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Abstract This paper uses hourly data from Ontario (Canada) between 2005 and
2008 to estimate the effects of real time wholesale electricity prices on demand by
industrial customers. Nonlinear SUR estimates from Generalized Leontief (GL) spec-
ifications reveal elasticities of substitution from 0.02 to 0.07, confirming that industrial
customers (connected to the transmission grid) shift consumption across peak and off-
peak periods in order to reap benefits of lower prices. Estimates from FGLS and IV
models suggest that this reduction in demand by industrial customers results in lower
wholesale prices, which benefits all consumers. The policy lesson is that market based
schemes that encourage Real Time Pricing (RTP) pricing should result in positive
spillovers to all consumers.

Keywords Deregulation · Elasticities of substitution · Industrial customers ·
Wholesale electricity prices · Demand response
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1 Introduction

How do industrial customers moderate their electricity consumption in response to
wholesale prices? And does their behavior impact system wide electricity prices? The
answers to these questions have considerable policy implications, as they reveal the
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Fig. 1 The Effects of Shifting Demand from Peak to Off-Peak Hours

efficacy of demand response (DR) programs focused on industrial customers.1 The
past decade has witnessed the implementation of Real Time Pricing (RTP) schemes
through the introduction of competitive wholesale markets in North America. The ben-
efit of such pricing is that consumers are directly exposed to prices that change on an
hourly basis and can adjust their consumption accordingly. Large industrial customers
that are directly connected to the transmission grid may be able to reap considerable
benefits by responding dynamically and in real time to changes in wholesale electricity
prices, such as in peak hours. Further, as noted by Borenstein et al. (2002), RTP par-
ticipants have the option of choosing hedge options in order to reduce price volatility.

However, load shifting by industrial customers—the biggest consumers of electric-
ity in Ontario—from peak to off-peak hours could theoretically benefit all consumers
through a reduction in wholesale electricity prices. A significant amount of research
suggests that the supply curve for electricity in Ontario and for many other jurisdictions
to be J-shaped. In other words, the supply curve is relatively elastic, with curvature
determined by the marginal cost of supply generation. Incremental changes to prices
from higher demand will not be large until capacity constraints are approached and
the supply curve becomes roughly vertical (Fig. 1). Therefore, a reduction in system
demand from D1 to D2—generated by demand response by industrial customers—
may result in a considerable reduction in wholesale electricity prices and hence lower
costs to all consumers.

The key consideration is whether the benefits of such a reduction will be offset by
the corresponding increase in demand by industrial customers at some point in time. If
the increase occurs during off-peak hours, or the elastic portion of the supply curve (D3
to D4 in Fig. 1), then the resulting increase in price will be marginal. Consequently,

1 As noted in FERC (2011), Demand Response, or DR, “….refers to any scheme designed to encourage
peak load reduction or load shifting away from peak demand periods—whether achieved through direct
load controls (DLCs) such as air conditioner cycling programs, though interruptible tariffs, which allow
a utility to cut off service during peak periods based on prior agreements, or through more sophisticated
pricing schemes that offer financial incentives to consumers to reduce discretionary usage during critical
hours.”
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the spillover benefits from lower demand or load reduction during peak hours will not
be offset by equivalent increases in demand and higher prices in off-peak hours. If
there is a strong offsetting effect, then society may be no better off than with Time of
Use (TOU) or even flat rates.

This paper attempts to contribute to the literature by offering empirical magnitudes
on the above relationships. First, we estimate elasticities of substitution between peak
and off-peak hours with respect to electricity consumption by industrial customers;
the value added from this exercise is that we use data based on all industrial cus-
tomers in the province of Ontario that are directly connected to the transmission grid
and are consequently exposed to Real Time Pricing. These elasticities are of policy
importance, given the relatively thin empirical literature on the effects of RTP on
electricity consumption by industrial customers; moreover, most studies are based
on subsets of firms, rather than the universe of industrial customers enrolled in such
programs. Our research is based on publicly available data (2005–2008), and some
that were obtained on special request from the Independent Electricity Supply Oper-
ator (IESO) of Ontario. These data contain aggregate demand, wholesale prices (the
Hourly Ontario Electricity Price, or HOEP), and specific hourly demand by six indus-
trial sectors (2005–2007).

The use of Ontario data should be of interest to U.S. policy-makers, given similar-
ities in the design of wholesale electricity markets in Canada and the United States as
well as in the concentration of peak demand in the top 1% of hours.2,3 Second, to the
best of our knowledge this paper is the first study to use an econometric model to eval-
uate the effects of shifts in demand by industrial customers on system-wide electricity
prices in order to assess (1) benefits from potential demand response programs; and
(2) whether such benefits might be attenuated as industrial customers shift their load
away from peak hours. In contrast, most publicly available demand response studies
rely on simulation methods.

Our estimates of elasticities of substitution from Generalized Leontief (GL) speci-
fications suggest that, on aggregate, industrial customers shift demand between peak
and off-peak periods. Specifically, a 10% increase in peak hour prices is, on aver-
age, significantly correlated with a 0.2–0.7% increase in electricity consumption by
industrial customers during off-peak hours. Further, the marginal effect of electricity
load on the HOEP during peak hours for summer months exceeds the impacts of
corresponding effects of demand during off-peak summer hours.

2 Competitive retail and wholesale electricity markets opened in May 2002 in Ontario. This changed on 9
December 2002 with the passage of the Electricity Pricing, Conservation and Supply Act, which capped
the retail price of electricity for low-volume consumers. The amendment was in response to the significant
spike in electricity prices and costs to consumers during the summer of 2002. The wholesale electricity
market in Ontario remained competitive, with consumers such as industrial customers and local distribution
companies (LDCs) submitting demand requirements and suppliers offering electricity generated by differ-
ent types of fuel—including nuclear, coal, natural gas, and hydro. Bids are submitted to a clearing system
managed by the province’s Independent Electricity Supply Operator (IESO). However, final consumers pay
prices that include other charges determined by the Ontario Energy Board (OEB). See Trebilcock and Hrab
(2005) and Melino and Peerbocus (2008) for further institutional details.
3 Faruqui et al. (2007) note that the top 80–100 h account for roughly 11 and 16% of total demand in
California and the PJM system. In Ontario, the top 32 h account for 2,000 MW of demand out of a peak
demand of 27,000 MW.
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The above results offer evidence that while more electricity demand by industrial
customers during off-peak hours is significantly correlated with higher wholesale
prices, the magnitude of this effect is smaller relative to the corresponding impact of
electricity consumption (of industrial customers) during peak hours. The important
policy lesson is that changes in demand by industrial customers directly connected to
the transmission grid have a stronger impact on the HOEP relative to demand by other
consumers and can result in system-wide effects. This finding should be of interest
given the 2007 Energy Independence and Security Act that directed the Federal Energy
Regulatory Commission (FERC) to conduct a national assessment of demand response
(DR) potential and to report to Congress.4 In tandem, the above results confirm that
RTP schemes give industrial customers an incentive to shift demand from peak to
off-peak periods and therefore result in considerable benefits to all consumers.

The remainder of our discussion is structured as follows. The next section offers
a brief literature review. Section 3 discusses the data. Section 4 details our econo-
metric methodology and models. Our key findings are discussed in Sect. 5. Section 6
concludes with a summary of our key findings.

2 Literature review

Table 1 summarizes key papers that have estimated elasticities of substitution with
respect to RTP programs and intra-day load shifting.5 Our research differs from these
papers for the following reasons. First, we are only aware of two papers (Boisvert et al.
2004, 2007) that have specifically estimated elasticities of substitution between peak
and off-peak hours. Second, it is fair to say that most of the econometric literature on
the effects of RTP schemes with respect to industrial customers has been restricted
to select groups of firms that obviously choose to participate in such programs. The
potential of self-selection bias has been noted in the literature (Herriges et al. 1993).
Most studies have been unable to condition their estimates to such bias due to data
unavailability of firms that do not enroll in RTP programs. Further, a majority of these
papers are only able to employ data on a subsample of firms, rather than for all firms
participating in RTP schemes.

We share a similar shortcoming with previous studies in that we do not have data on
firms that are not directly connected to the transmission grid, which would enable us to
pool information across firms and thus contrast differences in electricity consumption
between participating and non-participating firms or industries. On the other hand,

4 The Federal Energy Regulatory Commission was tasked to: (1) provide an estimate of the national DR
potential in 5–10 years; (2) estimate how much of the potential could be achieved; (3) identify barriers to
their achievement; and (4) provide recommendations to overcome the barriers. See FERC (2009) for further
details.
5 Our review focuses on econometric based papers. Borenstein (2005), Borenstein and Holland (2005), and
Holland and Mansur (2006) rely on simulations to estimate the gains to RTP schemes. There is, of course,
literature on the effects of Time of Use (TOU) schemes on industrial customers and corresponding peak
and off-peak elasticities. Schwarz et al. (2002) and Taylor et al. (2005) offer comprehensive overviews. We
also acknowledge studies that estimate residential, commercial, and industrial demand elasticities with data
from Ontario during the 1980s and 1990s. These include Yatchew (2000), Mountain (1993), Mountain and
Lawson (1992, 1995), and Ham et al. (1997). However, these papers focus on the effects of TOU schemes.
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Table 1 Literature review

Data Main results

Herriges et al. (1993) Investigate the efficacy of an RTP
program (with respect to 46
customers) introduced by the
Niagara Mohawk Corporation in
New York State

Using CES model they obtain
elasticities of substitution from
(roughly) 0.08 to 0.13

Patrick and Wolak (2001) Estimate the real time price effects
on demand for electricity from the
England and Wales (E&W)
electricity market based on
customer level data from large and
medium-sized industrial and
commercial customers
(1991–1995)

Results from Generalized McFadden
(GM) cost functions suggest
significant within-day
inter-temporal cross price
elasticities with considerable
industry heterogeneity

Schwarz et al. (2002) Estimate demand elasticities
employing (June–September from
1994 to 1999) data from 110 large
customers of the Duke Power
Corporation

CES models yield obtain intra-day
elasticities in the range of 0.11

Boisvert et al. (2004) Data from 43 industrial and
commercial customers that
volunteered to participate in
Central and Southwest Service’s
RTP programs between 1998 and
2001 in Oklahama

Employing Generalized Leontief
(GL) models, they find elasticities
of substitution from 0.10 to 0.18

Taylor et al. (2005) Use hourly customer data (from 1994
to 2001) based on the Duke Hourly
Energy Program during the
summer months of June, July,
August, and September

Focusing on intra-day hourly data,
their results (from a GM
specification) suggest electricity
consumption to be complementary
during adjacent hours but
substitutable between hours that
are further apart. However, they do
not calculate elasticities between
peak and off-peak hours

Boisvert et al. (2007) Evaluate the effects of a RTP type
scheme to consumers through
hourly pricing and load data from
119 large customers of Niagara
Mohawk from 2000 to 2004

Results from a Generalized Leontief
(GL) model suggest that RTP
pricing results in load shifting by
large consumers as estimates reveal
an elasticity of substitution of 0.11

we do possess industry level electricity consumption data of all firms that are directly
connected to the transmission grid. We think that there is also something to learn from
using industry level data (across sectors), as it reveals (on average) behavior, which
impacts the entire system. In this respect, we emphasize that the use of these data is
the key feature that allows us to evaluate the impacts of dynamic pricing.

Finally, to our knowledge, no study has used econometric models to evaluate the
effects of load shifting by industrial customers on system wide wholesale electricity
prices.6 We did locate a relatively recent study conducted by The Brattle Group (2007)

6 In terms of institutional details, Cappers et al. (2010) offer a comprehensive and contemporary overview
of various DR programs across states.
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that was commissioned by PJM Interconnection LLC and the Mid Atlantic Distributed
Resources Initiative (MADRI).7 The study is based on simulation methods and finds
that a 3% reduction in each selected zone’s super-peak load reduces PJM’s peak load
by a little less than 1% and yields an energy market price reduction of $8–$25 per
megawatt-hour. However, the authors of the study note that they do not consider sev-
eral secondary effects that could offset the benefits to demand reduction. Specifically,
they do not estimate the increase in prices that could occur if consumers shift load
to other hours. Given the relative lack of studies, we think that an econometric-based
approach to estimating the effects of demand by industrial customers on wholesale
electricity prices should be of interest to policy-makers.

3 Data

The Ontario wholesale electricity market shares some features with deregulated elec-
tricity markets in New York and Pennsylvania-New Jersey-Maryland (PJM). The
wholesale electricity market in Ontario is competitive, with consumers such as indus-
trial customers and local distribution companies (LDCs) submitting demand require-
ments and suppliers offering electricity generated by different types of fuel, including
nuclear, coal, natural gas, and hydro. Bids are submitted to a clearing system managed
by the province’s Independent Electricity Supply Operator (IESO). However, a key
difference between the Ontario and U.S. markets is the existence of different prices
across zones in the New York and PJM markets, which reflect local market clearing.
On the other hand, the HOEP, the system wide wholesale electricity price in Ontario,
is the result of market equilibrium of all bids and offers in the province.8

Data on the HOEP and corresponding market demand, hourly exports, and hourly
imports of electricity are all publicly available data, which can be downloaded from the
IESO website.9 Hourly demand by industry sector—total industry demand; iron and
steel mills and ferro-alloy manufacturing; metal ore mining; motor vehicle manufac-
turing; petroleum and coal products manufacturing; pulp, paper and paperboard mills;
electric power generation, and transmission and distribution (excluding local distri-
bution companies, or LDCs)—were obtained on special request from the IESO. 10

These data consist of electricity consumption of industrial customers that are directly
connected to the transmission grid and can thus react directly to the HOEP and benefit
from dynamic pricing. The IESO also provided us with data on hourly supply by each

7 We are grateful to an anonymous referee for pointing us to this study.
8 Retail prices paid by final consumers include wholesale prices and other charges determined by the
Ontario Energy Board (OEB). Retail electricity rates are also regulated in many states in the U.S.
9 As noted on its website (http://www.ieso.ca/imoweb/siteShared/whoweare.asp), the Independent Elec-
tricity Supply Operator (IESO) is a not-for-profit organization established in 1998 by the Electricity Act of
Ontario. The IESO is basically responsible for monitoring and ensuring the efficient working of the Ontario
electricity market. It connects all participants—generators, transmitters, retailers, industries and businesses
that purchase electricity directly from the system, and local distribution companies (LDCs). All market
participants must meet the standards enacted and enforced by the IESO.
10 Some may find it surprising that we also analyze electricity consumption by electric utilities. However, as
detailed in Table 1, their consumption is a non-trivial portion of demand by industrial customers connected
to the transmission grid.
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Table 2 Electricity demand (in MW) by industry

Summer Summer Summer Summer
of 2005 of 2006 of 2007 of 2008

A. Total industrial 6,385,711 6,152,129 5,593,258 5,822,908

As % of A

B. Iron and steel mills and ferro-alloy 17.24% 19.03% 18.27% 20.18%
manufacturing

C. Metal ore mining 17.69% 17.57% 20.13% 19.90%

D. Motor vehicle 6.18% 6.50% 5.88% 4.73%
manufacturing

E. Petroleum and coal products 7.01% 7.65% 8.55% 8.82%
manufacturing

F. Pulp, paper, and paperboard mills 23.70% 21.56% 17.72% 19.07%

G. Electric power generation, transmission, 8.91% 8.95% 10.26% 9.06%
and distribution

Ontario demand 41,626,431 39,702,447 38,988,305 37,891,802

Industrial demand as % 15.34% 15.50% 14.35% 15.37%
of Ontario demand

Source Data obtained on special request from the website of the Independent Electricity Supply Operator
(IESO)

generator in the province. These data contain not only details on firm affiliation but on
the type of power, allowing us to capture the effects of market power among suppliers
as well as control for the effects of different sources of electricity generation on an
hourly basis.

Table 2 contains some descriptive statistics for electricity consumption by indus-
trial customers during summer months (June, July, and August) from 2005 to 2008.
Consumption by industrial customers that are directly connected to the transmission
grid constitutes roughly 15–16% of total Ontario demand, a statistic that is consistent
over time. Iron and steel mills, metal ore mining, and pulp and paper are the largest
consumers, accounting for roughly 17% to just over 20% of total demand of industrial
customers (connected to the grid).

Figure 2 offers some further insight into the relationship between wholesale prices
(HOEP) and total demand by industrial customers. All the data are averaged across
summer months for 2008.11 The trends conform to intuition as industrial customers
consume a significant amount of electricity during off-peak hours when prices are
low, and reduce demand during high price period peak hours.

4 Econometric models

We use the well-established model of industrial electricity response developed by
Caves and Christensen (1984) and Schwarz et al. (2002). The firm has to decide on

11 This is a representative year. Data from other years are similar.
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Fig. 2 Average hourly demand-total industrial (Summer 2008). Source Electricity price data (in Canadian
dollars) obtained from the website of the Independent Electricity Supply Operator (IESO) (http://www.
ieso.ca/imoweb/siteShared/whoweare.asp). Industrial load data obtained on special request from the IESO

the optimal allocation of electricity during peak (high price) and off-peak (low price)
hours of the day. As noted by Boisvert et al. (2007), this approach is consistent with
other studies that find that business customers bifurcate the day between peak and off-
peak hours (Neenan et al. 2002a,b) and accordingly choose business activity across
different hours of the day.12 Following previous studies we use a Generalized Leon-
tief (GL) cost function to model aggregate industry costs (C) relating to electricity
consumption13,14;

C = E(dpp P1/2
p P1/2

p + dpo P1/2
p P1/2

o + dop P1/2
o P1/2

p + doo P1/2
o P1/2

o ) (1)

12 The discussion in this section is largely based on Boisvert et al. (2007) and Braithwait (2000).
13 As noted by Boisvert et al. (2007), there are other flexible second-order functional forms that have been
used in the literature. The Translog (TL) specification is one such common form, which has the advantage
of being linear in parameters and not requiring information on aggregate electricity consumption as it relies
on electricity cost shares. However, as pointed out by Caves and Christensen (1980a,b) this model does not
perform well when substitution elasticities are likely to be small, or with small shares or large differences
among shares. In a seminal study, Patrick and Wolak (2001) find the TL model to perform poorly with
respect to predicting residential customer demand response to real time pricing; they recommend the GL
model, as an alternative. This is because the fixed coefficient Leontief technology can capture modest sub-
stitution possibilities. They use a Generalized McFadden (GM) model in their analysis, as their objective is
to capture changes in consumption between hours within the same day, which allows them to acknowledge
the possibility of positive as well as negative elasticities of substitutions. However, as noted by Boisvert
et al. (2007), the assumption of two demand periods within the same day—as we do in our study by dividing
the day into peak and off-peak periods - necessitates the assumption of a positive elasticity of substitution,
which ensures global concavity (footnote 9, p. 61). Therefore, like them, we rely on a GL rather than a GM
specification.
14 We could have also employed a simpler Constant Elasticity of Substitution (CES) specification as we
divide the day into two time periods. However, for almost all years, Akaike-Schwartz and Bayesian Infor-
mation Criterion values are much higher for GL models.
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E is effective electricity, Pp is peak price, Po is off-peak price, and dpp, dpo,, dop,

and dpp are parameters to be estimated. Specifically, dpp(doo) is the marginal effect
of a change in peak (off-peak) price on peak (off-peak) demand, while dpo(dop) is the
marginal effect of a change in peak (off-peak) price on off-peak (peak) demand. This
function is linear homogenous in all prices, which is a requirement for a well-behaved
indirect cost function. That is, if all prices are changed in the same proportion, then C
changes in the same proportion as well. Following Shepard (1970), optimal (constant
output) demand for peak and off-peak electricity can be obtained by differentiating
(1) with respect to each price;

∂C/∂ Pp = kp = E
∣
∣
∣dpp + dpo(Pp/P1/2

o)

∣
∣
∣ (2)

∂C/∂ Po = ko = E
∣
∣
∣doo + dop(Po/P1/2

p)

∣
∣
∣ (3)

Berndt (1991) derives the Allen partial elasticities of substitution of the GL model as

σop =
∣
∣
∣Cdop(Pp P1/2

o)

∣
∣
∣ / 2

∣
∣Eapao

∣
∣ (4)

where ao = ko/E and ap = kp/E
Equation 4 is the elasticity of substitution which measures the change in the ratio

of daily peak to off-peak usage in response to changes in the off-peak to peak price.
Assuming an additive error structure for the input cost equations ao and ap, it is possi-
ble to estimate the parameters of the GL model. However, E is an unspecified aggregate
of peak and off-peak electricity use, and cannot be observed from the data. Following
previous studies, and assuming separable within day electricity consumption, we use
the ratio of the natural logarithm of ap and ao;

ln
∣
∣ap/ao

∣
∣ = ln

∣
∣kp/ko

∣
∣ = ln

{∣
∣
∣dpp + dpo(Pp/P1/2

o)

∣
∣
∣ /

∣
∣
∣doo + dop(Po/P1/2

p)

∣
∣
∣

}

(5)

Denoting the estimated parameters of (5) as d∗ and employing sample means of Po and
Pp, it is possible to obtain approximations of (C/E). Along with (5) and the estimated
parameters d∗, the Allen partial elasticities of substitution can be derived as

σop =
∣
∣
∣(C/E)d∗

po(Pp P1/2
o)

∣
∣
∣ / 2apao (6)

Further simplification of (5) yields an estimable non-linear specification

ln
∣
∣kp,i t/ko,i t

∣
∣ = β0 + ln

{∣
∣
∣dpp + dpo(Pp,i t/P1/2

o,i t)

∣
∣
∣ /|doo + dop(Po,i t/P1/2

p,i t)|
}

(7)

This is further modified as

ln
∣
∣kp,i t/ko,i t

∣
∣ = β0 + β1ln

{∣
∣
∣dpp + dpo(Pp,i t/P1/2

o,i t)

∣
∣
∣ /|doo + dop(Po,i t/P1/2

p,i t)|
}

+β2T empit + �Dayi + �Montht + εi t (8)
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where i refers to the specific day in month t and εi t is the error term, which is assumed to
be independently and identically distributed. Consistent with the trends observed from
Fig. 2, kp,i t and ko,i t are average hourly consumption in MWh during peak (7 a.m. to
6:59 p.m.) and off-peak (7 p.m. to 6:59 a.m. the next day) hours, respectively. Similarly,
Pp,i t and Po,i t are average daily prices in $/MWh during peak (7 a.m. to 6:59 p.m.)
and off-peak (7 p.m. to 6:59 a.m. the next day) hours.15 We estimate (8) for aggregate
electricity consumption by all industrial customers as well as for the six sectors for
which data are available for June, July, and August of each year from 2005 to 2008.

We also employ other controls. T empit is the average daily temperature. Dummy
variables for each day (�Dayi ) are used to distinguish variation in electricity con-
sumption across days during the week, which in turn reflects variation in industry
output.16 Dummy variables are used for July and August as well in order to account
for unobserved month specific shocks. Table 3 contains summary statistics.

Given the obvious potential for correlation in electricity prices within the day, we
ran a Gauss Newton Regression test for first-order autocorrelation generated by an
AR(1) process.17 The null hypothesis of no first order autocorrelation was rejected in
all specifications. Therefore, consistent with previous studies (Herriges et al. 1993;
Schwarz et al. 2002), we assume a first-order autocorrelation in the error term. Further,
given the likelihood that the error term is correlated across industries, we use the non-
linear Seemingly Unrelated Regressions (NLSUR) methodology proposed by Gallant
(1975). Specifically, we jointly estimate seven equations (total industrial demand and
the six subsectors). Finally, following Braithwait (2000) and Boisvert et al. (2004,
2007), we impose the symmetry condition dop = dpo and the adding up constraint
doo + dpo + doo + dop = 1.18

Estimating the effects of hourly load on the HOEP

The above discussion outlines our approach to estimating industry specific elasticities.
The other contribution of this research is through our analysis of the effects of prov-
ince specific demand on the Hourly Ontario Electricity Price (HOEP). The empirical
specification that we employ is a standard reduced form expression:

15 There are studies (e.g., Taylor et al. 2005) that exploit variation across all hours, treating each hour as a
separate electricity commodity, as opposed to aggregating hours according to peak and off-peak. However,
as noted by Boisvert et al. (2004), there is evidence that some U.S.firms implicitly characterize the day as
being comprised of a peak and off-peak period (Neenan et al. 2002b; Goldman et al. 2004). This is certainly
our understanding, based on conversations with industrial customers in Canada.
16 What would be desirable are measures of actual industry output in dollars. However, we were unable
to obtain such data, and are not aware of any other study that has managed to control for industry output.
Taylor et al. (2005) also use time dummy variables to control for variation in relative levels of output across
these days.
17 Please refer to Davidson and MacKinnon (2003), pp. 275–277, for further details on the test.
18 Imposing the adding up constraint affects the estimates of doo, dpo, doo, dop but does not affect the
elasticities of substitution.
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Table 3 Summary statistics of variables used in (A) industry demand regressionsa. (B) price regressionsb

Obs Mean Std. Dev. Min Max

Years=2005–2008
(A) Industry demand regressions

Demand variables

Total industrial (MW/h) P 368 2600.54 173.13 2161.17 3019.42

O 368 2823.98 183.73 2356.75 3257.42

Iron and steel mills and ferro-alloy P 368 497.13 56.39 299.67 616.50
manufacturing (MW/h)

O 368 514.79 55.35 381.50 647.50

Metal ore mining (MW/h) P 368 499.43 55.43 276.08 588.17

O 368 519.09 54.14 300.92 605.92

Motor vehicle P 368 162.46 56.84 59.83 252.25
manufacturing (MW/h)

O 368 153.93 52.29 58.25 241.17

Petroleum and coal products P 368 215.92 35.84 133.75 259.17
manufacturing (MW/h)

O 368 216.45 36.29 136.17 260.92

Pulp, paper and paperboard P 368 511.78 105.97 301.83 801.08
mills (MW/h) O 368 607.31 100.15 381.92 832.92

Electric power generation, transmission P 368 203.72 29.38 155.92 293.17

and distribution (MW/h) O 368 299.39 34.58 217.17 409.33

Other variables

HOEP ($/MWh) P 368 72.79 31.71 24.99 234.61

O 367 41.06 16.75 4.84 123.95

Toronto temperature (◦C) 368 21.6 3.46 9.35 31.10

Years=2005–2007
(B) Price regressions

Variable

Electricity price ($/MWh) 6624 58.01 38.46 2.41 533.17

HHI 6624 5389.05 302.36 4549 6294

Ontario demand (MW/h) 6624 18163.83 3114.61 11699 27005

Exports (MW/h) 6624 1277.51 613.61 0 3298

Imports (MW/h) 6624 940.93 583.86 0 4028

Coal (MW/h) 6624 3616.58 1132.34 292 5659

Gas (MW/h) 6624 1261.33 683.61 449 3542

Nuclear (MW/h) 6624 9646.35 683.31 5670 11180

Hydro (MW/h) 6624 3383.54 969.44 1369 5744

ON’s monthly unemployment rate 6624 6.90 0.51 5.80 7.40

CAD-USD exchange rate 6624 1.13 0.07 1.04 1.26

Weekend dummy 6624 0.28 0.45 0 1

Holiday dummy 6624 0.02 0.15 0 1

Day 6624 15.84 8.85 1 31
a Summer Months, Daily Data, P Peak Hours, O Off Peak Hours
b Summer Months, Hourly Data
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Pi = β0 + β1 I nDemi + β2 O Demi + β3 E X Pi + β4 I M Pi + β5 H H Ii

+β6 NUC Pi + β7C O ALi + β8 HY DROi + β9G ASi + β10 E XC H Ri

+β11U N E M Pi + β12dayt
∑

i h + ∑

t m + εi

(9)

where i refers to the specific hour. The above model is a common methodology for
evaluating the impacts of demand, costs, and market structure on observable energy
prices in a given market.19 Pi is the HOEP expressed in $/MWh and is a function
of electricity demand and usage of industrial customers directly connected to the
transmission grid (I nDemi ), electricity demand and usage of industrial customers
not directly connected to the transmission grid, residences, and commercial estab-
lishments (O Demi ), imports (I M Pi ), exports (E X Pi ) and the mix of power supply
between coal (C O ALi ), nuclear (NUC Pi ), gas (G ASi ), and hydro (HY DROi ) all
in MWh—in each hour i . By employing constructs for the source of electricity supply
(coal, nuclear, gas, or hydro generated), we are not only controlling for the impacts
of supply but also conditioning empirical estimates of load demand to whether the
source of supply has differential impacts on electricity prices.

We also construct a Herfindahl-Hirschman Index (H H Ii ) which is a measure of
market power within an industry. Specifically, it is the sum of the square of the percent-
age of total electric supply generated by each individual firm for each hour.20 Finally,
we employ the average daily U.S.-Canada Exchange Rate (E XC H Ri ) and the aver-
age monthly Ontario Unemployment Rate (U N E M Pi ) in order to capture the effects
of macro-economic variables. Dayt is simply the day of the month and is intended at
reflecting the effects of trends within the month. Dummy variables are constructed for
each hour (

∑

i h) and month (
∑

t m) in order to control for the potentially confounding
effects of other time specific unobserved determinants of wholesale electricity prices.

Equation 9 is estimated by Feasible Generalized Least Squares (FGLS) based on a
Prais-Winsten correction for heteroskedasticity and AR(1) serial correlation. We use
a levels specification, based on results from Likelihood Ratio tests (from Box-Cox
regressions) that do not reject the use of a levels specification. We did not obtain any
difference in our results by clustering the standard errors by hour or day, and these
results are omitted for the sake of brevity. Summary statistics are in Table 3. Finally,
we note that unlike the case with demand elasticities, our estimates of the effects of
demand on price are derived from 2005, 2006, and 2007 (summer months) data, as this
is the time span of generator specific supply that we obtained from the Independent
Electricity Supply Operator (IESO).

19 For example, with respect to gasoline prices, see Sen (2003) and Sen and Townley (2010).
20 The Herfindahl-Hirschman Index (HHI) is the metric typically employed by antitrust agencies in dif-
ferent countries to measure industry-specific competitive effects or market structure and to identify and
establish enforcement and investigative thresholds in the analysis of horizontal mergers. The HHI is quite
easy to construct, being simply the sum of the squared market shares of firms, with market shares typically
being constructed from firms’ sales. Suppose that there are two firms supplying electricity, each of which
supplies 50% of total market needs. The HHI in this case is (50 × 50) + (50 × 50) = 5000.
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5 Results

Demand elasticities by industry

Table 4 contains nonlinear SUR estimates of the key parameter dpo (from Eq. 8),
which is the foundation for the partial Allen elasticity of substitution.21 While we
estimate Eq. 8 using demand data for all industrial customers and all the six sectors
(iron and steel mills and ferro-alloy manufacturing; metal ore mining; motor vehicle
manufacturing; petroleum and coal products manufacturing; pulp, paper and paper-
board mills; electric power generation; transmission and distribution), we only report
statistically significant estimates. Further, we conduct estimates for each year (2005
to 2008) in order to assess possible changes over time. As discussed above, econo-
metric estimates are based on year-specific samples over summer months (June, July,
and August) with hourly prices and demand averaged across peak (7 a.m.–6:59 p.m.)
and off-peak (7 p.m.–6:59 a.m.) hours. Therefore, each day has a single observation.
Finally, we report robust standard errors.

The first key finding is that, on average, estimates of dpo with respect to total demand
by all industrial customers are statistically significant (at either the 10%, 5%, or 1%
levels) across most columns. In contrast, there is considerable variation in estimates
across specific industries and over time. Specifically, dpo is always statistically insig-
nificant for most years for the metal, iron and steel, and motor vehicle industries.22

However, estimates with respect to demand by petroleum and the pulp and paper
industries are statistically significant for most years. Specifically, the estimate of dpo
with respect to the petroleum industry ranges from 0.02 to 0.09 and is significant for
2006, 2007, and 2008. The corresponding estimates for the pulp and paper industry
are from 0.02 to 0.06 and significant for all years except for 2005.23 Finally, only the
2008 estimate for electricity power and generation is statistically significant.

Table 5 contains estimates of the elasticities of substitution that correspond to the
above results (based on Eq. 8). Standard errors were estimated using the recursive-
design wild bootstrap method developed by Goncalves and Kilian (2004), which also
produces bias-corrected 95% confidence intervals. With respect to total consumption
by all industrial customers, the results yield elasticities of substitution from 0.02 to
0.065. Elasticities of substitution for the petroleum and coal products industry range
from 0.045 to 0.07. The highest elasticities are for the pulp and paper industry and are

21 Consistent with the literature, we focus on the cross-price effect (dpo) between peak and off-peak con-
sumption. Complete results are available on request.
22 These estimates are available on request.
23 These findings correspond to intuition offered to us by industry experts associated with the Association
of Major Power Consumers of Ontario (AMPCO), an organization representing energy policy interests of
major industrial customers in the province. The pulp and paper industry is supposed to be relatively flexible
in terms of with- and across-day operations and has the capability to adjust operation hours in order to reap
the benefits of lower prices during off-peak hours. On the other hand, the petroleum industry in Ontario is
quite concentrated and dominated by a few firms. Apparently most of these firms possess internal generators
that may be used if the HOEP becomes too expensive. So while they do have the ability to shift consumption
during off-peak hours, our results probably also reflect the shift towards internal energy production and
consumption during high price hours.
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Table 4 Generalized Leontief (GL) estimates

(1) (2) (3) (4)
2005 2006 2007 2008

Total industrial customers

dpo 0.011** 0.032* 0.026 0.017**

(0.004) (0.017) (0.022) (0.009)

Petroleum and coal products manufacturing

dpo 0.0002 0.034** 0.036* 0.021**

(0.005) (0.017) (0.019) (0.007)

Pulp, paper, and paperboard mills

dpo 0.0355** 0.046* 0.002 0.023*

(0.013) (0.025) (0.03) (0.012)

Electric power generation, transmission, and distribution

dpo 0.0113 0.0004 0.048 0.043*

(0.016) (0.044) (0.044) (0.022)

N 92 92 92 90

The dependent variables are industry specific log (peak demand /off-peak demand). Robust standard errors
in parentheses, where *p < 0.05, **p < 0.01, ***p < 0.001. An AR(1) correction was added to the
models. For each year, the seven industries were estimated together using nonlinear seemingly unrelated
regressions developed by Gallant (1975). Daily mean temperature and month dummies and day of week
dummies were included in all regressions. Peak hours are from 7:00 a.m. to 6:59 p.m. of each day. The data
are daily for June, July, and August. Two 2008 observations were dropped due to negative off-peak HOEP

between 0.05 and 0.10. In summary, our estimates of elasticities of substitution are
slightly lower in magnitude than the 0.08–0.18 range suggested by previous studies.

Estimating the effect of load on the HOEP

The above results offer evidence that some industries do shift consumption over hours
in order to reap the benefits of lower electricity prices. The next question is whether
there are differences in the effects of overall demand on the hourly electricity price.
A larger marginal effect during peak hours would suggest that the benefits of reduced
consumption during peak periods will not be offset by a corresponding increase over
off-peak hours. Further, differences in coefficient estimates of demand by consumers
would reveal whether industrial customers directly connected to the transmission grid
have an independent and direct effect on the HOEP. Tables 6 and 7 contain Feasi-
ble Generalized Least Squares (FGLS) and second stage Instrumental Variables (IV)
estimates of Eq. 9 with respect to peak and off-peak hours, respectively.

The IV results allow us to evaluate the possibility of measurement error in single
equation estimates of electricity demand by industrial customers, arising from simul-
taneity bias. This is important given our findings from GL models specifications. We
employ two hour lagged demand by industrial customers and the average daily tem-
perature in Toronto as instruments for electricity demand by industrial customers.
The use of two hour lagged demand assumes the existence of a correlation in hourly
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Table 5 Elasticities of Substitution between peak and off-peak hours

Industry Estimate Bootstrap_SE 95% CI_Lower 95% CI_Upper

Total industrial customers

2005 0.0232* 0.0113 0.0027 0.0319

2006 0.0659* 0.0343 0.0166 0.0882

2007 0.0540* 0.0308 0.0123 0.0804

2008 0.0359* 0.0175 0.0127 0.0554

Petroleum and coal products manufacturing

2005 0.0004 0.0137 0 0.0197

2006 0.0692* 0.0324 0.0056 0.1328

2007 0.0734* 0.0281 0.0103 0.1043

2008 0.0455* 0.0149 0.0180 0.0594

Pulp, paper, and paperboard mills

2005 0.0731* 0.0276 0.0188 0.1273

2006 0.0966* 0.0494 0.0114 0.1712

2007 0 0.0472 0 0.1221

2008 0.0516 0.0305 0 0.1071

Electric power generation, transmission, and distribution

2005 0.0231 0.0298 0 0.0736

2006 0 0.0771 0 0.0930

2007 0.1020 0.0747 0 0.2839

2008 0.0892* 0.0445 0 0.1683

* Significant at 5% level based on bias corrected confidence intervals. Standard errors were estimated using
a recursive design wild bootstrap method developed by Goncalves and Kilian (2004). Peak hours are from
7:00 a.m. to 6:59 p.m. of each day. The data are daily for June, July, and August

demand within the same day and that lagged demand should not directly affect current
price.24 With respect to our second instrument, an increase in temperature should be
associated with more electricity demand, all else being equal.

In almost all specifications, both instruments are positive and statistically signifi-
cant (at either the 1% or 5% levels), confirming that electricity demand by industrial
customers increases with temperature and is also correlated with demand in earlier
hours. For the sake of brevity, we only report the F statistics from joint tests of signif-
icance, which demonstrate that we can comfortably reject the null hypothesis that the
coefficient estimates of the instruments are equal to zero. Detailed first stage estimates
are available on request.

FGLS and IV estimates in Tables 6 and 7 are quite similar, suggesting the absence
of significant simultaneity bias. Table 6 demonstrates that a 1000 MWh reduction in
demand by industrial customers during peak hours is significantly associated (between
10% and 1% levels) with roughly a $20–$50 drop in the HOEP. On the other hand, a
1000 MWh reduction in demand by other consumers is correlated with a $17–$27 fall

24 We also used five and six hour lagged demand as instruments in order to test the sensitivity of our results
and obtained very similar estimates.
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Table 6 Feasible Generalized Least Squares (FGLS) and Instrumental Variable (IV) Estimates with respect
to Hourly Ontario Electricity Price (Dependent Variable) during Peak Hours

2005 2006 2007

FGLS IV FGLS IV FGLS IV

Ontario industrial
demand

0.0260 0.0542∗∗∗ 0.0503∗∗∗ 0.0465∗∗∗ 0.0198 0.0319∗∗∗

(0.0224) (0.0179) (0.0086) (0.0093) (0.0135) (0.0123)
Other industrial,
commercial,

0.0196∗∗∗ 0.0195∗∗∗ 0.0271∗∗∗ 0.0278∗∗∗ 0.0146∗∗∗ 0.0170∗∗∗

& Residential demand (0.004) (0.005) (0.003) (0.003) (0.003) (0.004)
Exports 0.0162∗∗∗ 0.0177∗∗ 0.0264∗∗∗ 0.0260∗∗∗ 0.0145∗∗∗ 0.0148∗∗∗

(0.0061) (0.0070) (0.0037) (0.0035) (0.0032) (0.0047)
Imports −0.0076 −0.0012 −0.0206∗∗∗ −0.0179∗∗∗ −0.0132∗∗∗ −0.0161∗∗∗

(0.0055) (0.0061) (0.0036) (0.0036) (0.0031) (0.0051)
Coal −0.0114∗∗ −0.0134∗∗ −0.0199∗∗∗ −0.0224∗∗∗ −0.0011 −0.0056

(0.0057) (0.0055) (0.0037) (0.0036) (0.0034) (0.0050)
Gas 0.0079 0.0075 −0.0060 −0.0060 0.0028 0.0002

(0.0055) (0.0056) (0.0053) (0.0045) (0.0039) (0.0051)
Nuclear −0.0189∗∗∗ −0.0183∗∗∗ −0.0282∗∗∗ −0.0294∗∗∗ −0.0161∗∗∗ −0.0174∗∗∗

(0.0073) (0.0068) (0.0043) (0.0039) (0.0037) (0.0053)
Hydro 0.0144∗ 0.0096 −0.0105∗∗ −0.0168∗∗∗ 0.0086∗∗ 0.0013

(0.0083) (0.0084) (0.0042) (0.0042) (0.0041) (0.0050)
Herfindahl Hirsch-
man Index

−0.0267∗∗ −0.0236∗∗ −0.0069 −0.0003 −0.0476∗∗∗ −0.0350∗∗∗

(0.0131) (0.0115) (0.0051) (0.0039) (0.0074) (0.0052)
Exchange rate 451.576∗∗ 225.097 227.816∗ 194.478∗ 53.732 −19.786

(219.669) (188.492) (116.637) (99.892) (127.844) (96.358)
Weekend 37.453∗∗∗ 32.024∗∗∗ 22.944∗∗∗ 19.162∗∗∗ 34.522∗∗∗ 28.124∗∗∗

(6.752) (6.043) (3.895) (3.007) (4.297) (3.106)
Holiday 15.925 14.948∗ 23.750∗∗∗ 23.216∗∗∗ 30.029∗∗∗ 24.394∗∗∗

(9.353) (8.364) (8.483) (7.017) (5.175) (4.007)
Day 0.4080 0.2025 0.0439 −0.0915 0.0384 0.0051

(0.3006) (0.2638) (0.1422) (0.1154) (0.0883) (0.0777)
N 1104 1104 1104 1104 1104 1104
Adjusted R2 0.2426 0.4736 0.4186 0.6757 0.3041 0.5223
Test of relevancy:
H0: Excluded instru-
ments jointly zero
F-statistic 639.142∗∗∗ 486.360∗∗∗ 277.408∗∗∗

Peak hours are defined as 7 a.m. to 6:59 p.m. The data are hour specific. Feasible Generalized Least Square
(FGLS) uses the Prais–Winsten method to correct for Heteroskedasticity and AR(1) Serial Correlation. IV
estimation uses Lag 2 of Ontario Industrial Demand and Toronto’s Temperature as Instruments for Ontario
Industrial Demand and employs a Bartlett kernel with 1 lag when estimating standard errors to account for
Heteroskedasticity and AR(1) Serial Correlation. Standard errors in parentheses. *, ** and ***Significant
at 10, 5 and 1% level respectively. Month and hour dummies are included in this model but not reported

in the HOEP. In terms of other estimates, exports (imports) is positively (negatively)
and significantly correlated (at the 1% level), with higher price. The one source of
power generation that is significant (at the 1% level) across all columns is nuclear
electricity, which possesses negative signs across all columns. Coefficient estimates
of weekend and holiday dummy variables are positive and statistically significant
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Table 7 Feasible generalized least squares (FGLS) and instrumental variable (IV) estimates with respect
to hourly Ontario electricity price (dependent variable) during off peak hours

2005 2006 2007

FGLS IV FGLS IV FGLS IV

Ontario industrial demand 0.0024 0.0093 0.0255∗∗∗ 0.0276∗∗∗ 0.0079 0.0135∗
(0.0099) (0.0117) (0.0057) (0.0070) (0.0051) (0.0071)

Other industrial, commercial, 0.0129∗∗∗ 0.0123∗∗∗ 0.0197∗∗∗ 0.0219∗∗∗ 0.0061∗∗ 0.0039
& Residential demand (0.0027) (0.0033) (0.0031) (0.0035) (0.0024) (0.0031)

Exports 0.0104∗∗∗ 0.0087∗∗ 0.0178∗∗∗ 0.0198∗∗∗ 0.0068∗∗ 0.0038
(0.0032) (0.0037) (0.0034) (0.0040) (0.0028) (0.0034)

Imports −0.0106∗∗ −0.0092∗ −0.0142∗∗∗ −0.0155∗∗∗ −0.0018 0.0010
(0.0047) (0.0051) (0.0034) (0.0039) (0.0029) (0.0036)

Coal −0.0080∗∗∗ −0.0090∗∗∗ −0.0140∗∗∗ −0.0162∗∗∗ −0.0008 0.0015
(0.0029) (0.0032) (0.0033) (0.0037) (0.0030) (0.0035)

Gas 0.0153∗∗∗ 0.0164∗∗∗ 0.0000 0.0013 0.0100∗∗∗ 0.0148∗∗∗
(0.0058) (0.0057) (0.0040) (0.0047) (0.0033) (0.0042)

Nuclear −0.0199∗∗∗ −0.0196∗∗∗ −0.0200∗∗∗ −0.0207∗∗∗ −0.0054∗ −0.0028
(0.0038) (0.0039) (0.0034) (0.0037) (0.0028) (0.0033)

Hydro −0.0068 −0.0069 −0.0160∗∗∗ −0.0201∗∗∗ −0.0018 0.0000
(0.0044) (0.0044) (0.0034) (0.0038) (0.0032) (0.0036)

Herfindahl Hirschman Index 0.0034 0.0078 0.0009 0.0046∗∗ −0.0014 0.0007
(0.0074) (0.0064) (0.0029) (0.0023) (0.0037) (0.0027)

Exchange rate 301.504∗∗ 273.667∗∗ 176.653∗∗ 84.225 53.236 26.680
(131.477) (108.898) (72.831) (55.373) (76.356) (57.023)

Weekend 11.033∗∗∗ 11.065∗∗∗ 9.408∗∗∗ 11.224∗∗∗ 6.203∗∗∗ 8.398∗∗∗
(2.635) (2.826) (1.392) (1.368) (1.333) (1.178)

Holiday 9.474 9.189 0.683 5.965∗∗∗ 6.593∗∗∗ 8.977∗∗∗
(7.331) (5.947) (3.730) (2.185) (1.961) (1.304)

Day 0.4244∗∗ 0.3951∗∗ −0.0614 −0.1482∗∗ 0.1985∗∗∗ 0.1728∗∗∗
(0.1791) (0.1538) (0.0749) (0.0597) (0.0564) (0.0400)

N 1104 1104 1104 1104 1104 1104
Adjusted R2 0.6255 0.6781 0.6972 0.7520 0.7102 0.7474
Test of relevancy: H0: Excluded instruments jointly zero
F-statistic 343.730∗∗∗ 230.297∗∗∗ 152.277∗∗∗

Off peak hours are defined as 7 p.m. to 6:59 a.m. The data are hour specific. Feasible Generalized Least
Square (FGLS) uses the Prais–Winsten Method to correct for Heteroskedasticity and AR(1) Serial Corre-
lation. IV estimation uses Lag 2 of Ontario Industrial Demand and Toronto’s Temperature as Instruments
for Ontario Industrial Demand and employs a Bartlett kernel with 1 lag when estimating standard errors
to account for Heteroskedasticity and AR(1) Serial Correlation. Standard errors in parentheses. *, ** and
*** Significant at 10, 5 and 1% level respectively. Month and hour dummies are included in this model but
not reported

(at the 10% or 1% levels) across all columns, possibly capturing the effects of increased
load demand by residences.

Results contained in Table 7 offer some further evidence on the curvature of the
elastic supply curve through empirical estimates of the effect of demand by indus-
trial customers and other consumers on the HOEP during off-peak hours. The first
observation is that coefficient estimates of industrial demand as well as demand by
others are smaller in magnitude relative to estimates in Table 6. The estimates indicate
that a 1000 MWh increase in demand by industrial customers during off-peak hours
is significantly associated (between 10% and 1% levels) with an $9–$25 increase in
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the HOEP. In contrast, a 1000 MWh increase in demand by other consumers during
off-peak hours is significantly correlated (between 10% and 1% levels), on average,
with an $6–$20 increase in the HOEP. The estimates of other covariates are otherwise
comparable to those in Table 6.

In summary, results contained in Tables 6 and 7 suggest that hourly demand by
industrial customers have a stronger impact on the HOEP relative to other consumers.
The estimates also reveal that hourly demand by industrial customers has a larger
marginal effect on the HOEP during peak (relative to off-peak) hours.25 Therefore, a
price reduction from lower industrial demand during peak hours should not be offset
by a corresponding increase in demand during off-peak hours.

6 Conclusion

The late 1990s and early 2000s witnessed considerable deregulation of electricity mar-
kets in North America. Sudden and sharp increases in retail prices accompanied by
overall price volatility, as well as sudden blackouts, resulted in the imposition of price
ceilings in California and Ontario still in effect today. Many states continue to regulate
electricity prices. However, competitive wholesale markets exist alongside regulated
retail sectors. The inability to allow retail prices to reflect changes in wholesale price
shocks causes considerable market distortions and inefficiencies. As a result, focusing
on the incentives to industrial customers and their impact on wholesale prices has
assumed key policy importance.

This paper attempts to fill this gap by employing data for summer months from
2005 to 2008 for the province of Ontario. Using data over multiple years enables
us to assess the sensitivity of our findings to year-specific shocks. Data obtained on
special request from the IESO allows us to evaluate the effects of price on consump-
tion across different industries. We obtain elasticities of substitution from 0.02 to 0.07,
with considerable heterogeneity across industries. While these results are on the lower
end of corresponding estimates from other papers, there are plausible explanations for
our estimates. For example, as discussed earlier, most studies are based on sample of
firms that voluntarily decide to enroll in RTP programs and are therefore more likely
to engage in load-shifting than non-participating firms. They are unable to employ
data on the universe of firms participating in such programs. In contrast, we use data
on all firms that are connected to the transmission grid. Therefore, we interpret our
estimates as modest evidence that industrial customers do shift consumption from
peak to off-peak hours in order to exploit the benefits of lower prices during those
times.

We also find that lower market demand by industrial customers during peak hours
is significantly associated with a decline in the HOEP. On the other hand, the marginal
impact of an increase in demand during off-peak hours is of a much smaller magnitude.
Coefficient estimates of the effects of demand by industrial customers are larger in

25 With respect to all the regressions in Tables 6 and 7, we used F tests to evaluate the null hypothesis that
coefficient estimates of demand by industrial customers are larger in magnitude than coefficient estimates
of demand by other consumers. In most cases, we could not reject the null hypothesis.
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magnitude than corresponding estimates with respect to demand by other consumers.
We think this to be an important finding, given the lack of econometric evidence and
the inability of recent simulation based studies to account for such offsetting effects.

In tandem, these results offer support to the notion that policies that encourage effi-
cient demand management by industrial customers will result in positive spillovers to
all consumers. A good example would be the implementation of higher network trans-
mission charges (for industrial customers) during peak hours. For example, Hydro
One Networks Inc. (HONI), a corporation owned by the Government of Ontario, is
responsible for the planning, construction, operation, and maintenance of most (97%)
of the province’s transmission and distribution network, which carries electricity from
generating stations to local distribution companies and industrial customers. Currently,
HONI bases network transmission charges for individual customers on their respec-
tive demand level, calculated each month as the higher of (1) the customer’s demand
at the time of the monthly coincident peak demand, or (2) 85% of the customer’s
maximum non-coincident demand between 7:00 a.m. and 7:00 p.m. on weekdays that
are not holidays.

As evident, this system offers limited consumer benefits for moving consumption
away from the month specific peak demand and provides little incentive for efficient
demand management for shifting consumption from peak to off-peak hours. More
response could potentially be achieved through higher network charges during peak
hours. Some papers suggest that the potential for cost savings from even small reduc-
tions in peak demand might be significant.26 Our study has gone further by demon-
strating that a particular group of consumers—through incentives generated by Real
Time Pricing—can impact system wide electricity prices and result in efficiencies
from reduced peak hours consumption. The implication is that policies focused on
industrial customers may benefit all consumers.
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