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Abstract

The processg of remotely sensed data is innately an inverse problem where properties of spatial
processsare inferred from the observations based on a generative model. Meaningful data inversion
relies on weldefined generative models that capture key factorghénrelationship between the
underlying physical process and tneasurements

Unfortunately, as two mainstream data processing techniques, both mixture models and latent
variables models (LVM) are inadequate in describing the complex relationship betwegpatial
process and the remote sensing data. Consequently, mixture models, sudfieaask Gaussian
Mixture Model (GMM), Linear Discriminant Analysis (LDA) and Quadratic Discriminant Analysis
(QDA), characterize a class by statistics in the origamece, ignoring the fact thatclass can be
better represented [iscriminative signal$n the hidden/latent feature space, while LVMs, such as
Principal Component Analysis (PCA), Independent Component Analysis (ICA) and Sparse
Representation (SR), see#presentational signals in the whole image scene that involves multiple

spatial processes, neglecting the fact that signal discovery for individual msisas®re efficient.

Although the combined use of mixture model and LVMséguiredfor remote sesing data
analysis, there is still a lack of systematic exploration on this important topic in remote sensing
literature. Driven by the above considerations, this thesis therefore introduces a mixture of LVM
(MLVM) framework for combining the mixture molleand LVMs, underwhich three models are
developed in order to address different aspects of remote sensing data processing: (1) a mixture of
probabilistic SR (MPSR) is proposed for supervised classification of hyperspectral remote sensing
imagery, considéng that SR is an emerging and powerful technique for feature extraction and data
representation; (2) a mi x tPivteans) im @rdpedd foroafddre&singi Pur i f i e
the spectral endmember estimatiarich is a fundamental issue in remotasseg data analysis; (3)
and a clusterinfpased PCA model is introduced for SAR image denoislhgder a unified
optimizationscheme, all models are solved #&apectation and Maximization (EM) algorithry
iterativdy estimatingthe two groups oparameters, i.e., the labels of pixels and the latent variables.
Experiments on simulated data and real remote sensing data demonstrate the advantages of the

proposed models in the respective applications.
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Chapter 1

|l ntroducti on

1.1 Background

Remote sensing is the scienceaafjuiring informationabout earth surface from a distance, using
sensors typically onboard aircrafts or satellfeéiesandet al., 2008 Remote sensors tde either
active or passivesynthetic aperture radar (SAR), agypicalactive sensor, is capable of illuminating
earth surface by microwave and collecting the backscattered wavesdmtinsurface(Oliver and
Quegan, 1998yiott, 2007, Wang, 2008 Due to its ability to workrrespective of weather conditisn

or sunlight illumination, SAR has been widely used in remote sensing applica@ssive sensors,
such agnultispectral or hyperspectral sensors, on the other ltaptiirethe naturalelectromagnetic
radiation that is reflected or emitted by earth surf&ece they obtain full spectral information with
narrow spectral bands, hyperspectral sensors are good at discriminating different materials, and have
been used in variouapplications including mineralogy, defense and environmental measurements
(Richards and Jjal999;Shaw and Manolakj2002 Liang, 2004Ustin, 2004 Lillesandet al., 2008;
BioucasDiaset al., 2013

While the advancement in remote sensing platfqurosides great opportunities for a broad range
of disciplines, the large and evi@creasing data volume demands efficient data jg=ing and
analysis technigues.hE remote sensing data are usuptigvidedasdigital raster imagesTherefore,
imageprocessing techgues are required taddress many different tasksuch as image denoising,

classification and spectral unmixigGampsValls et al., 2011

Image denoising aims to removeundesirable information that contaminates the imaipsein
remote sensing imagesuldbe caused by many factors, depending on hevirttage was created. In
particular SAR sensor, as a coherent system, inherently produces speckle noise, whichdmabs salt
pepper appearancand greatly impedes SAR image intetation(Xie, et al.,2002. Noise reduction

therefore always serves as a preprocessing step to enhance imagdBuadigget al., 200%.

Remote sensing image classification intends to infer the label/identity information of image pixels
based on thepectral or spatiaheasurementfd.u and Weng, 200Mlountrakiset al., 2011Mulder,

et al., 2011 BioucasDias et al., 2013 CampsValls et al., 2013 Both supervised and unsupervised

1



techniques can achieve this purpoBefore performingclassification supervisedclassifiers are

firstly trained on training samples with known labels, in order to learn the relationship between
observations and labels. Unsupervised classifiers, on the other hand, do not need to be trained, and
cluster the observations lemson their internal structures.

Spectral unmixinglaskaimsto estimae for each pixel the fractionalbundancesf endmembers
which are the spectra of pure materigittazaet al., 2009 CampsValls et al., 2011 Bioucaset al.,
2012; BioucasDias et al., 2013. The endmembers are assumed tahieaeinderlying factors, which
are responsible for generating the spectral pixels in multispectral or hyperspectral images. The
estimation of endmembers as well as their abundances is a fundamental issue tlersestsing

image analysis.

Remote sensing image processing is essentially an inverse problem, in which the observations are
used to infer the properties of underlying geospatial processes that contribute to data generation
(Wang 2010) Therefore, knowinghe data generating mechanism is crucial for solving inverse
problems. If the function describing the relationship between the measurements and the underlying
guantities is provided, data inversion can be solved by inverting the function. Unfortunately, i

remote sensing, a function of explicit and exact form is usually unknown.

In order to achieve meaningful data inversion, prior information concerning data generation has to
be used as guidance and regulation. In practice, statistical generative models are usually employed to
describe the relationship between underlying quastiéed measured ones, considering that
stochastic generative models allow explicitly modeling the hidden variables associated with
underlying generative mechanism, while in the meantime accommodatimpifieein observations

and uncertainties human knowedge

Efficient remote sensing data processing therefore relies ordefislled generative models that

capture key factors in the relationship between the underlying physical process and the observations.

1.2 Motivation and Objectives

In remote sensing, thedfactors concerning the relationship between the observations and underlying

spatial processes are of fundamental importance.

(1) Multiple spatial processes, instead of single one, contribute to generation the remote sensing
images,giventhe complexity 6the ground target. Consequently, observed image pixels of different

sources tend to assume different spectral or spatial patterns. For example, an urban image usually
2



involves multiple ground cover types, which admit differeextural structures in spial domain and
varying spectrapatterns inspectral spaceSuch source heterogeneity phenomenon is also witnessed
at subpixel level. For example, an image pixel always involves the spectral contributions of multiple
materials, whosspectraare called Bdmembers.

(2) Informativesignals lie in latent space, instead of the original spectral/spatial space, due to noise
and other uncertainties in remote sensing system. The unobserved variables in latent space, also
called latent variables, may provide infwative representation of the remote sensing data. For
example, textual patterns of ground targets, as linear or nonlinear arrangements of pixels values, may
serve as signaturesf different land cover typesln addition the latent variablesmay offer
explanations of the data generation mechanism. For example, the abundances of endmembers reveal
the material composition of a mixed pix®oreover, the leent variables can also help to reduce the

dimensionality ohigh-dimensional measurements, which agerare in remote sensing.

(3) Different spatial processes tendassociate witldifferent groups of latent variables, instead of
by the same group. For example, different ground cover types teadni different spectral
signaturesin latent spectral @main, and assume varying types of texture patterns in latent spatial

space

Due to the cenccurrence of above three factors, efficient data anatlsieforerelies on wel
defined generative models that are capable of accounting for both source heterogeneity effect and
hidden variable effect, as well as the#lations Unfortunately, as two mainstream data analysis
technigues, mixture models and latent vdgalmodels (LVM) are inadequate in addressing these

important issues.

On the one hand, mixture models, such ablléans, Gaussian Mixture Model (GMM), Linear
Discriminant Analysis (LDA) and Quadratic Discriminant Analysis (QDA), although being capable
of accounting for the effects caused by different sources, fail to address the latent variable effects.
Consequently, the learning of mixtutemponentswill be rendered inefficient, due to the failure in
addressing the association with latent variables. Fexample,sinceGMM characterize a class by
Gaussian distributiorin the original spaceand ignores the fact that classes could Htwetter
represented by discriminative signals in the hidden/latent feature, Spasedifficult for GMM

models to strike good balance between model bias and model variance.



On the other hand, LVMs, such as Principal Component Analysis (PCA), Independent Component
Analysis (ICA) and Sparse Representation (SR), explain only the latent variable effects, but fail to
account forthe source heterogeneity issue. As a result, the learning of latent variables will be affected
and disturbed by thexistence ofixture effect, due to the failure to explicitly model such effect. For
example,becausePCA seeks representational signalsthe whole image scene that involves a
mixture of sourcesandneglecs the fact that signal discovery for individusdurcess more efficient
in image denoising problemglobal PCA learnt for all classes is less efficient tthacal PCAs learnt
for individual classes. In order to avoid confusion, it is worthwhile to mention that LVM here refers

to continuous latent variable models.

Driven by the above considerations, this thesis therefore intends to explore mixtuxéof
(MLVM) that is capable of acamting for both mixture effects and latent variables, in order to
achieve efficient remote sensing data processing techniques. Although some MLVM models, such as
mixture of probabilistic PCA (MPPCA, Tipping and Bishop, 199%nd mixture offactor analyzer
(MFA, Ghahramani and Hinton, 199Bokoue and Titterington, 20D®ave been developed in the
statistical literatureno efforts have been conducted towardystematic investigation, in the context
of remote sensing data processiRgur mainresearchgjuestions or gapsemain unaddressgdnhich

motivate the studies conducted in this thesis

(1) There is still a lack of a general framework that is capable of providing principles and

guidelines for building MLVMghat suit avariety of remote sensing dafprocessing tasks.

(2) MLVM has not been developed for SR, which is emerging and powerful technique for feature

extraction and data representation.

(3) Since the pixel values in remote sensing images are nonnegative, the latent variables are also
required to be nonnegative in some cases, e.g. spectral unmixing. Therefore, new MLVMs have to be

developed to address this particularity of remote sensing data.

(4) The diversity of remote sensing data type and applications requires new MLVNMsipipatt

different remote sensing data processagks e.g. denoising, classification, spectral unmixing.

1.3 Thesis Structure

This thesis proposes to study the modgliand analysis of remotely sensadagery from a
probabilistic generative perspective. Simultaneous tmglef both the underlying spatial processes

and hidden signals is achieved by MLVMs, where mixture compougttaguish betweedifferent
4



spatial processes, and latent dimensi@aegount for hidden signals in each component. The
contribution of this thsis lies in the following aspects:

Chapter 2 ntroduces a probabilistic frameworkenabling a principled way of modeling and
estimating both source heterogeneity effect and hidden signal effect, underthvhigklLVVMs are
developedand successfullgpplied toa variety of remote sensing applications in terms ofrtizeye
processindasksand the sensor types.

Chapter 3 describes novel mixture 6 probabilistic SR (MPSR) modeto be incorporated with
Markov random field (MRF) for supervised clagsition of hyperspectratemote sensing imagery,
considering that SR is an emerging and powerful technique for feature extraction and data

representation

Chapter 4 presenta novel mixture of K Purified means {R-Means) model for spectral

endmember ésgnation which is a fundamental issue in remote sensing data processing.

Chapter 5 presentsclusteringbased PCA algorithrim Chapter 5for stateof-the-art SAR image

denoising.

Finally, Chapter 6 concludes the thesis and suggests future redieactions.



Chapter 2

Mi xture of Latent Vari abl e

This Chapter starts with an overview of the mixture model and LVM, followed by the introduction to
the framework of MLVM, and the descriptions of three variantslioYM .

2.1 Mixture Model

Since multiple spatial processes are responsiblesfopte sensingata generatignmixture models,
which accounfor this source heterogeneity effect, are essential for pattern discovery and prediction
(McLachlanand Peel, 2000In mixture modelsther; p dimensional observation at sifén classk,
denoted by , can be expressed adinear combinatiof the mean vector dd clasga , plusthe

classdependent noise :
e O =« 'Q phfBRMAQ pii 2.1)
Mixture modeldiffer on noise distributionfMcLachlanand Peel, 20001In particulat the GMMs
are widely used for the tasks of clustering and classification of remote sensing.dafa et al.,
2003; Clark et al., 2005Amato et al., 2008Thessleret al., 2008 Brenning, 2009; Pu and Landry,

2012 Chen et al., 2003 where= is Gaussian noise with zero mean and covariance matrix

Accordingly,
r‘] [ ﬁA QD— ([ ] O [ ] O (22)

Based on Eg (2.1) and (2.2)GMM infers the membership & by MLE or its variants, such as EM
algorithm(Bailey andElkan 1994;McLachlanand Peel, 2000

Popular clustering or classification methods are variants of model definedsb{2Eq and(2.2).

=

For example, KMeans assumes E € with £ being unit matrix; LDA assumes

E A, with A being diagonal matrix; QDA allows being differentor different

classes.

The mixture moded as érmulated by Eq. (2.1)where a class is characterized by cartain

parametric distribtion in original feature spacassumeaomelimitations

Characterizing a cluster/class using the mean véttoland covariance matrix is
difficult to strike a good balance between model bias and model variance. For example, in
6
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QDA, the number of unknown parameters inwill grow quadraticallywith the increase

of data dimensionality. Consequently, given high dimensional remote gedsia,
mixtures modelswill easily be overfitted, leading to poor generalization capability.
Methods with constrained covariance structure, such as LDA akiéa6s, on the other
hand, provide compromised model flexibility, leading to large model biasonirast,
MLVMs are capable of characterizing a class by latent bases, which contain less number
of unknown parameters, and providing great model flexibifityhe meantim&Tipping

and Bishop, 1999). Therefore, it is worthwhile to explore the use of Miidivremote

sensing data clustering and classification.

Characterizing a cluster/class using a certain parametric probabilistic distribution in
original domain is problematic whan doesnot assume that distributioln contrast
MLVMs offer flexibility by representing a clads/ several latent bases, whiahe free of
explicit statistical distributions.Moreover, #ce Gaussian distribution only captures
secondorder variance, how to characterize higler within-classvariance is essential
when theGaussian assumption is validai&@hmpsValls et al., 2011 Fortunately LVMs,

such as the SR that represents a class byortngonal bases, or ICA that represents a
class by independent basese capable of capturing higkarder correlationsTherebre,

it is desirable to explorélLVMs for clustering or classificatignwhere inner class
variation is characterized by varioletent bases instead of goarametric distributiorin

original domain.

Since mixture models do not address the latent vargfteet, they are unable to uncover
the hidden signals that associated with the underlying and unobservable physical processes,

nor can they provide a quantitative explanation of the data generation mechanism.

2.2 Latent Variable Model (LVM)

Sinceremote sensingbservationare always of higllimensionality, wih noise and outlierd.VMs

that seek lonwdimensional, noiseless, and meaningful structures in transformed space are crucial for

inverse problems in remote sensifypical LVMs, such asPCA, ICA, FA, SR andnonnegative

matrix factorization MF), have been widely used in remote sensing data processing for various

purposes, including dimension reduction, feature extraction, and slgealvery(Kondratyevand


http://journals1.scholarsportal.info.proxy.lib.uwaterloo.ca/search?q=K.%20Kondratyev&search_in=AUTHOR&sub=

Pokrovsky 1979; Huete, 198@liao and Qi, D07, Amato et al., 2008Qzdogan, 2010; Chen et al.,
2011;Viscarra Rossel and Chen, 2011; Frappart et al., Z2hajl, 20121 et al., 2012

In order to reduce confusion, it is important to point out thatehm LVM here refergontinuous
latent variables modg[Bishop 2006. In a probabilistic formulation oLVM, e , i.e. then] p
dimensionalobservation at sitéQis expressed as a linear transformatof & p dimensional
unknown latent variable¥ with additive noise (Bell and Sejnowskj 1995; Tipping and Bishop,
1999; L ewicki andOlshausen1999;Aharonet al., 2008

e AV « Q pltfBfE (2.3)

As we can see, the general tetm in Eq. (2.1) is expressed more specificallydy. Therefore
comparing with Eqg. (2.1) that considers the overall effect of a physical process, Eq. (2.3) probes into
the sources of the physical process that contribute to the observations. NeverHgel€¢2s3) does
not involve the label information, therefore ignores the effect caused by diffémgsical sources.

There are twassentialimitationsabout LVMSs.

LVMs are inefficient in addressing labedlated tasks, e.g. clustering and classificatio
The main reason is probably because the columifsaire indiscriminative to different
sources Therefore the label information of observatmrcould not be inferred from the
representational relationship betwé&ande . Consequently, the kegsue in adapting
LVM for the clustering or classification is to explicitly learn differéufor different

classes, as is conducted in MLVM.

Except fromlow efficiency inlabellearningtasks such as clustering and classification, the
abovementioned L\Ws areinadequate imdiscovering informative signals for some other
image processing tasksuch as denoising. It is maintye tothe difficulties in capturing
nonlinear and local structur@s feature spacehensignal discovery is performed othe

whole datasetwhich assumes enormous complexity due toesthece heterogeneity effect

On the other hand, it has proved more efficient to learn representational signals for
individual sourcesseparatelye.g. Tipping and Bishop, 1999Therefore, it is desikde to
explore mixture of LVMs where a LVM is built upon one component of the mixture,

instead of all components.


http://journals1.scholarsportal.info.proxy.lib.uwaterloo.ca/search?q=O.%20Pokrovsky&search_in=AUTHOR&sub=

2.3 Mixture of LVMS (MLVM)

2.3.1 Model Formulation

Given thelimitations of mixture models and LVMshis thesis therefore focuses on MLVMs, in order
that the mixture models and LVMs can be mutually complementary and beneficial. In M VMe.
then p dimensional observation variable in clalssis expressed as a cladspendent linear
transformatioiA of & p dimensional classependent unkmen latent variablesr with additive

noises .
e AV .« Q pRMBRMAQ pii (2.4)
Therefore, MLVM models and learnboth label informatiod &}, with & being class label af ,

and latentmodelinformation, i.e. {A } and { v}, as opposed to mixture model ttztdressesnly

label information, and LVM thatonsidersonly latentmodel information

The essence of MLVM is to model simultaneously two key factors in remote sensing data
generation, i.e. multlp spatial processeand hidden signals, using the mixture components to

discriminate different spatial processes, and LVM to account for hidden signals in each component.

In terms of latent variables learning, MLVM capableof providing latent variablesof strong
representation power, due to its capability to capture local structures in feature space. Moreover,
learning latent variables for individual sources separately, instead of for all sources simultaneously,
may lead to latenvariables, not only of strong representational power, but also of strong

discriminative or explanative power.

In terms of label learning, MLVM isupposed to bmore capable of strike a good balance between
model bias and model variance, considertrogh the model flexibility due to factors, such as the
adaptability of latent bases and the capability of latent variables to capture-dridbeinnerclass
correlation and the model rigidity due to factors, such as the less number of parametersl require

character a class and the constraint imposed on latent variables and latent bases.

Due to these advantageMLVM benefits both signatliscoveryrelated tasks (e.g. data
representationcompression, denoisingnd spectrasource separatiprand labellearningtasks (e.qg.
clustering, classification andhn statistical literature, some modedsich as mixture of PCAI (pping
and Bishop, 1999and mixture offactor analysifMFA, Ghahramani and Hinton, 199Bokoue and
Titterington, 2003 have been dewvabed, and successfully used in a variety of applicatfbrsy et
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al., 1998; Hinton et al., 1997; Yang and Ahuja, 139 and Grauman, 2009Neverthelessthese
techniques only constitute limited examples of MLVM. There is still a lack gérserh MLVM
framework, providing principles and guidelines for building tdekendent MLVMs. Moreoveno
explicit MLVMs have been usedr developedor addressinghe particularities of remote sensing
applications

2.3.2 Optimization scheme

There unknown paramete in Eq. (2.4) can be represented by A hv P , whereP
parameterizegoise distribution. Although the maximum likelihood estimation (MLE)dsally used

for estimating parameters generative modelst fails the taskheredue to the exigince of unknown
label variables & . Nevertheless, the Expectation and Maximization (EM) algorithm can be
employed to approximate MLE by treatingg as unobservable or missing informatiorhe EM
algorithm is capable of estimatingpth zand & iteratively by treating oneof thembeing known
(Bailey and Elkan 1994; Dempsteret al., 197). Therefore, ie EM solution is obtained by
alternating the Eand Msteps:

(1) Firstly, initialize parameters;

(2) E-step: estimatead based ons. In a probabilistic context,d can be estimated by

maximizinga posterior(MAP) distribution ofa givene:.
& AOCI Adw: (2.5)
nafe ©nesina (2.6)
wheren e &x denotes the clasdependent likelihood oé , which allows the modeling of

spectralinformation and ) & is the prior probability of labels, which allows the modeling of

spatial information.

(3) M-step: updates based ond . In this step, lieessencés to learnatent variablesn each class
separatelyusing the observations in the associated clasa. probabilistic approaels e.g. the
probabilistic PCA(Tipping and Bishop, 1999and probabilistic SRLewicki and Olshausen
1999, sis estimated byirstly integrating out the latent variab® thenmaximizingthe ML of e
with respect téAandP, finally estimating vby maximizing itsposterior distributionWithout

considering the statistical distributignssi can be obtained efficiently by sommatrix
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decompositiorand machine learningechniques, e.g. singular values decomposition (SVD) for
learning PCA parameterandK-SVD technique for learning SR paramet@hkaronet al., 2006)

(4) Repeat Eand Mstep until the parameters stabilize or a certain number of iterations have been
reached.

The EM algorithm is famous for its capability of increasing the likelihood of obsergaticach
iteration. Neverthelessthere is no guarantee that it will converge to the global maximum of the
likelihood function (Wu, 1983. In practice, considéng the sensitivityto the initial values, EM
algorithm can be performed multiple times using different initial values, in order to increase the

chance of finding the optimum solution.

2.3.3 Model Specifications and Variations

Since the framework defineith Sections 2.3.1 and 2.3.% very flexible, model assumptions and
optimizationschemecanbe further specifiedin order toaccount forthe particularities of different
applications Since dfferent combinations of the specifications may lg¢addifferent variants of
MLVM, principles and guidelinesan therefore be providddr building taskdependent model$n

chapter 2.4threemodelsaredeveloped bydoptingdifferentmodel constraints and regulations.

2.3.3.1 Assumptionson A and v

Different assumptions oA and v lead to different LVMsThe columns ifA define the projection
directions that are capable of reveal i Ainte
always assumed nena n d o m, and t he var#is defnediby diffeeemt eriot i ngne
distributions ofv . For example, to achieve uncorrelated projection directions, PCA as¥ieies)

Gaussian distributed with zero mean and idemtityariance matriXTipping and Bishop, 1999ICA

achieves independent directions by assummiging supeiGaussian or sulaussian distributed

(Bell and Sejnowskj 1995) and SRobtains sparse signal by assumirgadmitting Laplacian or

Cauchy distribtion (Lewicki andOlshausen1999).

The number of columns i\ can be arbitrary. It can bebigger than thedimensionality of
observationse.g. in SRpr be equal talimensionality 6 observationse.g. inICA, or be equal to the
number of classes, e.m the proposed ¥-Means modelGenerally speaking, larger number of
latent bases enables better representation of-olass variationbut in the meantime, increase model

complexity
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Since the remote sensing spectral values are nonnegativerder b achieve meaningful
interpretation, the values of elements i and v are required to be nonnegative in some

circumstances, e.g. when learning spectral endmembespdotrakource separation.

Sometimes, it is not necessaryexplicitly imposelabel constraintAand ¥ Nevertheless, at least
one of them has to be discriminative to different classesrder that the other one can be class
dependenas well For example,n the proposed #-Means modelalthough latent bases isare not
explicitly labeled their association with different classes are achieved irbposing class

discriminative constraintsn v

2.3.3.2 Assumptions on =

Different assumptions on lead to different mixture model#Although= is normally assumed to
follow a Gaussiamlistribution, it sometimess assigned tother distributionsn order to address the
particularities of remote sensing datasetg.= follows Gamma distribution in the proposed

clusteringbased PCA modéb accommodate the distinct statistical progertf SAR speckle noise

Whether noise of differentmixture components should follow the same distribytagpends on
the capability of LVMs in representinglassdiscriminative information While = in Eq. (2.4)is
assumed being theame for different classes, cladependent noise, symbolized by, will be used
instead of , in order toallow different noise distributions for different classes, if the cliiegzendent

information cannot be totallgxplainedoy A v .

The conplexity of the covariance matrix ef depends on the representational capability of LVMs
in capturing the correlation among multivariateriables The covariance matrix of will be a full
matrix, if the correlation effect among variables cahbe fully captured byA v. The covariance
matrix of= will be a diagonal matrixif the correlation effect among variables can dféectively
captured byA v . Moreover, he covariance matrix af will be isotropic matrix (whose oftliagonal
elements are zespand diagonal elemenkave equal valugsif variance heterogeneitffect among

variables can be captured By v .

The existenceof = allows the modeling o$tochastic nature of remote sensing observations or the
uncertainties inhuman prior knowledge concerning the data getiagp mechanismHowever, f
. , thenthemodel defined by Eq. (2.4mouns to a deterministic modgWhich is impractical for

remote sensing data modeling due to significant uncertaintiesmote sensing system. Therefore,
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even using a deterministic model, the nois&atent spacstill need to be estimated and separated in

most applications, e.g. denosing, dimension reduction and feature extraction.

2.3.3.3 Classification vs. Clustering

For label learningasks that aim to learn class labels of remote sensing obseryaimssfication
and clustering can be distinguished, based on whettseknown

In classification, sinces hasbeen learnt from training samples,-step in EM iteration can be

avoided, andhe estimation ofabels & requiresperformingE-step only once

In clustering,however,the learningof & has to beachievedteratively by alternating the-Eand

M-steps until convergence.

2.3.3.4 Supervised vs. Unsupervised Latent Variable Learning

For latent variable learningsks that intend to learn latent bases and latent varia@pending on

whether & are knownthe tasks can be categorized into supervised and unsupervised ones.

In a supervised case, since the labels of observatiorsre known, Estep can bevoidedand
latent variable learning can be achieved by perfornviagteponly once In this casethe MLVM
will degrade intad LVMs, where0 denotes the number of classes. In unsupervised case, the learning

of latent variables has to be performed iteratively by alternating-thedEM steps until convergence.

2.3.3.5 Label Prior

In Eq. (2.6) be label prorr} & is used tanodelthe spatial correlation effect among labels. In remote
sensing observations, spatiatlipse pixels tend to be caused by the same spatial process. Therefore,
they tend to admit the same label. The Markov random field (MRF) is a popular technique for
modeling the spatial correlation effect in labels. It assumes that two pixels are coifaatgdhey

are neighborsin spatial domain. If the label prior is adopted, irstBp, the estimation of labels
requires solving a MAP problenie.d A OGCI A @ . Otherwse, it degrades to a ML
problem,iead AOCI A @
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2.4 Models Developed under MLVM Framework

Based on the framework defined by Eq. (2.4), three MLVMs are achievettidpting different
constraintsand model specificationsn order to addresdifferent aspects of remote sensing data
analysis.

2.4.1 Mixture of Probabilistic Sparse Representation (Abbreviation MPSR)

A mixture of probabilistic SR (MPSR) is proposé&u Chapter 3for supervised hyperspectral
classification, consideringhe gapthat while SR is an emerging and powerful technique for
hyperspetral image representation, there is still a lackaamixture of probabilisti approach for it

This Section starts with the model definition apptimization followed by the discussion of the

modelcharacteristics.

2.4.1.1 Model Definition and Optimization
The geneative model of MPSR is similar to Eq. (2.4), except that™Q pltf8 h) is assumed
being known, and that is assumed being sparsely regentable by only a few columns (also called

atomg in “A . Accordingly, the class conditional distributiohe is expressed as:

ne 7$$TA®D—0 AV e AV (2.7)
” .’:[ Tt
nE m 2.9
T T

Therefore, the unknown parametenslude 5 v h and & . Following the optimization
scheme in Section 2.3.2, this model can be solved by EM algorithm which alternates two main steps
E-step: estimating & given 5, and M-step: updatings given & . In order toaddress the spati

correlation effectthe Estep solves a MAP problem, wheahelabel prior is modeled by MRF.

2.4.1.2 Model Characteristics

The benefits of MPSR can be summarized into the following aspects:

Instead of characterizing theithin-class variatiorby a covariance matrix in Eq. (2.2),
MPSR captures the variation by the variability of base# inNote that the number of
columns inA (i.e. &) is allowed to be bigger than the dimensionality of spectral vector

(i.e.n), and that thdatent basesn ‘A are allowed tcassume arbitrary distributions and
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correlations Due to these factor\ can even be implemented by substituiisgcolumns
for training samples in clas® in a nonparametric manneTherefore A provide
flexibility and adatability in capturingcomplexinner-classdata structureas opposed to
the covariancenatrix approach that is limited texplainingseconeorder correlation.

Because of the great representational capabilit of , it is reasonable to assume tha
noise= is classindependentand admits a diagonal covariance matibherefore,the

number of parameteis the distribution ok is grealy reduced, thushe risk of overfitting.

In an unsupervised scenartmnsidering thalearring latentbasedi.e. dictionary) for each
classin MPSR is more capable of capturing the complex data structure ldzaring
latent basesfor the whole dataset consistirgf multiple classesit is worthwhile to
mention that assumingA to be unknownvariablesand learning /A in MPSR may
increase the representational capability ofl@Red approaches for ldevel tasks, such

as image denoising and compression.

2.4.2 K-P-Means Model

The K-P-Means approacks proposed in Chapter 4, fgpectral endmember estimatjamhich is a
fundamental issue iremote sensing data processing. It is proved in this thesis that the combination of
latent model and mixture model, as conducted-id-KMeans algorithm, is capable of providingew
route for spectral unmixingThis Sectionstarts with the model definition df-P-Meansand the

optimization method, followed by the discussionh# nodelcharacteristics

2.4.2.1 Model Definition and Optimization

The generative model of-R-Means is the same to Eq. (2.4), except hatQ pRfB R A
and the label constraint 6iis achieved by imposing constraints ®n.e.,the elements irwshould
be nomegative, andn the'@h class the™@h element should beigger than the rest. According, the

model can be formulated as:
e B i+ EADA i 1 2.9

where= is independently and identically (i.i.d.) white noise. Therefore, comparing with MPSR that
imposes the sparsity constraint §nK-P-Means imposes the constraintiof i on v,

Accordingly, Eq. 2.9 can be reformulated as:
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. e B iFT F mEAOA i m (2.10

where« i s called the dApurifiedo pixels, because i

atons/endmemberss  associated with smaller coefficienis

Following the optimization scheme in Section 2.3, inknown parameters inkMeans, which
include 5 i h$ and &, are estimated by EM algorithm, which treats as missing
observations, and repeats the two steffl convergenceestimating labelsa given 5, and updating

Abased on label information.

K-P-Means is designed for addressing a linear spectral unmixing problem, where a spectsal pixel
can beexpressed as a linear combination of spectral endmem{aersT he essence of-R-Means is
to separate the individual contributions of endmembers, and label a pixel by identifying the
endmember that dominates this pixel. WhilePHleans are used here fgpectral unmixing, it may
be applicable to other clustering or signal discovery problems where the observations are a

nonnegative lineacombinationof nonnegative signals.

2.4.2.2 Model Characteristics

The benefits of KP-Means can be summarized into thlbowing aspects:

Comparing with GMM, he general terrm defined by Eqg. (2.1) is expressed more
specifically byB i =|= in Eq. (2.9. Accordingly, as opposed t@&MM, or mixture

model in generakhat considethe overall effect of a physicatqress, KP-Means probes

into the sources of the physical process that contribute to the observations. This property
of K-P-Means allows it to separate thedependent contribution afpectral endmembers

(defined as the spectdmpigelsof HApureod material s)

Moreover, tce K-P-Means characterizes a class &ynumber of) latent bases={=
which are more capable of capturing iretss variance thasingle mean vectord in

Eq. (2.1), it is reasonable to assume that K-P-Means admits lessomplex covariance
structure than in GMM. In the scenario wh&®M characterizes a class by the mean
vector and &ull covariance matrixand where K-P-Means characterizes a class tby
latent bases-|= and an isotropic variance matrdf = , GMM will requireb i 1 N

p ¥¢ parameters for characteriziradl classeswhile K-P-Means require only 1 p
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parameters for characterizirg)l classes.Since K-P-Meansis capable of providing a
parsimonious parameterization of clusterss itess prone towerfitting. Moreover, there
are norestrictassumptions othe distribution and number of , which gives the KP-

Means some flexibility to characterize the data variance.

Comparing withLVM s defined byEq. (2.3), where the mixed pixels , regardlss of
thar label information, are used for learning latent ba&ek-P-Meansaccounts foithe
label information by separatirtge individual contributions of differe@ndmembersand
learns latent bases|= based on the associat@dp u r ipixeélse«d 0 Therefore,by
considering the label informatiof-P-Means constitutea powerful nonnegative matrix

factorization technique.

2.4.3 Clustering-based Principal Component Analysis

The Clusteringpased®CA modelis proposedn Chapter 5, for addressirtije SAR image denoising
problem, which igundamentafor SAR image processing and interpretation. It is proved in this thesis
the stateof-the-art SAR image denoising techniques can be achievegebiprming PCAbased
denoisingfor individual clustersas conducted imtlusteringbased PCAThis Section starts with the
model definition ofclusteringbased PCAand the optimization method, followed by the discussion of

the characteristics of this model.

2.4.3.1 Model Definition and Optimization

The generative modaedf clusteringbased PCAs the same to Eq. (2.4), except thAt are PCA
bases, and that is additivesignal dependent noise (ASDMjat assumes zeroean i.i.d. Gamma

distribution.
o 'A v [ (2 . 11)

where v represents the noifeee latent variabk which is estimated by LMMSE in PCA domain.

The task of denoising is achievedéstimatingvy andreconstructing SAR image using A Vv .

Following the optimization scheme in Section 2.3l& tnknown parameters aiusteringbased
PCA, which includes v h’A and & , are estimated by EM algorithm, which assumes the
labels & as missing observatioand repeats the two pte Estep:estimating & given 5, and M

step: updating A given thelabel information. In Estep label learning is achieved by performing
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clustering in PCA domain.dreduce dimensionality and resist the influence of nemegral leading
principal components (PCs), identified by the MinimumsEriptionLength (MDL) criterion are used
to feedthe K-meansclustering algorithmin M-step "A , after beig learntfor differentclasses, are

used to estimatev via aLMMSE approachin order toreconstruct thelean SAR image.

2.4.3.2 Model Characteristics

Clusteringbased PCAalgorithm assumes the following characteristics:

Clusteringbased PCAcan be treated as an adaptation d?ACA (Tipping and Bishop,
1999 for addressing the SAR imagkenoising problem. It assumes the main advantages
of MPPCA model, i.e. learning PCA for individual classes is more efficient than learning
PCA simultaneously for all classes. Nevertheless, it differs frdPPGA in terms ofthe

implementations of EM stepi order to fit into the SAR image denoising scenario.

Although it is general practice to perform image denoising in latent space, it is not until
recent years that it is recognized that image denoising is more efficient when latent models
are learnt forindividual classes. The effectiveness of denoising in latent domain depends
highly on whether the latent variables can sparsely represent the scene signal. And the
sparsity can be achieved by performing analysis on observations in the same class, which

assime similar spectral or spatial patterns.

2.5 Chapter Summary

In this Chapter, a fraework of MLVM was introducedfrom a comparative perspective with the
mixture model and LVM. Three variants of MLVM were described in terms of model assumptions
and optimizéion scheme The characteristics and advantages of these models relative to LVM and
mixture model were discussed. It was demonstrated theoretically that the proposed MLVM models
(i.e. MPSR, KP-Means anctlusteringbased PCRassumeheoretical advantages/er either VM

or mixture model. In the following ChapgeB, 4 and 5, the proposed models will be introduced in

detail.
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Chapter 3
MPSR BayesClams si fi dHatpiears pkefmagalt y

This chapterpresentsa Bayesian method for hyperspectigiage classification based @parse
RepresentationfSR) of spectral information and Markov Random Filed (MRF) modeling of spatial
information. We introduce amixture of probabilistic SR (MPSR) approach to estimatihe class
conditional distribution, whig proven to bea powerful feature extraction techniquelte combined

with labels prior distribution in a Bayesian framewoilhe resulting Maximum a Priori (MAP)
problem is estimated by graph cuj -expansion technique. The capabilities of pneposedmethod
areprovenin severabenchmarkyperspectral imagesf both agriculturabndurban areas® [2014]

IEEE. Reprinted, with permission, from [Xu Linlin, and Li J., Bayesian classification of hyperspectral
imagery based on probabilistic sparse repraesiemt and Markov random field, IEEE Geoscience and
Remote Sensing Letters, 04/2014].

3.1 Introduction

The classificatiorof hyperspectral remotely sensed imagery constitutes a challengingidétg
and machine learning problem digenot onlythe highdimensiondty of variousspectral bandsut
also theambiguity in spectral signatures of different classassed by thexistence of mixed pixels
(Li et al, 2012) In light of these difficulties, onessentiaissue is how to extract the most compact
and discriminativefeaturesfrom the high dimensionalhyperspectral bandsAmong many recent
studies CampsValls et al, 201Q Chen et al.2011;Li et al, 2012; Chen et gl2013; Xia et al.
2013) the Sparse Representation (SR) approach has provem an lextremely powerful todbr
hyperspectralmage classification(Chen et al. 2011; Chen et gl.2013) It assums that thehigh
dimensional spectral vectoan be sparsely represented by a few atoms in a dictionary consisting of
training samplesTherfore,forcing sparsitythe training samples in all classes will compete for their
involvement in representing the spectral vector. The maevantclass will eventually win large
shares, resulting in small representational residual, while the wrdegsselevant classes will have

no or little involvement, leading to high representational residual. Therefore the label of a pixel can
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be determined by selecting the minimum residuals among all classes. Whélpghasichhas proven

its capability in reealing the most discriminativeformation hidden in high dimensional spectral
vector, there is still a lack girobabilisticmixture approach which provides the probabilityaferes
rather than residuals. probabilistic mixture approach is especially important considering the facts
that integrating contexture/spatiahformation is an essential issue for hyperspectral image
classification(CampsValls et al, 2010 Chen et al.2011;Li et al, 2012;Chen et al.2013) and
emplg/ing Markov RandomFields (MRF) method, a classic and powerfolethod for modeling
spatial information requiresconditional probability in a Bayesian frameworkGeman& Geman
1984; Li 2001, Deng & Clausi2005 Li et al., 2012)

In this chapter we praposed anixture of probabilisticSR (MPSR)approach to be integrated with
MRF technique in Bayesian frameworkistead of using a unified dictionary consisting training
samples from all classes, we design one dictionary for each class. And we theesfoeca
conditional probability for spectral vectdsy sparselyrepresering it over the classdependent
dictionaries While this probabilistic formulation of SR is used with MRF for hyperspectral data
classification, it may also help other statisticatimoels in other application3he rest of thehapter
is organized as follows. Sectidh?2 discusses thproposedVIPSR method and its integration thvi
MRF technique. In Section 3.8xperiments are designedexamine the performance thfe proposed

method.Section3.4 concludes this study.
3.2 Proposed Approach

3.2.1 Problem Formulation

In this chapter we denote the discrete lattice spanned by hyperspectralryag€, and a site in the
lattice by"® "Y We represent the observation at &by e , a pdimensonal random vector taking on
values of various spectral bands, and the label of(biyex, a random variable taking on a class
pfB RO . Then a hyperspectral image can be denotefEas DN Y, and the labels of this image
asm  as® "Y. In the classification problem, we are trying to imdsased o), which in the

Bayesian framework, can be achieved by maximizing the posterior distributiaiveh e,

noge 91 exn a (ChY)
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wheren e denotes the probability distribution of spectral vestaronditioned ond, which
allows the modeling of spectral informatjon & is the priori probability of labels, which allows the
modeling of spatial information.

In this chapterr) exx is approached bg novel MPSRapproachto mine the most discriminative
information hidden in spectral bands, whijex is implemented by the MRBased Mui-level
Logistic (MLL) prior to constrain regional smoothness. The M#Bblem is solved by the graph cut

1 -expansion algorithm.

3.2.2 Mixture of Probabilistic Sparse Representation

In this chapter we assume that a spectral vector in a class can be sparse represented by the training
samples in the same class. Therefore, as oppmsethssic SR approach that adopts a unified
dictionary for all classe¢Chen et al. 2011, Li et al, 2012) we adopt separate dictionaries for

different classes. We express the observed signal variable ‘@tsitedbelongs to clasas:
° AV = (32

whereA  $ REB R s the dictionary consisting of training samples in cigsy is the
sparse vector corresponding to cli&shose norzero elemerst define which columns i will be
used and= is the classndependent zermean Gaussian noise with diagonal covariance matrix
Al t hough itdéds reasonable to assume different
unknown paramets, consequently the risk of overfitting. In our formulation, we assuméftimtis
capable of capturing the discriminative information ein, thus the random noise is class
independent. We tredk v as fixed effecthence theclassconditional likelihood of spectral vector

e can be expressed as:

I"] [ w/& QD— [ ] ‘A v [ ] !A v (33)

Tt (39
I

The matrixA can be implemented as a dictionary storing training samples in‘@l&isen the
dictionary’A the unknown sparse vectercan be estimated by solving the following optimization

problem.
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v ®i "Q6shéy e s suljecttosgys T (35)

Thea normsZs will simply count the nonzero items im. So the optimalv is estimated by
minimizing the representation error with constraint on sparsity level. ThibddP optimization
problem can be solved by some greedy pursuit algorithms, such as Orthogonal Matching Pursuit
(OMP) or Subspace Pursuit (SP). Interested reaater referred tdropp & Gilbert (2007) andDai &
Milenkovic (2009)for further information. The estimation of the second unknown parametdies
on the label information. This issue can be solved by Expectation Maximization (EM) algorithm by
treating the labelmas missing information (Deng & Clausi, 2009)herefore is estimated from

representation residuals in an iterative manner (see Algorithm 1).

This MPSR leads naturally to a discriminative model. Assuming the labels of different sites are

independent, according to the Bayes rule, the posterior probabifity of
nas °negna (3.6)
Assuming the classes are equally likely, theise © 1 e x . Therefore, according to the MAP

criterion, we can estimateby maximizingr) e Sx over different classes. We refer to our classifier

asMPSR whose detailed impleméation is summarized in Algorithm 1.

Algorithm 1: MPSR

Input : training dictionaries for all classe® /8 HA |, data matrixj={e sQ "Y¥
Output: class labelm  as® “Y
Initialization : g£od, p;v OO0 O0Ahe Rt EAI'® pitf8 O AT & Y
whiled Q0 @iiio QQ®Q i do
a Oi QaQé ¢ Me
DLWie A VSO O0Qi ®o

end while

3.2.3 MRF-Based MLL Prior

Although MPSR itself constitutes a classifier, it ignores the contextual information which is of great
importance for hyperspectral data classification. We therefore further incorporate the spatial

information by using the MR#Based MLL prior. The MRF is a classicalethod for modling
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contextual informationGeman & Geman, 1984t promotes identical class label for spatially close
pixels. The MRFbased approach is often implemented by the MLL model, wiaahbe expressed as
(Li, 2001}
Ra -QonB. B. | am (3.7)
where() denotes the neighborhood centered at'@itad & pif & &, while ahx

pifa «.

3.2.4 Complete Algorithm

The MPSR and MLL in Sectior8.2.2 and 3.2.3 are incorporated into a Bayesian framework and

solved by the MAP criterion. The optimal labelimgan be obtained according to MAP criterion:

B DI GQEB. & ¢ "@rgh hv B 1 ah (3.8)

wher¢g is the weighting parameter that determines the relative contribution of the two components.

This combinational optimization problem of estimatidgiven and v is solved in thischapterby
the grapkcut-based| -expansion algorithm which provecking capable of providing efficient and
effective approximation to the MAP segmeidn in computer visionBoykov et al., 2001Bagon
2006. We refer to the complete algorithm in th&ection as MPSRMLL, whose detailed
implementation is summarized in Algorithm 2. The time complexityM®SRMLL is largely
determined by the complexity of OMP algorithin:t ) Owith M being the number of atoms in

dictionary, and the complexity of theexpansion @orithm:0 “Y with T being the number of pixels.

Algorithm 2: MPSRMLL

Input : training dictionaries for all classe®& F8 HA , data matrixj={e SO "Y¥
Output: class labelm  as® Y
Initialization : god, p; v OO0 0Ahe Rt EAI'® pitf8 O AT & Y
while 6 Q0 ‘@iiio QQwWQ i do
'E nesr QsQ pRB GE Q@Y
a | Qon G HQE &
OVwie A vsd oQi QO

end while
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3.3 Experiments

We adopt three benchmark hyperspectral images: AVIRIS Indian Pines, University of Pavia and the
Center of Pavia (referred tdyperspectral Remote Sensing Scef@®d 3)for detailed information) to

test the proposed algorithms. The first image was captured by Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS) over a vegetation area in Northwestern Indiana, USA with spatial resolution
of 20m, consisting of 145 x 14%pixels of 16 classes and 200 spectral reflectance bands after
removing 20 water absorption bands (1048, 150163, and 220). The other two hyperspectral
images are urban images acquired by the Reflective Optics System Imaging Spectrometer (ROSIS)
with spdial resolution of 1.3m, consistingf 103 spectral bands after removing 12 noisy bands. The
PaviaUniversity scenes centered at the University of Pavia, consisting of @4@xpixels, while the
PaviaCenter scene at the center of the Pavia city, catigig of 1096x492 pixels. Both images have

9 groundtruth classes.

3.3.1 Design of Experiments

We implemented Algorithsil and 2 in Section8.2.2and3.2.4 which are referred aglPSR2 and
MPSR2MLL. To examine the influence of we forced in MPSR2 andMPSR2MLL to be unit
matrix. And the resulting algorithms are referred tdvlBSR1 andMPSR1MLL, respectivelyWe
experimentally sefter=20 ands=0.1 for MPSR2 andMPSR2MLL, andf ¢ ntt v for all
proposed algorithmsln Section3.2.4 we expbred thke sensitivity of these parameteidle also
implemented the OMP algorithm @®hen et al. (2011)and adopted the residuals in OMP as data cost
to feed,] -expansion algorithm (referred to as OMPMLL). Moreover,csithe MLRsubMLL
approach in Li et al. (20123 also MRFbased approach, we included this algorithm along with the
MLRsub for compason study. The smooth cost in MLRsubMLL was set to2bfr optimal

performance, whilall other parameters followed Li et al. (2012)

For the labeled pixels in theskatasets, we randomly select a certain number of pixels from each
class as training sampleshile the rest labeled pixels are used as test set. For Indian Pines dataset,
training samples in each class constitute 10% of the total samples in that clagse Btirer two
datasets, we adopt a popular approach, and the number of training sangalels class ithe same
asthat inChen et al. (2011For further details the reader is referre€Cten et al. (2011)

To be consistent with the other researchers adopt three numerical measures, overall accuracy

(OA), average accuracy (AA), and theoefficient for evaluation purpos®égon 2006. To account
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for the possible bias produced by random sampling, each experiment is performed 10 times on
different sampling resultsThe numericalvalues in Table.1 are the average of the 10 realizations.
But the maps ifrigure3.1 are from one realization.

3.3.2 Numerical Comparison

Table 3.1provides the statistics of different algorithms on three benchmark dateetall,
MPSR2MLL greatly outperfored the other approaches on most datasets, achieving OA of 97.8%,
99.1% and 99.4% respectively.

Comparing with MPSR1 andMPSR2, the OA of MPSR1IMLL andMPSR2MLL increased on
average 25%, 21%, and 6% on respectively lineet datasst indicating the importance and benefit
of integrating SRoased classifier wittMRF to utilize both spectral and spatial informatidor
hyperspectral image classification. MLRsubMLL also increasigaificantly the performance of
MLRsub. Howeer, nearly no performance increase ©MPMLL over OMP was observedlt is
mostly becauseOMP is hardclassifier which produceresidual features rather than probability

features.

Comparing withMPSR1 andMPSR1MLL, MPSR2 andMPSR2MLL achieved higher OA on
Indian Pines, slighthhigher values on Pavia U, antbmparablevalues on Pavia C. These results
justify the idea of accounting for the variance heterogeneity across different spectral bands. Moreover,
they may also indicate that addressing variance inigemeity is mor&eneficialwhen the quality of
training samples is low, considering that the Indian Pines dataset, on whidRB&2 and
MPSR2MLL achievehigher performanceéncrease than on the other two datasets, assumes higher
dimensionality due tamore spectral bands, heavier mixed pixel effect caused by lower spatial
resolution, and smaller number of training samples in most classes than Pavia U and especially Pavia
C.

It is desirable to compafdPSR2MLL and MLRsubMLL, since both approaches afRRvMased
generative models for MAP classificatiolPSR2 slightly outperformed MLRsub on Indian Pines
and Pavia U, while MLRsub achieves better results on Pavia C. Nevertheless, the adoption of MLL

prior enabledIPSRMLL to achieve higher OA anlbdvalueson all datasets.
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Table3.1: Overall accuracy, average accuracy, asthtistic obtained by different methods

The best results are highlighted in bold typeface
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Figure3.1: Classification maps obtained by different methods on AVIRIS Indian Pines dataset (overall
accuracy are reported in tharenthess).

3.3.3 Visual Comparison

Figure3.1shows the classification maps by different algorithms on the Indian ifiage Generally
speaking, it indicates consistent results with the numerical measures. As we caly@#bms
without MLL prior, i.e. OMP, MPSR1 MPSR2and MLRsubproduced intege artifacts in the
classification map due to the existence of mixed pikelhe image Although all four algorithms
performed seemingly well, carefiispectionindicatesthat MPSR2yields fewer artifacts tharthe
othersin certain classes, e.g. GrassRure, BuildingGrassTreeDrives and Soybeassin. By
combiring with MLL prior, MPSR1IMLL MPSR2MLL and MLRsubMLL produced very smooth
results, although there still exists misclassified patches in classes such as Soyhess Building
GrassTreeDrives. Neverthelesssome small classes such as aegse totally misclassifigdbecause
of the lack of enoughraining samples for small classé¥e also noticed that there are not much
difference between the map ©MPMLL andOMP.

3.3.4 Sensitivity of Parameters

The Sectionexplored the sensitivity of two important parameters, i.e. sparsity level and smooth cost
for SR-based algorithmdrigure3.2 plots the error bar of OA as a function of sparsiand smooth

cost’ based on the AVIRIS Indian Pines dataset.

Figure3.2(a) indicates thaMPSRbased algorithms achieved the highest performance when sparse
level was 3. And from sparsity level of 3, the performancklBSRbased algorithms reduced quite
sharply. This is not surprising because increased sp@regélallows the wrong class to represent the
test sample equally well as the true class, consequently leads lmsshef discriminative power.
MPSR2MLL achieved higher OA thaMPSR1MLL, and bothMPSR1IMLL and MPSR2MLL
outperform OMPMLL when sparsity leV is lower than 30. OMP achieved stable results and

OMPMLL demonstrated slightly increased performance on high sparsity level.

In Figure 3.2(b), the increase in smooth cost increased the performanddéP&R1MLL and
MPSR2MLL to a stable level, but did nimidicate noticeable influence on OMPMLL. Moreover,
MPSR2MLL achieved higher accuracy but lower variance M&®&ER1MLL across most smoeth

cost levels, indicating the worth of accounting for the variance heterogenbify$i.
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Figure3.2: The error bar 0DA as a function ofparsityt (a) andsmooth cost (b).

3.4 Conclusion

In this chapter we have proposed mixture of probabilistic sparse representation approach to be
integrated with MRF in Bayesian framework for hyperspectral image classification. We assume that
the spectral vector in a class can be sparselgsepted by the training samples in the same class.
Moreover, the representation error is assumed being-icldsgendent, with zero mean and diagonal
covariance matrix. Based ¢heseassumptions, we have derived the class conditional distribution of
spedral vector,which is used with MRF labels prior distribution to form a MAP problerhe

proposed approach is solved by graph joxpansion techniques. nObenchmark hyperspectral

imagesthe proposed algorithiaxchievel new stateof-the-art performance
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Chapter 4

K-P-MeansoSpectBndmember Estimati on

This chapterpresents KP-Means, a novel approach fepectral endmember estimation. Spectral
unmixing is formulated as a clustering problem, with the goal ¢t-Means toobtain a set of

"purified" spectral pixels to estimate endmembers. ThE-Means algorithm alternates iteratively
between two main steps (abundance estimation and endmember update) until convergence to yield
final endmember estimates. Experimentsigdioth simulated and regpectal images show that the
proposed KP-Means method provides strong endmember and abundance estimation results compared
to existing approache® [2014] IEEE. Reprinted, with permission, from [Xinlin, Li J., Wong, A.,

and Peng, J., #-Means: a clusteringlgorithm o f K Apur i f ispedral endreemlves f or
estimation, IEEE Geoscience and Remote Sensing Lei@214].

4.1 Introduction

Accurate estimationof the spectra of pure materials calleddmembers is essential to spectral
unmixing that aims at dstating for each pixel the fractionabundancesf endmembersCurrent
methods for endmember estimation can be categorized as geometric, statigticadarse coding
approaches(Bioucas et al., 2012)Although all these approaches have their own respective
advantages, it is undeniable tlEtdmemberxtraction would be more straightforwaifdwe have
fipured pixels that are due timdividual endmenbers,rather than multiple endmembers, for a number
of reasonsFirst of all, classical gometric approachéhat rely on the presence of pure pixels, such as
vertex component analysis (VCANd&scimento& BioucasDias 2005 would achieve optimal
performanceMore intuitively, if we know the group of pixels &t are due to a particular endmember
we can just use thmeanvalue of pixelsas an estimate of the endmembeverthelesspure pixels

are rare to obtain directly frothe hyperspectraimages due to factors such as low spatial resolution

or the compleity of ground targets.

Given these considerationdig chaptertherefore intends to explore the feasibility aftaining
fi p ur ipikels éramdmixed pixels in order to achieve simplified yet efficient endmeggianation
A fApurifiedd pixel is defined as theesidualof mixed pixelafter removing the contribution cll
endmember except the onthat dominates the pixel. We estimdigurifiedd pixels in two steps
based on the abundance information of the hyperspectral .irfixge we partition all pixels into

several groups that are dominated by different endmembers. Sdopipikels in each groupwe
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remove the contributions due tmndominant endmembers in that group the first stepsnce a

cluster is defined by pdominant endmembers, our approach differs from other -laiizing
approachesZare& Gader 2010;Castrodacet al. 2011 Martin & Plaza, 201)in spectral unmixing
literature where a cluster may involve multiple significant endmemb¥¢estreat the pufied pixels

in each group as realizations of endmember subject to random noise, and thereby use the expected
value of the pixels as the endmember estimBe. resultingalgorithm, which we will refer to as K
P-Means algorithm alternates iteratively betmetwo main steps (abundance estimation and
endmember update) until convergence to yield final endmember estimates. The capabii®y of K

Means is proved by experiments on both simulated and real hyperspectral images.
4.2 K-P-Means

4.2.1 Problem Formulation and Motivations

This chapteraddressea linearspectral unmixing model where the observed spectral pixels ftisck
representedby endmember matrixA and abundance matriy with independently identically
distributed (i.i.d.) Gaussian noide

n nNA 'E (4.2)
® v =
L e A Ae DO "
. . 8¢] . 4.2
s g ThEMBhE & (42)
6e O &6VO .

wherevis a0 p nonnegativeabundancevector, that measureshe contributionof endmembers

=|= 0O pltB O ton p dimensionakpectral pixels :
e B | =|= . (4.3)

In most cases, the endmember coIIecti@n contributeunequally toe , andthe group of pixels
dominated byk is denoted by, . Therefore, the image can be partitioned iftosetsy Q
pltF8 AY . In order to reduce the coupling effect among endmembteis, reasonable tanfer
={= Q plgB O separatelyrom pixelsin 7 - Nevertheless, mixed pixels in the same class may still

admit multiple endmembersn brder to further remove the influence of lelgsninant endmembers,

it is desirable taise the proportion oé that is solely due tthe contribution olomina endmember
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=|= to estimat@|=, as opposed to usirsg wholly. We refer toe after removing the contribution of
lessdominante n d me mber s as fApurifiedo pixel

Not only good abundancenformation can be utilized tmo bt ai n fApur idnharedd pi xe
endmember estimation, but accurate endmember estimates can in turn boastuecy of
abundance estimatioi©onsequently, spectral unmixing can be treated as an itengtiiraization
issueby taking advantage of the label information from the abundaiieetherefore preserm the
following Sectiors a K-P-Means clustering algorithm which intends to enhance endmember

estimation based on the HApur i inforenaion. pi xel s by exrg

4.2.2 K-P-Means Model

This SectionformulatesK-P-Meansfrom a comparative perspective withe classical KMeans

algorithm.In K-Means, the spectral vector in clé@san be expressed as:
° O . (4.9
wherel is the mean vector of cla¥and= is classindependent white noise. Based on the
following objective function:

O aQgB B e O (45)

wherem  asQ pltfB i are the labels of pixelsK-Means algorithm iterates two steps:

estimatingmgiven O , and estimatingd based om
Similarly, the generative model &f-P-Meansis formulated as:
e B iF -EAOA i I (4.6)
where thegeneratermd in K-Means isexpressednore specifically by i =|= It means that

K-Means characterize a clabg the mean vectan , while K-P-Meansdefines the clasby the
dominant endmembe{c , whose abundande is the biggest Therefore, comparing with #leans
that considers the overall effect of a physical proces$f-Meansprobes into lte sources of the
physical process that contribute to the observatidie object functionof K-P-Means can be

expressed as:
+h 6QRB B & =& (4.7)
wheree in objective function oK-Means is substituted by
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« e B i FT . (4.8)

Therefore as opposed toleansthat adopt mixedpixels e in classQfor estimaing the mean
vectord , K-P-Meansexcludesthe contribution ofless significant endmemberfom estimating
dominantendmembeﬁ}= . Accordingly, =|= in the proposed algorithm can be treated asntiean
vect or o fspeciral pixelsd i. eddhat 6s why our -PdMeagsBaseddmnm i s t
above describethodel, kP-Means iterateabundance estimation anddemember estimation, just as

thetwo steps in KMeans, whichareintroduced in Sectiod.2.3and4.2.4respectively

4.2.3 Abundance Estimation

Following Eq. (4.7), given =|= , pixel labeling requires solving the following optimization issue:
a oidxie B i+ A F st O R i (4.9)

It means thas is associated with th@h endmembe# which will take the largest coefficient
when representation error is minimized. Suppe{se are of similar scale, this optimization issue is

equivalent to firstly estimating by solving:

O1aXQe B i F+ sti T (4.10)

then determining by:
a ®idao (4.11)

As we can see, the estimation of abundandeqin(4.10) is essentially a nenegative least square
(NNLS) issue which can bdfieiently solved by method ihawson& Hanson(1974) Note that the
sumto-one constraint imot necessarysince we only neethe relative magnitudes of abundances to
determinedominant endmembef herefore botiK-Means and KP-Meansmeasure thér el evanceo
of a pixel to different clusters in order to determisdabel Neverthelesfor K-Meansthéir el evanc e o
is measured by thg e o me t r i ¢ fréhcthepizettackassceniers, while for KP-Means, it is
measured byhe magnitude of nonnegative contribution of endmembers to the representdtien of

pixel in aleag square sense

4.2.4 Endmember Estimation

Following Eq. (4.7), given « , K-P-Means updaté= based orthe following generative model:
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« F - (4.12
Sincet is i.i.d. zeremean Gaussian noise, the maximum likelihood estimation (MLE) i the
expected value ofc . Note thalft is possible to apply other endmemlegtractiontechniques, such

as VCA on« to produces candidates $f, it howeve will introduce extraproblems such as the

difficulty to determine the most relevant one.

4.2.5 Complete Algorithm

Assembling Aundance estimation in Section 4.2r'81 endmember update in Section 4.2 the
iterative optimization framework, leads to the complete algorithm-BfMeans, which is detailed in
Algorithm 1. In endmember update step, ander to speed up convergence, the updaterof
endmember igllowed to utilizethe endmembers that lebeen updated he iteration of the two
steps will stop if either the spectral angle difference (SAD, see SetBbribetween endmember
estimates in two continuous iterations is smaller than a given valug)(ice.a predefined maximum
number of iteation (i.e.E O Riréxached.
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4.3 Experiments

4.3.1 Simulated Study

A 64, 64 sized image with mixed pixels of 4 endmembers randomly selected frod&BE digital

spectral library Clark et al., 1993 are simulated, follwing the procedure reported Miao & Qi

(2007) Using the 4 endmembers, mixed pixels are created by firstigimtivthe entire image into

8 8 sized homogeneous blocks of one of the 4 endmembers, then degrading the blocks by applying a

spatial low pass filter of 77 . To further i ncrease mixing degr ee,
pixels with 80% or larger single abundance are forced to take equal abundances on all endmembers.
Zeromean i.i.d. Gaussian noise is added to further degrade the image. The resuljieghienafore

resembles a highly mixed hyperspectral image with measurement errors or sensor noise, which is very

challenging for spectral unmixing algorithms.

Two techniques, VCAZ and MVGNMF (Miao & Qi, 2007)are implemented using the code
provided ly their authors. VCA represents classical techniques that rely on the existence of pure
pixels. Since VCA only extract endmembers, es&imate abundance using NNL&ayson &
Hanson 1974. The comparison with MVENMF is desirable since both-R-Means and MC-NMF
deal with highly mixed pixels. MVENMF used as initial parameters the endmember estimated by

VCA, and 150 iterations in maximum.

Moreover, three variants of-R-Means are implemented.-RMeans used as initial parameters
both endmembers produced YZA and pixels selected randomly from dataset, in order to explore
the sensitivity of KP-Means to initial parameters. The resulting algorithms are referred teRas K
MeansVCA and K-P-MeansRandom respectively. nl K-P-MeansRandom, 5 replicates are
perfomed, each with a new set of initial endmembers, to obtain the solution with smredidagl In
order t o prove the ef fecti v eRMeans, we introduce ifan g Apuri
compari soputihfei d@dd na-pomkMeans),hwhefe ingtead ok is used in
Sectiond.2.4to update endmembers. All variants are implemented '@ith'©50 iandf=0.01 without

explicit explanation.

The consistency between estimated endmerbed true endmembéris measured by the widely
used spectral angle distance (SAD), defined3ak:$ w¢ i + 4] As=k& , and the spectral
information divergence (SID), expressed3as $O0 1+ 'O 14, whereO ef« measures the
relative entropy betweesmand« (Chang& Heinz 200Q. The numerical measures for abundance
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are achieved by replacigwith vin SAD and SID. The resulting measures are called AAD and AID

respectively.

The five methods are performed on simulated image to produce numerical measures. In order to
investicate the noise robustness of different methods, they are tested on images with different noise
levels measurebly signalto-noise ratio (SNR)Nliao & Qi, 2007). For each noise level, 20 images
with independent noise realizations are processed to obtaistissabf numerical measures, as

reported inFigure4.1.
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Figured.1: Performance comparison at different noise levels in terms of (a) SAD, (b) SID, (c) AAD and (b)

AID. In these four statistics, smaller value means better result

Overall, K-P-MeansVCA achieved much smaller SAD and SIDIwes than VCA, and close
results to MVGNMF acrossall noise levels, indicating that-R-Meansis capable of extracting
accurately the endmembers in highly mixed and noisy circumstance. Moreover, the endmember
estimation of KP-MeansVCA measured by SAD ahSID seemed to be robust to noise level. As we

can see, SAD and SID remained at very low values with SNR decreasing from 45 to 20, although
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from 20 to 10 there was large increase in SAD and SID. When SNR=10, we noticeeRiha¢dhs
VCA achieved smalleBAD and SID than MVENMF.

In terms of abundance estimation;AMeansVCA outperformed VCA according to the mean
AAD and AID values across all noise levels. The variances of AAD and AID are also smallé- in K
MeansVCA than in VCA. MVGNMF achieved loweAAD and AID values than K>-MeansVCA.

But this advantage is less significattlow noise level. Overall, these results demonstrate thgt K
MeansVCA can achieve fairly accurate abundance estimation, although it is designed primarily for
enhanced endmeyar extraction.

The observation that donRMeans performed worse than-KMeansVCA and K-P-Means
Random demonstratésh e i mport ance and benefits of wusing
pixels for endmember estimation-FkMeansRandom outpedrmed VCA in terms of all measures
across all noise levelsndicating K-P-Means is capable of achieving acceptable performance with
random initializations|It is not surprising that #-MeansVCA performedbetter than KP-Means
Random, considering the fact that good initial paramei@nsoptimizehe convergencpropertiesof

ill-posed optimization problems.

Endmember estimation by VCA was insensitive to the noise level chahgeSAD and SID
stayed almst unchanged with decréag of SNRfrom 45 to 20 MVC-NMF performed better than
the rest techniques in most cases, although its performance of endmember estimation decreased very
fast from SNR = 20 to 10. We noticed that MNNBAF performed very well when ISR=10 in Miao

& Qi (2007). This inconsistency is probably because we used different endmember for simulation.

Table4.1: Performance of KP>-MeansVCA and VCA measured by me&iD andAID, over different imag

size and varying number of endmembers.
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In order to explore the sensitivity of-R-Means to image size and number of endmem@exisle
4.1 presents the performances of VCA andP#leansVCA, measured by mean SID and AID, over

increasing image sizes from 6464 to 512 512 and the numbers of endmembers from 4 to 15.
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Generally speaking, #-Means is not sensitive to the increasing of image size, and the mean SID and
AID values that achieved by-R-MeansVCA are respectively around 10% and 50% of those
achieved by VCA. Hoever, the performances of both VCA anePdMeansVCA deteriorated with

the increase of the number of endmembers. Nevertheless, the SID and AID values achiexed by K
means are respectively 25% and 50% of the statistics achieved by VCA on average.

All algorithms wereimplemented under the MATLAB platforn©On average it took 0.04, 6.51
and26.24 secondgespectivelyby VCA, K-P-MeansVCA and MVGNMF, to process images with
64>64 pixels, on a PC with a Pentium(R) 2.30GRradCore processor.

4.3.2 Test on Real Hypersectral Images

The Indian Pines image, captured by Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) over

a vegetation area in Northwestern Indiana, USA is used to test the proposed algorithms. The image
has spatial resolution of 20m and conta2® spectral reflectance bands after removing 20 water
absorption bands (10408, 150163, and 220). The image consists of 145 x 145 pixels belonging to

16 different land cover types, as showirigure4.2.

‘ ‘ .Alfalfu DOals
| I I . Corn-notill . Soybeans-notill
=] DCum-min DSoybeans-min
r .Com -Soybean-clean

El Grass/Pasture - Wheat

. h .Grass/Trees -Wnnds

. Grass/Pasture-mowed -Bm lding-Grass-Trees-Drives
- - Hay-windrowed . Stone-steel Towers

Figure4.2: The grounetruth map of 16 classes in AVIRIS Indian Pines image.
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Figured.4: The abundance maps of the corresponding eight endmembers extracted HyNF/C

In this experiment, KP>-MeansRandom with'Qo @%0i andt=0.01 extracted a number of 20
endmemebers from pixels covered by grauruth classes. The abundance maps of eight selected
endmembers are shown kigure 4.3. As we can see, the maps from left to right, top to bottom
correspond respectively to Grass/Trees, -Waydrowed, Grass/Pasture, Soybeania, Corrnotill,

Wheat, Woad, and Stoneteel Towers. These correspondences between abundance maps and ground
truth classes may indicate thatRKMeans identified accurately the endmembers in the image,
considering that different endmembers tend to dominate different classes.thNlegs; the bright

areas of most abundance maps do not match very well the ground truth, except Wheat asteé&tone

Towers. It is not surprising considering the gap that whil®-Means is designed to identify
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individual endmembers, the pixels in themgaground truthclass may actually assume multiple
significant endmembers, due to the complexity of ground targets in Indian Pines image.

Figure4.4 shows the maps of the eight corresponding endmembers achieved b)NM~NCfor
comparison purpose. As wercaee, most endmember maps achieved by NG do not match
the ground truth as well as the maps achieved #ieans, except the two maps correspond to
Wheat and Stonsteel Towers.

4.4 Conclusion

This chapterhas presented K-P-Means algorithm forspectral endmember extraction. Based on
abundance information, we proposed to obtain the
enhanced endmember estimatiomhich can in turn aid abundance estimation. Therefore, we
interpreted spectral unring as an iterative optimization problerand designedhe K-P-Means
algorithmwhich alternates iteratively between two main steps (abundance estimation and endmember
update) until convergence to yield final endmember estimates. Experiments on botlesirani

real hyperspectral images proved thatP#leans is capable of estimating accurately both the

endmemebers and abundance.
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Chapter 5
Clust eoraisgCA BAR | mage Denoising

The combination of nonlocaroupingand transformed domaiiitering has led to the statsf-the-art
denoising techniques. In thhapter we extend this line of study to the denoising of Synthetic
Aperture Radar (SAR) images based on clustering the noisy image into disjoint local regions with
similar spatial structure @ndenoising each region by the Linear Minimum M&xuare Error
(LMMSE) filtering in Principal Component Analysis (PCA) domaBoth clustering and denoising

are performed on image patch&sr clustering, to reduce dimensionality and resist the influehce
noise, several leadingrincipal components (PCs), identified by the MinimurasEriptionLength

(MDL) criterion are used to feethe K-meansclustering algorithm. For denoising, to avoid the
limitations of the homomorphic approach, we build our dengisscheme on additive sigral
dependent noise (ASDN) model and derivie@A-based_MMSE denoising model for multiplicative

noise Denoised patches of all clustemse finally used to reconstruct the nefsee image.The
experimers demonstrate that the proposed algorithm achieved better performance than the referenced
stateof-the-art methods in terms of both noise reduction and image details preser@tj2dl4]

IEEE. Reprinted, with permission, from [Xurilin, Li J., Shu, Y., ad Peng, J., SAR image denoising

via clusteringbased principal component analysis, IEEE Transactions on Geoscience and Remote
Sensing, 03/2014].

5.1 Introduction

Synthetic Aperture Radar (SARas a coherent imaging system is inherently suffering from the
spekle noise, which has granular appearance gredtly impedes thautomaticimage processing

and visual interpretatiollthough multilook averaging is a common wag suppress speckle noiae

the cost of reduced spatial resolutipit is more favorablea develop suitable filtering techniques.
Classical filterssuch as Lee filterLfee 1980) Frost filter Frostet al., 1982andKuan filter Kuanet

al., 1985 thatdenoise SAR images in spatial domainrégalculating the center pixels of the filtering
windows based on the local scene heterogenaitiioughwork well in stationary image area, they

tend to either preserve speckle noise or enasak scene signal at heterogmusareas, e.g. texture

area, boundary, line or point targels.order to bette preserve mage edges, Y& Acton (2002)
designed a speckle reduction anisotropic diffusion (SRAD) method which can be treated as an edge

sensitive version of the classical filters. The perfanoe of the Gamma MAP filtdtopeset al.,
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1990, which denases SAR image viamaximum a posteriori criteria, depends highly on whether the
imposed Gamma distribution can accuratigcribeSAR image.

Instead of denoisingn spatial domain, it has been proved more efficient to perform the task in
transformed domain where signal and noise are easwzp@rateThe waveletechniques assume
that noise mainly exists on the high frequenegveletcomponents and thus can bamoved by
filtering the wavelet coefficients itransformeddomain. This idea has proved great success to
denoise additive white Gaussian noise (AWGN). To adapt wavelet for @&R®ising many
techniguesadoped the homomorphi@pproachwhere speckle noissubject to logransformation is
treated as AWGN and denoised in wavelet domaithbgsholding Gagnon& Jouan 1997;Guo et
al., 1994 or modeling(Achim et al., 2003 Solbg& Eltoft, 2004;Bhuiyanet al., 2007 the wavelet
coefficients However,sincethe performance of denoising is very sensitivéoggarithmic operation
that tends to distorthe radiometric properties of SAR image, techniques based on additive signal
dependent noiséASDN) model were developed ifArgenti & Alparone 2002; Xie et al., 2003;
Argentiet al., 2006Argenti et al., 2003

Although waveletbased denoising methods have proved better efficiency than classical filters,
limitations reside in the inadequate representation of various local spatial structures in images using
the fixed wavelet basefMuresan& Park, 2003;Zhanget al., 2010;He et al., 201} On the other
hand, locally learnt ihcipal Component Analysis (PCA)ases a series ofmutually orthogonal
directions with sequentially largest variances, have shown better capability of representing structural
featurese.g. image edges and textuie PCA domain the scene signal is mostly captured by several
leading Pincipal Components (PCsyhile the las few components with low variancese mainly
due to noise The denoising ofAWGN has beenachieved by filtering the PCthrough linear
minimum mearsquare error (LMMSE)Examples include the adaptive PCA denoising scheme
proposed by Muresan and Par{@003) and local pixel grouping PCALPG-PCA) algaithm
proposed by Zhang et al. (2010Both methods have proved to be more effective than the
conventional waveldbased denoising methoddowever, no efforts have been made to adaptPCA
baseddenoising to SR images. Sinc8AR imagesassume signalependent noise, a hew denoising

modelthattakes intoaccount this particularity is required.

A different line of researchinitiated in Buadeset al. (2005)approaches imagdenoisingas a
nonlocal means (NLM) mblem whereonlocab pixels whose neighlbidnoodssharesimilar spatial

structure, rather thadocald pixels that are just geometrically near to each other are used to perform
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weighted average with the weightneasured bythe Euclidean distances betwedte referenced
imagepatch and thether candidate patek. The NLM method has been adaptied SAR image
denoisingoy adjusting the similarity measure to the multiplicative nature of speckle (@oseet al.,
2008; Zhong et al., 2009;Deledalleet al., 200%. Particularly, the probabilistic patdtased (PPB)
algorithm inDeledalleet al. (2009proved to achieve the stadétheart performance for SARnage
denoising. Moreover heideaof NLM has been extended to combine with the transfornoedach
denoisingapproaches, leading time stateof-the-art image denoising techniggiee.g the block
matching 3D¥iltering (BM3D) (Dabovet al., 200, LPG-PCA (Zhanget al., 201pand SARBM3D
(Parrilli et al., 2012 algorithnms. All methods take advamgea of the enhanced sparsitytiransformed
domain when denoising is performed image patches with similar structure thesemethods
block-matching approach was adopted to fiadeach patch in the imagegroup of similar patches
However, this apprxch faces the difficultyto define the threshold as to haigimilard to the

reference patch is acceptabtealso has high computational cost.

In this study, we extend this line of study to denoiSAR images by explicitly addressing two
issues. First, we build a new denoising model based on PCA technique to account for the
multiplicative nature of speckle noise. Based on ASDN model, we derive a LMMSE approach for
solving PCAbased denoising problem®ur approach is the first to build the P®Ased denoising
method on the ASDN model for SAR image denoising. Besides SAR images, it is also applicable to
other signaldependent noise. Second, instead of using hioatching approach, we employ a
clusterng approach. We propose to use the combination efréogformation, PCA and H#heans
methods for finding similar patches. Based on the statistical property of speckle noise, we proved the
compatibility betweenPCA features and the-Kieans model. This cltexing approach prodeto be
an competitive alternative to the bleakatching approach adopted4iang et al. (2010Deledalle
et al. (2009) anérarrilli et al. (2012)

The rest of thehapteris organized as follows. Section 5dscusses data formati and PCA
analysis. Section 5.8erives theLMMSE filtering of speckle noise in PCA domaiecton 5.4
details the clusterinrbased scheme forAR image denoising. In Section 5the completgrocedure
of the proposed strategy that involves a second stadiscussedIn Section5.6, experiments are
designed to compare the proposed method with other popular denoising techniques. Results obtained
using both simulated and real SAR images aesgnted and discussed. Section diicludes this

study.
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5.2Data Formation & PCA Analysis

The SAR images a collection of all thenagepatchess represented bg data matrix
i e he [BhHe (5.1)
wheret denotes the number of pixels, amd(Q pltF8 FE) is any p vector, representing ttiéh
patchwhich isa small square window centered at ‘fiepixel

lv SAR image
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Figure5.1: lllustration of the acquisition of a patalh SAR image

The PCA can be achieved by perform@@iggular Value Decomposition (SV@n the covariance

matrix of f:
6 6 E 6 + 91 mE n #+
6 6 E 6 aEa T E o om oAt
° & & E & 8 6 E & g (5.2)
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where elenentd in ¢ represents the covariance betweaba two pixels at positiond and6
across the image. Sq provides a statistical description tife relationship among pixels in SAR
image. Pixels that do not belong to the same patch are considered uncorrelated. Thus thbhesize of
patch determines thecaleof spatial patterns thatan be capturedsenerally speaking, bigger sized
patch considers laeg range correlations and hence is nuapable otaptuing largerscale repeated
patterns in SAR image|.= "Q pB M ,n pvectors, denote the sequence of mutually orthogonal
PCA bases onto which the projection of patches sjgmoduces the PCs thi sequentially largest

variances representediby 'Q pf8 h .

In PCA domain, several leading PCs capture most of the scene signal in image patches, while the
last few componentare mostly due to noisén this chapter we use PCA for both denoisingdan
feature extraction. In Sectidnh3, we develop a LMMSE criterion based on ASDN model to shrink

the PCs Thus denoising can be achieved by reconstructing SAR image using the processed PCs. In
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Section5.4, we use severdtadingPCsin logarithmic spacéentified by the Minimum Description
Length(MDL) criterion to feed the Kneans algorithm. This not only reduces the dimensionality and
decorrelates the spatial variables, but also suppresses the noise contained in image patches.

5.3 SAR Image Denoising in PCA Domain

In Muresan& Parks (2003)andZhang et al. (2010%he LMMSE shrinkage was conducted RCA
domain to removeAGWN. For SAR speckle noise, we caertainly adopt the homomorphic
approachand apply thsamemethods ilMuresan& Parks (2003andZhang et al. (2010)However

since the performance of denoising is sensitive tetrdagsformation that tends to distort the
radiometric dynamics of the SAR data, it is more appropriate to perform denoising in original space
instead of logarithmic space. this Section we derive a new LMMSE shrinkage approach under the
ASDN model. We assume the speckle noise is fully develpghdsa SAR image pixetan be

modeledas
0w W- (5.3)

where -, andwrepresent respectively unobserved scene signal, speckle noise and the observed
signal. Based orig. (5.3), we get the ASDN model as

W 0w & (54)
where¢ - p . Because has unit mean, thus is a zeremean signatlependent noise.
Hencethe patch variable in SAR image can be described by.
e « = (5.5)
where ¢ oMM ,«¢ oM ,= &k BRE . Denotethe covariance

betweenn andw by, ,and the mean ab by‘ , we can get:

(O IR~ N S (5.6)

For fully developed speckle noiggandOareuncorrelatedso we geD w- ‘O 0O - . Because
O - pwegefOw OwO- ©Ow.So

., 0GhOo--
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” ,» O WY (5.7
We assume speckle noise is spatially uncorrelated, mtfor 'Q "QThus we have
” ., QEM Q (5.8

In the following analysis, we represehe empirical mean of the patchesjiby < and we assume

that the patch variable has been cerdtized Denote the covariance efby ,, the PCA bases can
be obtained by performing SVD on:
o AA (5.9)
where the column vectors ilarepresent the PCA basegth sequentially largest variangesis the

diagonal matrix of the variances of PCs, which argtiogection of patcivariablesonto PCA bases
v Ae Ac A= VvV Y (5.10)

wherey, ‘A «and Y A= stand respectively for the signal and noisegiarthe projection.

If % is known, denoising can be achieved by performing inverse ®Pa&sformationusing¥,. In
thisresearch v is estimatedby LMMSE criterion
Y OV O6é&wmhvy y v Ov
bl Y SR (5.11)

The EtiEelement of ", can be estimated through the following equation:
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0 ‘D onQ,
B oD O, B By 0 WD AQ, (5.12)
Denote6 - p. Becauseo ando areuncorrelatedor fully developed speckle noise, we can
get
Ow O w wo Ow Owd =0w p , (5.13)
From Eq.(5.13) and Eq.(5.7), we get, ” —Ow ,so
, BOoQ® W, —Ow BBy 0WDN (514)
From Eq.(5.8), we get, ., fordo Qso
, B OB, —Ocw BBy oW (515

In Eqg. (5.15),, can be calculated from the theoretical distribution of speckle noise, e.g. for
Gamma distribution ~ p#0 (Xie et al., 2002, whereL stands for the ENLO "AQis the QXE
elementof ‘Ain Eq. (5.9. 0 @ and, are estimated by the respective empirical val@es

o O Q,, Mo, where "@iQstands for th&XXElement of 4 and® "Qstands
for theE Gelement of-.

Given v in Eq. (5.11), the noisdree image patch can be obtained gwrforming inverse PCA

transformation:
e L Ay (5.16)

The denoised patches will filabe used to construct the noifee SAR image.

5.4 Clustering Scheme

The effectiveness of denoising in PCA domain depends highly on whether the PCs can sparsely
represent the scene signal. And the spacsity be achieved by performing analysis on patches with

similar spatial structure. There are two approaches for finding similar patchesnaoatking and
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clustering. Blockmatching is a supervised approach, which finds, for each pixel on the image, a
group of patches that are fisimilaro to the refere
Since it is hard to define the fAthresholdo as t
researchers always turn to guarantee a minimum auwibsimilar patches. However, it may render

some of the selected patches less relevant to the referenced patch. As opposed to-thetdhauds

approach adopted in BM3D and NLM, the clustering approach involved in the proposed approach
finds similar pathes in an unsupervised manner by adaptively partitioning the image into disjoint
areas. It requires | ess computation. Mor eover,
adaptively determined by comparing the proximitéshe candidate patdbo different cluster centers,

rather than being préefined, the clustering approach is supposed to be more capable of finding
relevant patches than blochatching approach.

In this study, we adopt Kmeans algorithmL{oyd, 1982 proposed by Lloyd consideringsi
simplicity and speed. And we use the Euclidean distance to measure similarity in feature space.
Performing kmeans clustering on image patches also faces probfros asigh dimensionality,
high correlation among features, and intense iteratitue to poor initial parameter values. In this
study, we adoptlog-transformation andPCA to extract compact features to feed then&ans

algorithm.

This Sectionis organized as follows: we start with the illustration of feature extraction technique
we thenprove the compatibility ofhe extractedeatures and Kneans algorithm; lastly, we discuss

parameter tuning and efficient realizations of the clustering algorithm.

5.4.1 Feature Extraction

Before extracting features for clustering, we apply-tl@gnsformationon original SAR image as a
preprocessing step. It has been common practice to aid clustering by preprocessing heavy tail
distributed variables using legansformation(Liu et al., 2003Liu et al., 2007. In particular, Liu in

Liu et al. (2003)ndicatedthatlogt r ansf or mat i on s i g neériygacesult,tahdyiui mpr o\
et al. (2007demonstrated a 10% increase in clustering accuracy after applyingtinarisfiprmation.

The speckle noise in SAR image follows Gamma distributfianis longtailed. Moreover, speckle

noise is signatlependent which means it has bigger variance on brighter image areas. This unstable
nature would produce large betwednster overlapping. So the lagansformation is used here to-de

skew the dataset and to staldlithe variance. The legansformed data tesdo be symmetrically
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distributed with constant variance, thus is more desirablstétisticalmethods such as PCA anid-

meansalgorithms

Although clustering carbe performed directly on image patches, itvedys suffers from high
dimensionality e.g. 55 patch produces 25 variables, and ititensespeckle noise contained in the
patch. In order to solve these problems, we adopt BEA feature extraction technigu@nly 0
leading PCs that are mostly due to signal are used as features for cluJteeirg.curate estimation
of v is important in the sense that the underestimation would lose useful inforniaiion
overestimation would introduce noise and unnecessary congoutdst. One popular approach
determines) by setting a threshold to the percentage of variation explainesighgl components.
This approach is simple but rather subjective. In shigly we estimat® by MDL criterion which
was proposed by Rissané€tB78)and has been used to determine the number of signWEx &
Kailath (1985) Ther) p dimensionalimage patch variablesubject to logransformation can be

represented by the following equation:
© B 24t = (5.17)

where'Ris the eigenvector matrix, whose ith colusiQdenotes thé&th PCA basesand=s
denotes the lotransformed speckle noise thatighly satisfiesGaussian distribution with zero mean
anddiagonal covariancmatrix€ , , We assume that the scene sigaahn be reconstructed by the

first K PCs
® B Bdith (5.18)

whereb @ =2 fiQstands for thé&h PC. We can se¢hat Eq.(5.17) is samewith Eqg. (1) in Wax
and Kailath(1985), where the authoestimatd the number of signalsy

. U = .,
v Wi Qe Qaé¢—QQ— a¢ebQ |

A EEQ (5.19)

wherd stands for théh biggesteigenvalue of g, ¢ denotes the number of observatioms.

can be easily determined by comparing all the p solutions.

5.4.2 The Compatibility of PCA Features and K-means algorithm

K-means algorithm that relies on Euclidean distance implicitly assuimat the noise of input
features satisfies independent and identically Gaussian distribution. In the following, we prove that

PCA features described above satisfies this assumption. We reformula{édLBas:
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® ©® W (5.20)
Sinceswand=pare independent for fully developed speckle noise, we can get:
& & n ol (5.21)

where gand gdenotes espectively the covariance matrix @ande The PCA analysis can be

achieved by performing SVD on,
» 'ROR (5.22)
where the column vectors Rrepresent the PCA baseB, 'Q QP8 hP s eigenvalue matrix.
Then, we have:
1D

> MBYR | BR 'R é
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T
& 'R (5.23)
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So we can see that, and g share the same PCA bases. As in(&d.0), the PCA features can be
obtained by projecting image toaA onto PCA bases:

y Re Re RD ¥ ¥ (5.24)

where® ‘ReandX 'R =pstand respectively for the signal and noise parts in PCA feature.

Denote the variance matrix ofoy

1P E i . Ii; i
B B " € E & é E é (5.25)
nm E 1P n E ,,
Since ¥ o £, the assumption of #neans algorithm on noise distribution can be well satisfied.

Although this property could not guarantee the convergence -pfe&ns algorithm to global

minimum, it provides theoretical assurance thankans performance can be optimized.

5.4.3 Parameters tuning and efficient realization

Number of clusters: The number of clustef¥in the imagedepends on the definition of what
constitutes a clusterThis issue ismostly applicatiororiented, e.g. for background subtraction,
background and foreground should be represented as two clusters, but in-lcaséehtimage

analysis, the number of cluster is mainly determined by the number of objects in the irregeeH
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have no higHevel requirements on the notion of cluster, but only loosely constraint that a duster
collection ofimage patches with similar spatial structurbusthe number of clusters cannot be and
does not need tioe estimated very accurate. Adge cluster can be splitted irgeveralcompactones,
which does not have too much influence on the denoising rellei®rthelessthe rough estimation
of the number of patterns exist in the image is stijportantbecauseverly underestimaon would
reduce the sparsity in PCA domain ahe oppositevould increase computation burden and also
preserve unnecessary artifa@o the number of cluster can be better determined based on the
complexity of sceneMore complex linage should be assigned maalusters to fully capture image
details. SincdPCA deted statistically uncorrelated sources, a more complex image sends to
havelarger number ofignal PCs So we use the number of signal RCs in Section 5.4.1as
estimate of the numbef olusters.Moreover, to prevent ovesegmentation, we set an upper limit on

“Y In thisstudy, we require:
Y Ao o (5.26)

Size of cluster: The number of patches in each cluster shouldbige enough for efficient
estimation of the covariance matriy. In this study we constrain that each cluster should have at
least 50 members. A cluster smaller than this value will be deleted and its members will be dispersed

into the other clusters bad on the proximity in Euclidean space.

Initial cluster centers: K-means clustering is very sensitive to initial parameter values. Poor
assignmentof initial parameters may cause longer time to conveBgeause the PCs provide a
contiguous membershipdicator for K-means clusteringDing & He, 2009, we estimate the labels
of image pixels by sorting the values of the first PC and then splitting them evenly grwaps.

Given the initial labels, we estimate the centroids for each group.

Deal with large image: SAR images always have big size. Clustering on them directly tends to
ignoreweakpatterns thainvolve small number of pixelddencesome image details would be erased
during the denoising stage. So in thitsidy alargeimageis dividedinto several submages which
are denoised separately. The final ndiee image is reconstructed by all the denoisedisages.
There are no universal standard for the size of thdmabe. It should be adjusted according to the
complexity of the image scenSmall size should be preferred for image with complex scene. For
SAR image, a size of 6464 pixels can achieve a good result based on our experirfienasoid the

boundary artifact between neighboringubimages we designthe neighboring submagesto be
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slightly overlapping Based on our experiment, an overlappaigd pixels would produce smooth

boundaries.

Size of patch As discussed iBection5.3, patch with big size can capture large scale patterns but
would also increase the computation costt BAR imageghat are withoutstrong texture patterns,
the size of3 3 pixel is sufficient according to our experimenBut larger patchsize, such as 5is

required forheavilytextured images

5.5 Complete Procedure of the Proposed Approach

The completeprocedure involves twetageqFigure5.2): the first stage produs@ denoised image
which is referenced as a clean image in the second stage tthéaghdsteringalgorithmand to aid
theLMMSE shrinkage. The detailgmtocedurds given below:

Stage 1 The original SAR image is split inthl subimageswhich areM M sized M=64). For
each submage, we repeat the steps of clustering and denoising, until allheges have been

processed. Finally, weggregat¢he denoised patches to produce the ded@€&R image.

Clustering: This step intends tdentify image pixels whose neighborhoods have similar spatial
structure. Théth subimageis firstly log-transformed Thenwe extract all th& Ssizedpatches $=5)
to form a data matrix which is then transformed into the PCA domain. The firstPCs are used to
feed the Kmeans algorithm, where is given in Section 5.4.1The number of cluster is
determined by Eq5.26). Other parameters, i.e. teeze of cluster and the initial cluster centare

given in Section 5.4.3’he products of this step are thbels ofall pixelsin theith subimage.

Denoising: Given the labels, this step aims to dentieéth subimage. Image patches in each
cluste are denoisedeparatelyNote that he image patcheare extracted from the original SAR
image. For eackluster patches of pixels belong toigtcluster are extracted to forendata matrix.
We calculatethe empirical meart and variance matrix,. Then the patches are denoised by the
following operations: obtaining PCA bases (E§.9)), projecting onto PCA bases (E(5.10)),
shrinking PCs in PCA domain (E¢5.11), (5.15)), and transforming back into patch domain (Eg.
(5.16)). This step does not stop until all thiistersin the ith subimage have been denoised. The

final product of this step is a collection of denoised patah#dweith subimage
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Aggregation:In this step, te denoised patches are used to constructdisefnee image. Because
the patches are overlapping, so each pixel in the image has many denoised values. The final value is
estimated as their average. The final product of this step is a denoised image.

Original SAR image Final Denoisedmage

A
Split into subimages Aggregation
All denoised patches
e
Cluster thath subimage Denoise thath subimage
1. Log-transformation For thejth cluster
R 2. Get patches of all pixels «| 1. Get patches belong to clusjer
: 3. Transform into PCA domain 1 2. Transform into PCA domain |....... .
4. Get signal PCs 3. LMMSE shrinkage :
Perform kmeans clusteri > 4. Inverse transformation
Repeat 14 until all clustes have been
: denoised
Repeat . ; :
until i=N Labelsof subimages A :
. . R t
Labelsof subimages ur?tpi)I?ElN
Denoise théth subimage B
For thejth cluster A :
1. Get patches belong to Cluster théth subimage :
: Clusterj _ 1. Get patches of all pixels
CORP 2. Transform into PCA domain<€ 2. Transform into PCA domain :
3. LMMSE shrinkage 3. Get signal PCs Gt
4. Inverse transformation Perform Kkmeans clustering
Repeat 34 until all clustes have
been denoised
M

>
DenoisedSAR image

Figure5.2: The flowchart of the proposed algorithm (left part: stage 1, right part: stage 2).

All denoised patches

Aggregatio —

Stage 2:This stage goes through the same operations as stage 1, except that we use the denoised

image in stage 1 to feed the clusteringpstad to aid the LMMSE shrinkage in the denoising step.
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Clustering:Instead ofthe original SARimage, the denoised image produced in stage 1 is used for
clustering to get the label8loreover, the logransformation is avoided. Other operatiare the
same with stage 1.

Denoising: The denoising procedures on this stage are the same with stage 1, except that we use the
denoised image istage 1 te@stimate -, in Eq.(5.11). Givenlabels, we extract two set of patches for

eachcluster One &t is from theoriginal SAR image. This set is to be denoised. Another set is from
the denoised image produced by stage 1. This set is treated as a collection of signal patches. Hence

the covariance matrix of signal patchescan be estimated as the gdencovariance matrix. The

shrinkage of the first set of patches in PCA domaujuires the estimation of,,. Here,instead of

using Eq.(5.15), we use

A A (27)

lo

Aggregation: Thalenoised patches are used to estimate the final-freisémage. The aggregation

procedures are the same with stage 1.

Stage 2 is basically a repetition of stage 1, except that we used the denoised image in stage 1 to

perform clustering and to estimate in Eq. (5.11). These modifications are motivated by the fact

that the first stage can significantly suppress SAR speckle anig&chieve a cleaner imageehte
using the denoiseiinage, instead of the noisy image can achieve more accurate clustering results.

Moreover, treating the denoised image as clean image to estimate more efficient than

performing shrinking on the noisy imagesecondstage in the BM3D algorithnb@bovet al., 200y

was motivated by similar considerations.

5.6 Results and Discussion

In this study,both simulatedand realSAR images are used to test the proposed SAR denoising
method. In order to achieve a quantitative evaluation, clean images are detmadedding
multiplicative noise. Thus we can treat the clean image as the trus aathese numerical measures
to evaluate the performancalthough the true values of real SAR images are unknown, we can
achieve qualitative assessments based on vistespretation. In this experimenhreeother methods
(i.e. PPB(Deledalleet al., 2009) LPG-PCA (Zhang et al., 2010nd SAR-BM3D algorithm Parrilli
et al., 201) areselectedo compare with the proposed methdthe selection of these methods is
baseé on the consideratigrof both the availability of the codes and their relevance to our Wiard.
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LPG-PCA represents the statéthe-art denoising techniques for images wéttiditive noise, while

PPB and SARBM3D are the statef-theart methods for SAR image. Because L-PGA was
designed to deal with additive noise, to adapt it to SAR image, we transform the speckle noise into
additive noise by logarithmic operation before performiran noisy SAR images. The biased means
caused by logransformation are also correctdd. all experiments, without explicit indicatipthe
parameter®f the above algorithmare set as suggested in the referdmagpers and our method is
implementedy setting the patckizeto be 5 5 pixels and the sulmagesto be 64 64 pixelswith 5

pixels overlapping with their neighborall theotherparameters in our method are detiered by the
methods in Sectiof.4.3

5.6.1 Test with Simulated Images

A variety of image sources are considered in this experiment, including the benchmark test image, i.e.
the BarbaraRigure5.3a) in the image denoising literature, and thigh-resolution optical satellite

(i.e. IKONOS)imagewhose scene structure is similar to reaARSmage(Figure5.3b). An ideal SAR
denoising method is required to bapable ofremoving speckle effectively, while in the meantime
presering image detailge.g. texture, edge and line target) thanstitute the desired features for
further analysisSo in order to fully examine the abilities of detgiteservationan image comprising

two texture parts with a smooth boundary is designed to be used in this experiment. As shown in
Figure5.3(c), the left part of the image is weakly textured with a whike appearance while the right

part is with a strong mesh texture. Thus the performance of denoising methods on image with
changing scene complexities canibeestigatedSimulated SAR image are obtained by multiplying
speckle noise with these clean gea.In this experimentwe usespeckle noisén amplitude format

which satisfes a squaredroot Gamma distributioifXie et al., 2002 All images are degraded with

four different levels of specklenoise, i.e. the ENL (denoted by L) equals to2],4 and 16,
respectively. To avoid randomness, 20 noisy images for each clean image are produced by
multiplying different noise realizations. All noisy images are processed and the numerical evaluation

is based on the average of the results.

In this study,two statistics (i.e.Signalto-MeanSquareError Ratio (S/IMSE) arid) are used to
evaluate these denoising methods. S/IMSE corresponding to SNR in case of additive noise is a very
effective measure of noise suppsion in multiplicative cas&ggnon& Jouan 1997). On the other
hand, to measure image detail preservatioe employf originally defined inSattar& Floreby
(1997)1 should be equal to unity for an ideal detail preservation.
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The zoom of denoised images by different methods wherp are shown irFigure 5.4-5.6, and
the values of the two statistics for p, 2, 4 and 1@re summarized in Table 5.ih which the best
value in eachunit is bold. Overall, it shows in Tabl&.1 that the proposed method outperformed the
other referenced algorithms in terms of both measures. This demonstrates that our method is good
both at speckle noissuppressiomnd image detail preservation. The rgwop.stagedin Table5.1
was achieved byhe first stage of our method. Comparing with rgwop§ we can see that the
second stage involved in oorethodcan significantly improve the resulf.the r ow O6prop. gl o
Table 5.1was achieved by performing PCA denoising on theismdges withouthe clustering step.
The observation that values dprop.globab are lower than values ifprop. justifies the clustering
approach in the proposed method.

Both LPGPCA andthe proposednethod denoise SAR images in PCA domain. However,-LPG
PCA works on AWGN obtained by performing lefgansformation on SAR image, whilthe
proposed methodakes into account the multiplicative nature of speckle noise by building the
denoising approach on ASDN mod€he observation that the proposed method greatigerfomed
LPG-PCA on most noise levels just$ the proposed denoising model for ASDINe also observed
that the performance of LRBCA is very sensitive to noise levels variation in logarithmic spase.
we can see in Tabl.1, whenL=1, LPGPCA achieved lowestatistics than the proposed method.

But with the increasing of L, LP@CA tends to achieve comparable results with our method in terms

of & . LPGPCA even achieved highér on image Barbara whah 1 and 16. This igeasonable
because LP@CA was desigrefor AWGN. When L is big, the speckle noise subjedbgarithmic
operationis very close toGaussian white noise. Therefore, the method can achieve good results.
However, when L is small, speckle noise begins to deviate from Gaussian distribution and its mean
value is no more zero. Thidiscrepancybetweenempirical data and the model assumptioray

reduce the efficiency of LP@CA. As we can see, the images in Fi§4:5.6 denoised by LP&CA

show many small artifacts, while imagesthg proposednethod have little artifacts but plenty image

details.

It is noticed that our method was espdyidietter at denoising the synthesized texture image
(Figure5.3c). InFigure5.6, the image produced by the proposed method is the most similar to clean
image. The imagedenoisedy PPB and SARBM3D are blurred and the holes in boundary area are
erasedThe imageroducedoy LPGPCA has clear textural patterns, but assumes many artifacts. The

statistics in Tablé.1lindicates consistent results. The proposed method achieved high values in both
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measures, indicatingood performance ohoth noise removal andetail preservation. In contrast,
LPG-PCA achieved smalS/MSE values while PPB and SABBM3D achieved small values. The
clustering approach involved in the proposeethodmay have contributed to the superiority of the
proposed method in dealing withxtual imagesin texture image, the increased scene complexity
renders it difficult to find similar patches. Given the difficulty, the clustering approach might find
more relevant patches than blatiatching approach, leading to better preservatioextéite patterns.

On lesstextured imagei.e. IKONOS, the proposed approaelso achieved higher values, and
preserved more image details than the other methods. The observation th&ClAPé&nd the
proposed method outperformed SAR3D in terms of detih preservation in highly textured image
(i.e. Figure 5.6) may suggest that tHeCA-based denoising approach more efficient at dealing

textural structures.

A good denosing method should be capable of removing speckle noise without sacrificing image
detdls. PPBtended to erase image details too much. Iis.5g-5.6, we see that the denoised image
by PPB have very smooth appearances but also blurred boundaries and reduced details information.
On the IKONOS image, LP®CA achieved higher SIMSE but lowewalues than SARBBM3D,
while on the Syntexture image, LF&BCA achieved lower SIMSE but highievalues. Our method

achieved very high S/IMSE ahdvalues on most images.

The SAR-BM3D and PPBalgorithrs were implementedusing the C language, while the other
algorithms were implemented under the MATLAB platform. All the computations egrductedn
a PC with a Pentium(R) 2.30GHZuadCore processoOnaverageit took 36.8, 53.,134.7and23.5
seconds respectivelyby PPB LPG-PCA SARBM3D and the proposed methdd process a
256x256 pixels simulated imagdt is fair to compare the time efficiency of the proposed algorithm
and LPGPCA, because both methods are Pliiased and implemented in MATLAB language. The
observation tht the proposed algorithm consumes less than half of the time ofPId?G
demonstrates the efficiency of clustering algorithm than bioakching approach. This conclusion is
also supported by the shorter processing time of our algorithm than PPB ar8NB3R especially
considering the fact that C language is more efficient than MATLAB.
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Figure5.3: Clean images used in trstudy (a) Barbara, (b) Optical satellite image (IKONOS), (c) Synthesized
texture image. All images are 256xX256 pixels big.
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Figure5.4: Zoom of Barbara image degraded by single look speckle noise, (a) clean image, (b) noisy image, (c)
PPB, (d) LPGPCA, (e5AR- BM3D, (f) the proposed method.

Figure5.5: Zoom of IKONOS image degraded by single I@pleckle noise, (a) clean image, (b) noisy image, (c)
PPB, (d) LPGPCA, (e)SAR-BM3D, (f) the proposed method.
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Figure5.6: Zoom of synthesized texture image degraded by single look speckle noise, (a) clean image, (b) noisy
image, €) PPB, (d) LPGCA, (e)SAR-BM3D, (f) the proposed method.

5.6.2 Test with real SAR images

The real SAR images used for testing different denoising methods are two TerkaSARple
imageriesprovided on the Astrium Geolnformation Services website. Both imageslocated at
Canada Toronto, taken in December 2007 under the spotlight mode with 1m spatial resolution and
incidence angle of 48:8But one is theSingle Look Slant Range Compl¢8SC) image, while the

other one is th&patiallyEnhanced (SE) Muliook Groundrange Detecte(MGD) with L=2. From

the SSC image, we obtain two smaller images, and from the MGD image, we obtain one. The three
images that comprise parking lots, roads and buildings are supposagttwethe major types of

urban targets.

In this experiment, in addition tthe denoising algorithms thesimulated studywe also testedhe
SRAD method inYu & Acton (2002) We adopted the default patch size parameters for the
referenced methods but a smaller size 08 3or the proposed methodecause they experimentally

allowed the respective best traolkés between noise removal and detail preservafitve zoors of
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