
ture over a wide range of scales. However, given a model on
some finest, pixellated scale, it is computationally very difficult
to synthesize both large and small-scale structures, motivating
research into hierarchical methods.

In this paper we propose a frozen-state approach to hierar-

chical modeling, in which simulated annealing is performed on 4 ’ CA ,‘l
each scale, constrained by the state estimates at the parent kxa : R A Ry
The approach leads to significant advantages in both modelling : ik RO A
flexibility and computational complexity. In particular, a complex Ak o A “.,jaz' B RN %, ! i

structure can be realized with very simple, local, scale-dependent
models, and by constraining the domain to be annealed at
finer scales to only the uncertain portions of coarser scales,
the approach leads to huge improvements in computational
complexity. Results are shown for a synthesis problem in porous
media.

fa Sintered glass beads (b) Carbonate rock

Fig. 1. Two examples of larg8192 x 8192 microscopic images having
complex, multiscale structure.

Algorithm 1 Basic annealing

Index Terms—Simulated annealing, random sampling, image
synthesis, hierarchical algorithms k<=0
Randomly initializex

while not convergedio

I. INTRODUCTION .
. . i Zk+1 < Metropolis Samplery, E, T},)
T HE synthesis of large, binary random fields has become . ka1

an area of substantial interest, particularly so in theystud o4 \while
of porous media [1]-[3], materials characterized by comple g=k
multiscale, binary structures, for which two examples are
shown in Figure 1. Although these images may appear simple,
due to their binary nature, porous media and other related
natural images (such as label fields in remote sensing) mAydreat number of approaches and methods have been pro-
in fact be near-fractal in nature, meaning that their cingiéle Posed [2], [4], [5], however all of these methods suffer from
lies in the structures occupying a huge range of scales. THidher limits on modeling complexity, such that subtle teas
rather than continuous-state textured images (Brodaty, et€f the porous medium cannot be represented and synthesized
which are more common in the literature, the focus of thidy the selected model, or a limit on computational compjexit
paper is explicitly on the large-scale discrete-state.case  Such that computational complexity limits the size or aacyr
The essential challenge is how to construct a model foro4the produced sample. In this paper we report on an approach
given field in order to artificially synthesize further ramdo Which offers tremendous improvements in both modeling
samples, for two reasons: and computational complexity, allowing rapid synthesis of
1) Although it would be preferable to studphysical huge. r.r!ultiscale two-dimensiongl samples, and offering the
samples, there is considerable time and expense gessibility of large-scale three-dimensional synthesis.
sociated with sample preparation and high resolution The standard approach to image sampling is based on
imaging. Furthermore aspects of sample preparati§inulated annealing [6], which is summarized in Algorithm 1
(cutting, polishing, exposure to air) may alter the origina{n which we repeatedly visit the pixels of a random field, gsin
sample. Worst of all, the ultimate goal is to studghe Metropolis or Gibbs [7] sampler to update each pixel en th
three dimensional samples, for which thousands of r@asis of an energy functiof’ and an annealing temperature
peated cutting/polishing passes is completely impract+-
cal, and three-dimensional imaging by MRI or tomo- In most cases, a given pixel in a random field most strongly
graphic methods so far yields samples at only very logteracts with its local neighbours, and therefore it isegxc
resolution. tionally difficult (i.e., slow) to synthesize structuregda in
2) In order to analyze the macroscopic, aggregate behavigige relative to the local neighbourhood.
of a material, we need multipléarge samples to study. In response to this observation, we are motivated to model
a binary field in some sort of hierarchical representation, f
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1) Top-down, in which the hierarchy beings at a coarsélgorithm 2 Basic Top-Down Annealing
scale, with the coarse-scale elements repeatedly refine®Randomly initializez !

at finer scales. s=M
2) Bottom-up, in which the hierarchy begins at the finest, while s > M do
pixellated scale, and where some sort of grouping or Iteratively anneal x{,z5,...,2; at temperatures
aggregation leads to coarser representations. T8,T5,. ..
For discrete-state Markov Chain Monte Carlo (MCMC) prob-  if s > 1 then
. . s—1 s—1(,.8
lems [8], the bottom-up approach is considerably more com- 5 < p* (23)

mon (such as Swendsen-Wang [9] and region-grouping [10] §<=5— 1
methods), in contrast to continuous-state image process- €nd 'f

ing problems, in which top-down approaches dominate €nd while
(wavelets [11]-[14], Laplacian pyramids [15] etc.). Theare

two reasons for this distinction:

1) Inthe continuous-state case, a coarse scale can re’preglélh b_e dlsgusseq in Sepﬂon . I\_/Iodelm_g and computationa
a smooth, low-resolution image, which is then nudge nsiderations will be discussed in Sections V and VI, respe

and refined towards finer scales. However a discretfgely' Finally a set of results will be presented in Sectidh

hierarchy does not allow for a smoothly-varying rep-

resentation or for small refinements in state value from Il. FROZEN-STATE TERNARY HIERARCHIES

scale to scale. For reasons of multi-scale modeling and computational
2) In a top-down representation, a coarse-scale state alfficiency, we wish to work on a discrete-state, top-down

ment represents some square subset of the finest-s¢adgarchy. That is, if

domain. Since the finest scale will normally not be made o

up of piecewise-constant squares, the imposition of a zij €401}, (,5) € L @)

regular grid from a top-down structure is not a naturgs some given, two-dimensional binary random field on lattic

fit, as opposed to the adaptive, irregular regions produced then we construct

by bottom-up approaches.

Despite the above limitations and liabilities, this papeo-p
poses a top-down hierarchical approach for the modelifigat is, where scale = 1 is equivalent to the finest scale.
and synthesis of binary random fields. Indeed, our proposadeach scale we will suppose the existence of some energy
approach is able to synthesize hu§&92 x 8192 images function E*, implying a Gibbs prior [7] onz®:

possessing multi-scale structures on regular computeis in

f on i sy= Lo-m@)

ew hours of computation time. p(z®) = 7€ 3

We need to be clear that existing methods such as wavelet . . .
image synthesis, random fields synthesis using Fast Fowl}'eWe define an interpolation operator
transforms, and fast texture rendering methods from the-com z* — p* (z*T1), (4)
puter graphics literature are all effective in their fielefj- _ _ _ _
ciently producing rendered images satisfying aesthetjaire- then a top-down s_lmu!atlon proceeds_as shoyvn in Algorlthm 2,
ments, but which cannot however be argued to quantitativé/}?hereby we begin with a coarse grid, having relatively few
satisfy a scientific discrete-state model. In scientific gma €l€ments and proceed, scale by scale, to finer grids. Related
synthesis we require a verifiable model, therefore hearis@PProaches have been proposed in the past [16]-[18] bersuff
image synthesis and enhancement methods are inapproprii@m two particular problems:

There are two key contributions of this paper, one for each1) From a computational perspective, the algorithm ends
of modeling and computational complexity. First, a top-dow with some number of MCMC passes ofl, the finest
hierarchy gives us a regular grid on a sequence of scales; scale. Because the number of elementszthis the
the random field on each scale can be modeled by a scale- same as inz, the computational complexity of the
dependent model. Since even large-scale phenomena ate loca entire hierarchical algorithm is likely to be dominated
on a sufficiently coarse scale, it is possible to use relgtive by the finest scale, and the degree of improvement over
simple, local models onall scales to represent complex a regular, non-hierarchical method will depend on the
behaviour. Next, we propose a “frozen-state” approach, by —number of iterations needed for convergence.
which confident portions of coarser scales are frozen ineplac 2) Secondly, from a modeling perspective, the more trou-
and cannot be modified at finer scales. This has advantages bling question is how to prevent the MCMC model on
both in modeling, preventing finer-scale models from ungdoin some scale from undoing the structures created by a
or eroding structures put into place at coarser scales, land a model on some coarser scale. Such a structure undoing
a great advantage computationally, in that at any giverescal ~ can occur for at least two reasons:
only those “unfrozen” state elements need to be simulated. o Annealing Schedule: if the MCMC annealing

The frozen-state hierarchy, introduced above, will be dis- schedule begins at too warm a temperature, then
cussed in Section Il. The simple, scale-dependent locakinod the sampling at some scale can, in one pass,

5, (i,j) € L* suchthatL! = L,z' == )



qg<=0
s<=M
while s > 0 do
af < p(zyth)
G* < grey subset of§
x5 (G*®) < random initialization
lteratively anneaks(G*®), z53(G*), ..., 3 (G*) at temper-
atures1?,T5,. ..
s<=s—1
end while

Algorithm 3 Ternary, Frozen-State Top-Down Annealing
Initialize 2’ ™' < grey () >

SISOUIUAS

Model Analysis

randomize the entire domain and undo all coarser-

scale results. On the other hand, if the MCMC

anneallng schedule beglns attoo .COId a temperatur:%. 2. The principle of ternary decomposition: a given bjnanage can

the model at the current scale is prevented from represented at coarser scales, such that each elemenbarsercscale is

making any changes, leading to mis-convergenceselected on the basis of whether its descendantsilafglack, all white, or
« Model Locality: the purpose of the modebs at Mixed:

each scales is to model those phenomenacal

to that scale Thus the model at one scale may bgyerse of the interpolation operator, preserving blackl an

quite different from that at another. Therefore if th§ypite regions only where the entire subset is black or white,
model at scale is permitted to fully converge, the respectively:

converged result is likely to be quite different from
the converged result at another scale. Therefore not 0 If all children of 27 at scales are “0”
only the annealing schedule, but the also permittedz; ;' =4 1 If all children of 277" at scales are “1”
number of iterations, must be tuned at each scale. g Otherwise

On the basis of the above criticisms, we introduce a nove))\ hensive illustration is sh in Fi 3
frozen, ternary-state hierarchy, which highly effectveleals imhorﬁ \?VO”;E re enr5|i\;;a Itiuf] riltc\)/\? Ii?ns own :\n Ignl:r?nin,
with both of the computational and modeling issues above. /Xy%q ch shows the coarsitication of two Images, one containing

opposed to the binary state of (1), we introduce an interatedi re atively large spheres, a'nq the other' small spheres. Wmm'
“grey” value diately observe some striking behaviours with correspamdi

observations:
x;; €1{0,9,1}, (4,5) € L°. (5) 1) The representation becomes increasingly “grey” at
coarser scales, as the size of the coarse scale pixels
begins to exceed the size of finest-scale structures.
= Therefore the model is easily initialized as all-grey
at some sufficiently coarse scale.

(6)

The scale-to-scale interpolation operapois unchanged from
before, however the top-down simulation, shown in Algo-
rithm 3, differs crucially from the previous approach in Alg
rithm 2, in thatonly those pixels whose parents at scale 1
are greymay be changed or updated by the MCMC sampling 2) The appearance of white seed pixels, forming the centres
at scales, whereas children of parent elements which are “0”  Of finest scale spheres, takes place on a scale dependant
or “1” remain unchanged (frozen). Proposing such a ternary ~ On the sphere size. Thus the large spheres appear on

model has a huge impact on computational complexity and ~ Scales 5 to 6, whereas small spheres appear on scale 4.
modeling: = The model is inherently scale sensitive, and is

« Computationallynow only a (possibly small) fraction of naturally able to model scale-dependent structures,

state elements at a given scale are involved in the MCMC as evidenced by the very different statistical patterns
sampling process. In many cases, the fraction of pixels in the two rows in Figure 3.
which need sampling at the finest scale is a tiny fraction 3) At fine scales, the grey pixels lie only on the interface

of the total. between white and black.

« Formodelingbecause coarser “white” and “black” struc- = In most cases the interface between white and black
tures are forcibly preserved, therefore there is no need will be only a tiny fraction of the total number of
to tune the annealing schedule or number of iterations, pixels. Therefore only a small fraction of the total
greatly simplifying the annealing step at each scale, number of pixels need to be simulated at the fine
relative to previous approaches. scales, precisely those scales having large numbers

An illustration of the ternary hierarchy is shown in Figure 2 of pixels.

A given binary, finest-scale image is repeatedly sub-samnple With the ternary hierarchy defined, in principle, the follow
to construct the hierarchy. The subsampling needs to be thg sections describe the proposed histogram model, felfiow



Scale 1 Scale 4 Scale 5 Scale 6
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Large Spheres

Small Spheres

Fig. 3. Two illustrations of downsampling a given binary imgmer the ternary representation of Fig. 2. At coarser scédlesdbwnsampled image will
become increasingly “grey”, as the size of individual cogisels exceed the characteristic lengths of structurebeafihest scale.

by results outlining both the modeling and computationa&iight pixels, from which it follows that the model at eachleca

advantages of this method. s is represented by® = 19683 probabilities, which can be
plotted as a histogram. An exception takes place at the finest
Il. HISTOGRAM MODEL scale, which is forced to be binary, in which cae= 512

. — . robabilities are stored.
We have established the principle of a ternary h|erarck€/,An illustration of such scale-dependent histograms can be

such that at any given scale white and black structures &n in Figure 4. The horizontal axis is somewhat arbitrary

frozen or f.|xed In place, with _onIy a grey subset remaining Fos it contains, in no significant order, the 19683 possibte pe
be determined. These grey pixels may become black or whitg, , . . .

. : mutations of nine ternary pixels. After a brief study, hoegv
and therefore frozen at finer scales, or may remain grey.

. . . . . .,_a very clear structure emerges from the seemingly irregular
What is required is a statistical model which is compatibl y g gy 9

with describing the behaviour of an subset of grey pixels m|stograms. At the finest scale (top), the vast majority aeni

X I . : i pixels are either all black (left) or all white (right). At ¢h
a hierarchy. The.key.|'r15|ght is that the hle.rarchlcal stireet fourth scale, most of the domain is still all-black, however
allows a great simplification to the model: because coarser .. . o

: significant probabilities can be seen associated with iddal
scales have modeled and created any structures which we . :
apparent at those larger scales, at some intermediate sg\é te (seed) pixels. As we proceed to coarser scales thewhit
thpep statistical model ig res onsible only farlatively local p|x%Is disappear entirely, the likelihood of all-black i
) P y tvely decreases, and grey becomes more prevalent.

phenomena. That isjon-local phenomena, which are large

. ; : Let H® represent the learned histogram model at seale
relative to the current scale, will have been modeled liocal . : .
and H (z) an operator returning the histogram «af We wish
way on some coarser scale.

to develop an energy function, for use in annealing, which
Therefore rather than non-local models, based P gy 9

chordlengths or correlations [2], [4], we are free to ChOﬁse%r(]analizes the difference or inconsistency between a stetdila
9 P field 2 and its target histogram:

comparatively simple model dependent on only local pastern -
Ignoring Ising/Potts models, which are unable to represent B (2°) = |H(2") — H°| = Z (H;(x®) — H?)?
even local patterns or textures, the simplest pos;iblgoappc )= r o - JH, + ¢

known as a local binary pattern [19] (a generalization of co- _ o
occurrence matrices [20]), is essentially to preserve oiet j Where the denominator serves to allow for greater flexjbilit

©)

That is, is we define the neighbourhoodagf; to be division by zero for entries of zero ify.
‘ ) ’ A slight modification to (9) is needed, as illustrated in
/\/Zj cr (7)  Figure 5. Specifically, those portions of that are frozen,

then our model needs to store the conditional probabilities ;tructures created gt sce}les coarser tharshould not be
involved in the considerations at scaleand therefore those
Pr(z; |}, V(K1) € N)) (8) portions of the field should not be included in the calculated

. L histogram.
The model we have adopted is a modification of the local Therefore, if

histogram model discussed in [16], [18]. Based on our tésts,
is adequate to define the neighbourhood to contain the rieares G = {i|ait = g} (20)
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Scale 1
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(a) Mid-Scale Image x* (b) Counted Pixels G;

Fig. 5. In annealing down the hierarchy of scales, at a giwalesonly

the grey pixels in (a) may be changed; all white or black pieeks frozen.

Therefore only those pixels that lie inside the histograrngmaourhood of a

grey pixel, i.e., the pixels highlighted in (b), enter inteetenergy function at
| that scale.

Scale 4

The histogram sefHd*, A2, ..., HM} forms the model input
into the random sampler. Using these target histograms in
conjunction with (12) as the energy function, we can then run
| — Algorithm 3 to produce random samples through simulated
. . . . annealing.
The formal convergence properties of the histogram energy
L A ‘“‘ function are unknown. While it has been proven that a
- - - - logarithmic cooling schedule would, in principle, guaemt
a global minimum [7], such a schedule is neither practical no
Fig. 4. The histogram model data for selected scales fromrtizél spheres  Strictly desired. For all of the results presented in thipgra
training image in Figure 3. an exponential cooling schedule was used with decay factors
ranging between 0.99975 at the coarsest scale and 0.992 at
the finest. At each scale, the annealing was started at a-super
represents the grey elements of the parent figft!, then  ritical temperature and continued until full convergence
G5 = p'S(GS+1) (11) which we define very conservatively as 25 iterations with no
state changes.

Scale 6 Scale 5

represents those elements «of which are un-frozen, which
are eligible for annealing. However because a given pixel V. ADVANTAGES IN MODELING
contributes to the histogram entries of its eight neighbpur

we need to consider the elementsa6fin G’;, those elements = e
of G2 plus their neighbours, as illustrated in the right panel Jgrent scales, and with differentmodel learned at each scale,

Figure 5. Therefore both the target and observed histograwg do not require a single model to capture all phenomena

are computed ovet, and (9) is modified as simultaneously. _
Indeed, because the ternary hierarchy freezes large-scale

ES(a) = HH (xS(éf))) s (12) structqres determined by coarser scales, the model at.a give
scale is responsiblenly for the new structures at the given

At this point we have an energy functide’ (z*) as a function scale, those previously unresolved at coarser scalesefbiner

of scales, based on the scale-dependent histogram learrf&@ model at a scale is in no way responsible to preserve-large
from training images, as in Figure 3. scale structures, as they are frozen, nor does it even need to

be consistent with the coarser models. This enables the use
of arbitrarily high starting temperatures are each scale T
model at each scale is iterated to full convergence. Because
The overall use of the proposed method, in practice, is éach scale is fully converged, the temperature schedule in n
build a model from some training image, by iteratively way needs to be finely tuned.
coarsening it according to (6) until we reach a scale wiyére  Furthermore, in the ternary representation it is only the
is entirely undefined (“grey”), since beyond this scale ¢hedescendants of grey pixels from the parent scale which need
is nothing further to model. We define this coarsest scale @m®deling, as all white and black regions have been committed
M + 1. For each scales € 1,2,..., M, we need to acquire and frozen. As suggested by the images in Figure 3, we fre-
and store a target histogram for that scdl, using guently observe large regions of grey having a simple stract
_ R (coarse scalesir small grey regions with complex structure,
H*=H (yS(GZ)> : (13)  put only rarely do we have complex, non-local behaviour for

Because large-scale and small-scale structures emerie at d

IV. METHODOLOGY



Scale 6 Scale 5 Scale 4 Scale 1

Large Spheres

Small Spheres

Mixed Spheres

Fig. 6. Ternary hierarchical sampling results, with modetsred from the large and small spheres images of Figure 3. Therreomplex image of mixed
spheres in the bottom row has a trivial model, nothing more thanaverage of the models from the top two rows. The reader baeree large spheres
being seeded in scale 5 in the top and bottom rows, and the spiakres seeded in scale 4 in the bottom two rows. Such a peteyous, hybrid model is
a huge advantage of the hierarchical representation.

grey. Therefore at every scale it is a comparatively simplmixed are scale-resolved, since their behaviour is agtuall

local model that is needed. asserted by separate models on separated scales.
Such model locality in hierarchical representations hanbe
observed in the past. In particular, a past approach torhiera VI. ADVANTAGES IN COMPUTATION

chical sampling [17] asserted a chordlength model [2],i{#], There are very compelling computational benefits, in many
which the model tests the distribution of the lengths of klaavays paralleling the preceding discussion on modeling. The
and white chords. The chordlength model was truncated to té®zen hierarchy specifically leads to three key compunatiio
only chords up to a length of pixels, and the reconstructedbenefits:
samples were found to be very nearly independent,ofor 1) The method does not need carefully tuned annealing
all n > 10 pixels. In other words, only the local portions of schedules;
the model were significant and instrumental in sampling. 2) At each scale, it is onlyocal structures which need to
We maintain, therefore, that there is a highly complemegntar be synthesized,
relationship between hierarchical models and simple,lloca 3) The number of pixels to sample at each scale is modest.
energy functions. As opposed to a single-scale model, whigfst, in terms of annealing schedules, because the |laaje-s
needs toexplicitly account for structure size by encoding thetructures from coarser scales are frozen in place, therttie
size of an object into the model, in a hierarchical model th&rrent scale isinableto destroy those structures, therefore
size of an object is representédplicitly on the basis of the there is no problem in starting with a hot annealing tempera-
scale at which it appears. ture. The implementation of this method does not, therefore
Although such an implicit representation may not seenely on many repeated runs to tune annealing parameters.
impressive, imagine constructing a statistical modelvahg Second, the relatively local structures being synthesited
a mixture of large and small spheres. A single-scale modadale mean that state information does not need to propagate
becomes rather complex, possibly involving hidden layers wng distances. Because an iterative local model essigntial
additional labeling, whereas hierarchically the sum ofiéar implies information being communicated via a random walk,
and small sphere models leads to the creation of seed pixbls number of iterations required is roughly quadratic ia th
at both large and small scales, thus leading to the intaggstiscale of structure to be simulated [21], so simulating only
heterogeneous result shown in Figure 6. Such a hybrid mottetal structures leads to a huge reduction in iteration count,
can be formed, in general, as long as the two structures beargl therefore relatively quick annealing schedules carsbd,u
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Fig. 7. The energy behaviour for the “large spheres” restiFig. 6. The

starting values of energy and temperature at each scale kaveriormalized. Fig. 8. The number and fraction of pixels to simulate as a fonctif scale,
A convergence criterion (25 iterations with no changes)sisduto determine for the small/large/mixed spheres results of Fig. 6. The ipaatf pixels being
when to stop annealing at each scale. As scale proceeds farsecto fine, simulated decreases to a tiny proportion of the whole as thke secomes
the computational cost of each annealing iteration acrassntiage increases finer, Although the overall fraction of white pixels is thexsain all three, they
while the importance an individual pixel has on the overadiufedecreases. are more condensed for the large spheres — fewer pixels licoandaries
Thus, to balance computation time where it is most needed, thkngarate  petween black and white — and consequently its fraction edesms more
is increased for finer scales. quickly. The curves for the mixed spheres result is, unssimyly, consistently

halfway between the other two.

as can be seen in the top panel of Fig. 7. In particular, Fig. 7
emphasizes the rather small number of iterations requiteda@nealing, or which require carefully tuned sampling page
fine Scales, a benefit fOIIOWIng dlreCtly from the hierarethic and energy functions to make convergence possib|e at a”’

nature of our modeling approach. converge in minutes to hours with our proposed approach.

Next, in the ternary representation it is only the descetsdam number of examples will be given in the following Results
of grey pixels from the parent scale which need sampling, g&ction.

all white and black regions have been committed and frozen.
As is implied by the images in Figs. 3 and 6, the grey pixels
normally represent a declining fraction of the random fiedd a
we head to finer scales. Indeed, as can be seen in Fig. 8, fowe have simulated 64-million pixeB{92 x 8192) images
all three “spheres” test cases, the fraction of pixels topam on standard PCs in two hours, opening the possibility for
reduces to a tiny fraction of 1% to 5% at the finest scaléar larger images, or large three-dimensional simulation o
Therefore at the finest scale we may simulate onlying larger workstations. Figures 9 and 10 compare two such
fraction of the pixels, a major reduction in complexity fronm64-million pixel samples with their training images. The
non-hierarchical and other non-frozen standard hieraathi similarity between the sampled and original microscopic
approaches, which still do some simulation of the entiresineémages is stunning, preserving much of the structure on
scale. The bottom panel of Fig. 7 shows the modest fractionmiiltiple scales. Comparing the two-point correlation and
computational complexity spent at the finest scale, ded¢ipite chordlength distributions of the samples with the origénal
fact that the finest scale possesses more pixels than all otfiggs. 9(c,d) and 10(c,d)) offers an objective measure Her t
scales combined. quality of result, as the models do not explicitly contaither

The overall reduction in complexity is the product of thaistribution. Figure 11 shows how these two samples compare
reduction in iterations and the reduction in the fraction ofith each other in the number of pixels to simulate — and,
pixels to be sampled. The consequence of the above improthais, the overall computational effort needed — as a functio
ments is enormous, relative to standard single-scale #ingea of scale. Because the sintered glass beads have a muchrgreate
Problems which take days or weeks to converge with standamaore-solid interface than the carbonate rock, the comioumizit

VIlI. RESULTS
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Fig. 9. Comparison of a full-size sampling result with the orég image for sintered glass beads. The morphology of the siediimage captures behaviour
over an incredibly wide range of scales, as confirmed by bathvlo-point correlation and chordlength distributionseTdnly notable deviation occurs at a
chordlength of roughly 70 pixels, which corresponds to theimam diameter of the glass beads: a hard limit which is obsésvahly at the finest scale
with a wide spatial view — precisely the type of property thatierarchical model composed of local, scale-dependennaigms is unable to capture.

burden is somewhat greater in the glass-bead case. In genenadeling is clear here, in that the details of fine-scale deun
the time required to generate a sample is dominated by tges require a completely different model from the largales
number of pixels to simulate at the finest scale. morphology, and the hierarchical approach offers suchescal

Two other examples give explicit comparisons with pa§€pendent models.
methods. Figure 12 compares our proposed frozen-hiecaichi A further comparison to real textures is shown in Figure 14,
approach with regular flat annealing and with a previouslpased on three binarized Brodatz textures [22]. The quafity
proposed hierarchical approach [18]. Even aftaysof com- reproduction varies from excellent (D75) to poor (D108)eTh
puting time, the flat annealers are, for all intents and psepp complexity and density of structure in D104 and D108 causes
unable to converge. Past hierarchical approaches are fiag mbe ternary representation to become all gray in only a few
convincing in their convergence, however their sensititd levels of coarsification, meaning that only very limitedger
annealing schedule means that fine scales have the abilitystale structure can be represented. In particular, becaurse
destroy coarse-scale structure, and therefore there issdasd method captures only local behaviour at each scale, it has
challenge in parameter tuning, leading to pixellation aod@ difficulty in representing highly-correlated nonlocal aiég,
effects. such as the long lines in D108. Where the texture fits our

Next, to give a more comprehensive comparison to tfEOPOsed structure, in D75 and to some degree in D104, the

results of [18], Figure 13 gives a zoom-in comparison ¢iynthesis is effective.
the performance of the hierarchical methods, relative & th Lastly, we seek to test the potential of the proposed method
original 8192 x 8192 sample. The strength of hierarchicato be used in nonstationary multi-model settings. Rathan th
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. pixel overlap gives the two models sufficient influence over
each other to produce a compromise along the boundary
that both can accept. Such versatility to produce meaningfu
{ , results, both when averaging together individual model$ an
|y \ when sampling from models separately on a regional basis,
highlights the potential for extending the frozen-statehud
> & to model phenomena of even greater complexity or nonsta-
H tionarity.
e The substantial advances offered by the proposed method
(b) Ternary-Hierarchical should make it of keen interest in a variety of annealing prob
(Histogram, 2 min, 20 sec) lems. Certainly for binary porous media, the huge potential
of a method able to simulate 100-million pixel domains is

to perform such simulation in three dimensions, which is the
subject of future work.
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