

Institute for Chemicals and Fuels from Alternative Resources

Western University

Thermochemical and Catalytic Upgrading Biomass into Industrial Bioproducts

Charles Xu, PhD, P.Eng

NSERC/FPInnovations Industrial Research Chair in Forest Biorefinery *Dept of Chemical and Biochemical Engineering, Western University, London, ON*

NSERC/FPInnovations Industrial Research Chair (IRC) Program in Forest Biorefinery 'maximizing the values of trees"

Seminar at WISE – Waterloo Institute for Sustainable Energy June 6, 2012

Outline

Introduction of Industrial Bioproducts

- **Agricultural and Forestry Biomass Resources**
- **Biomass Conversions Technologies**
- **A Showcase of Dr. Xu's Research on Thermochemical and Catalytic Upgrading Biomass into Industrial Bioproducts**

NSFRC/FPInnovations Industrial Research Chair (IRC) Program in Forest Biorefinery "maximizing the values of trees"

What are Industrial Bioproducts

- Today the world economy is heavily relying on fossil energy (petroleum coal, natural gas) to produce power, fuels, chemicals and materials.
- The world fossil resources are depleting fast.
- Biomass (terrestrial or aquatic vegetation, agricultural or forestry residues and industrial or municipal waste) presents an immense renewable resource that could provide an alternative to fossil resources.
- The **bio-based chemical and materials products** derived from biomass are called **industrial bioproducts**.

Why not Fuels, but Chemicals/Materials?

Chemicals and materials much more valuable than fuels a lesson learnt from the petroleum industry …

From presentation by John Schmidt, the NSERC Strategic Biomaterials and Chemicals Network Overview Workshop, April 12, 2010, Toronto.

Current Industrial Bioproducts Production in the US

Energetics, Industrial Bioproducts: Today and Tomorrow, July 2003

The Market Share of Industrial Bioproducts in the US

Morris, David, and Ahmed, Irshad. 1992. *The Carbohydrate Economy: Making Chemicals and Industrial Materials from Plant Matter. Institute for Local Self-Reliance. Washington, D.C*

Bioproducts Market Outlook

(Canadian Bio-Pathway, Forest Products Association of Canada)

Bioproducts Market Outlook (Cont'd)

RENEWABLES VISION 2020, EXECUTIVE STEERING GROUP, "THE TECHNOLOGY ROADMAP FOR PLANT/CROP-BASED RENEWABLE RESOURCES 2020":

http://www1.eere.energy.gov/biomass/pdfs/technology_roadmap.pdf

Outline

Introduction of Industrial Bioproducts Agricultural and Forestry Biomass Resources Biomass Conversions Technologies A Showcase of Dr. Xu's Research on Thermochemical and Catalytic Upgrading Biomass into Industrial Bioproducts

NSFRC/FPInnovations Industrial Research Chair (IRC) Program in Forest Biorefinery "maximizing the values of trees"

Agricultural and Forestry Biomass Resources in the US

The US DOE and the US Department of Agriculture demonstrated that 1.3 billion metric tons of biomass can be produced exclusively for bio-fuel production in the US each year (NREL, 2006), which could supply 21% of U.S. energy demand, or 33% of U.S. transport fuels.

Agricultural & Forestry Biomass Resources in Canada

-
- The amount of potential agricultural residues in Canada has been estimated at **29.3 Mt oven dried** (OD) biomass per year, among which **17.8 Mt OD** biomass/year may be available for energy and chemical production (Wood and Layzell, 2003)
- Canada is blessed with **401.9 million hectares of forest** (approximately 10% of the world's total forest), producing \sim 15 million tonnes of pulp annually.
- A **vastly large amount** of **forestry residues are available for energy and bioproducts production**.

Outline

Introduction of Industrial Bioproducts Agricultural and Forestry Biomass Resources Biomass Conversions Technologies A Showcase of Dr. Xu's Research on Thermochemical and Catalytic Upgrading Biomass into Industrial Bioproducts

NSFRC/FPInnovations Industrial Research Chair (IRC) Program in Forest Biorefinery "maximizing the values of trees"

Biorefinery Ethanol Hydrolysis \rightarrow Sugars

Biorefinery technology platform and Types of Biomass Conversion

Outline

- **Introduction of Industrial Bioproducts**
- **Agricultural and Forestry Biomass Resources**
- **Biomass Conversions Technologies**
- **A Showcase of Dr. Xu's Research on Thermochemical and Catalytic Upgrading Biomass into Industrial Bioproducts**
	- Esterification of Starch for the Production of Biodegradable Materials
	- Production of Bio-phenols and Green Resins/Adhesives from Forestry Residues
	- Novel One-step Catalytic Process to Produce 1-Butanol and Fuel Additives from Bio-ethanol

Esterification of Starch for the Production of Biodegradable Materials

NSERC/FPInnovations Industrial Research Chair (IRC) Program in Forest Biorefinery "maximizing the values of trees"

• The most important digestible carbohydrate in human and animal diets;

Starch

- A major constituent of traditional foods found in many crops and most plant seeds;
- A polymer of glucose composed of linear amylose and highly branched amylopectin with approximately three hydroxyl groups in each glucose unit.

Why Use Starch as a Raw Material for Biopolymer/Biomaterials

- **Abundant/renewable resource**: Canada produces approx. 50 million tonnes (Mts) of grains annually (Agriculture and Agri-Food Canada, 2009);
- **High purity**
- **Biodegradable**
- **Low cost**

Why biopolymer/biomaterials

- o Renewable/Biodegradable
- o Environmentally benign and non-toxic
- o Inexpensive
- o A rapidly growing market: the global market for biodegradable polymers will rapidly grow at a compound average growth rate of more than 17%/year through 2012 (BCC Research)

Modification is Needed

- **Starch**
	- o High polarity, not compatible with other materials, insoluble in organic solvent
	- o High crystallinilty, hard to melt and process
	- o Strong intra-molecular interaction (hydrogen bonds), no strength
- After Modification to **Starch Acetates** (by esterification)
	- o Low polarity, compatible with other materials, soluble in organic solvent
	- \circ Low crystallinilty, can melt and ease processing
	- o Weaker intra-molecular interaction, improved strength

Applications Starch Acetates (SA)

- Food and medicinal industry
- Hot melt adhesives
- **Coatings**
- Cigarette filters
- Biodegradable packaging materials
- Metal ion absorbents
- Films
- Foams or plastic parts
- Composite with synthetic materials to form biodegradable materials

Biodegradable Plastics

renrex

Starch Modification by Esterification

 SA of lower degrees of substitution (DS) food and medicinal applications \blacksquare SA of high DS $-$ biomaterials products

Conventional methods for synthesis of Starch Acetates

Conventional methods for synthesis of Starch Acetates (Cont'd)

Common Problems of the Conventional Methods for SA Synthesis

- \blacksquare Low DS: 1-2 or \leq 3
- Large quantities of sodium (or potassium) acetate byproducts, with a low market value.
- Reaction conditions (difficult to control)
	- High T/P was used in some processes
- Loss of yield from hydrolysis of acetic anhydride by water and sodium hydroxide

Synthetic Procedure

Cornstarch-derived SA Products

Soluble in acetic acid and **Insoluble** in acctic acid and
 Insoluble in acetic acid

other organic solvents

(a) (b)

SA of DS of 3 SA of DS of 2 Original cornstarch

SA Products Yields

- Catalysts A and C produced highest yields at an average of $79 - 85$ %; Catalyst A was selected because of its price, activity and better product quality (lighter color SA products);
- Increase of catalyst amount did not affect the products yields;
- Increase of acetic anhydride/starch ratio could substantial increase the product yields from 36 to 85%;
- The SA products yields can be improved by optimizing the precipitation conditions (precipitating solvent and conditions).

Type A Catalyst

Type B Catalyst

Type C Catalyst

No catalyst

29

H₃COC

COCH₃

 $CH₂O$

 $\overline{C}OCH_3$

For DS=3, the peak area ratio of 2.0ppm to 3.5 - 5.6 ppm is 1.4, slightly higher than 9/7(=1.3) for a theoretical DS=3, showing high degree of substitution.

Production of Bio-phenols and Green Resins/Adhesives from Forestry Residues

NSERC/FPInnovations Industrial Research Chair (IRC) Program in Forest Biorefinery "maximizing the values of trees"

Phenol-formaldehyde (PF) resins

- The global production and consumption of PF resins in 2009 were approximately **3.0 Mt**. It is expectedan average growth of 3.9% per year from 2009 to 2014, and 2.9% per year from 2014 to 2019 (SRI Consulting, 2010).
- The PF resin manufacture is an important industry valued approx. **\$10 billion in the world, and \$ 2.3 billion in North America.**

SRI consulting, World Petrochemical (WP) report on PF Resins, January 2010.

[http://www.sriconsulting.com/WP/Public/Reports/](http://www.sriconsulting.com/WP/Public/Reports/pf_resins/) [pf_resins/](http://www.sriconsulting.com/WP/Public/Reports/pf_resins/) (retrieved Jan 14, 2011)

Phenol-formaldehyde (PF) resin (Cont'd)

NSFRC/FPInnovations Industrial Research Chair (IRC) Program in Forest Biorefinery "maximizing the values of trees"

- PF resins are most widely used as **wood adhesives**.
- The cost of PF resins varies from **US\$ 1,500 to US\$ 2,000** per metric ton, mainly due to the high and fluctuating cost of phenol**.**

World consumption of phenol-formaldehyde resins in 2009

SRI consulting, World Petrochemical (WP) report on PF Resins, January 2010. http://www.sriconsulting.com/WP/Public/Reports/pf_resins/ (retrieved Jan 14, 2011)

Phenol

- Phenol is mainly consumed for the production of PF resins. In USA, PF resins manufacture consumes **35-40% of the phenol** produced.
- **The global production of phenol is about 10.7 Mt/y at a cost of \$700-1,500/t**. Expected growth is **4.5%** per year 2010-2015.
- More than 95% of phenol is produced from petroleum-derived benzene by the cumene process

Phenol and PF resins from renewable resources (biomass)?

NSFRC/FPInnovations Industrial Research Chair (IRC) Program in Forest Biorefinery "maximizing the values of trees"

Methodologies/ Approaches

Reductive De-polymerization of Alkali Lignin $(M_n \sim 10,000)$ in Hotcompressed Alcohol

1: DL– De-polymerized lignin products; 2: SR – Solid residue; 3: GP – Gaseous products; 4: The GPC results were from the THF-soluble portion of the DLs; ; 5: NA – not analyzed.

Catalytic lignin de-polymerization

5 MPa H_2 (cold pressure) for 2 hr in 50% ethanol, 300°°C

¹ For the THF soluble fraction of DL

The optimum catalyst appears to KOH, RC, NC, with respect to DL yields, THF solubility and molecular weights.

Summary of Key Results (Cont'd)

Application of bio-based phenolic resins to plywood adhesives $3.0 -$

¹ Each value represents an average of 20 specimens.

²Test after conditioning.

³Test after boiled for 3h.

Figure Tensile-strength profile of plywood glued by the DLPFs and pure PF adhesives. The horizontal lines indicate the minimum requirement of the tension shear strength specified by the JIS K-6852 standard (1.2 MPa for dry strength, and 1.0 MPa for wet strength) for resole-type plywood adhesives.

Novel One-step Catalytic Process to Produce 1-Butanol and Fuel Additives from Bio-ethanol

NSERC/FPInnovations Industrial Research Chair (IRC) Program in Forest Biorefinery "maximizing the values of trees"

Properties of Common Liquid Transportation Fuels

Molecular formula of C_4H_9OH

<u>Butanol</u>

 As an intermediate in chemical synthesis (isobutyl acetate or isobutyl esters).

As a solvent

As a potential fuel to substitute for gasoline or fuel additive (gasoline additive)

According to the US's Renewable Fuels Standard, the US production of bio-butanol will reach 57 billion liters by 2022, which is mainly derived from corn-starch and agricultural residue (The US Energy Independence & Security Act of 2007).

Butanol vs. Ethanol

- ◆ Butanol contains 25% more energy than ethanol.
- ◆ Butanol is safer because it is evaporated six times less than ethanol and 13.5 times less volatile than gasoline.
- ◆ Butanol has a much higher compatibility with gasoline than ethanol.
- ◆ Butanol can be blended with gasoline at a ratio up to 100%.
- ◆ Butanol is clean as it does not produce sulfur and nitrogen oxides at combustion.
- ◆ Butanol is much more valuable than ethanol (Current iso-butanol and n-butanol prices are around \$1400 and \$1500 per tonne, compared to corn ethanol which sells at around \$700 per tonne)

Khimicheskaya Promyshlennost (2008)85, 203−208.

Industrial Chemical Synthesis of Butanol

Biotechnology and Bioengineering, (2008)101;209-228

Oxo synthesis (hydroformylated to butyraldehyde)

B

Reppe synthesis

Biological Production of Butanol

Lee, et al., (2008). Biotechnology and Bioengineering 101: 209-228

- Pasteur in 1861
- Weizman in 1914
- Industrial producing of butanol began in 1916
- ABE fermentation (acetone, butanol and ethanol) in during World War II, using Bacteria Clostridia Acetobutylicum

Problems of Traditional ABE Process

ABE products toxicity to the bacteria strain

Low product concentrations (concentration below 2.0% at productivity of 4.46 $g/L/h$

(butanol yield of less than 25% on the glucose weight) Low yield

Biotechnology and Bioengineering, (2008)101;2209-228

Outlook of World Butanol Production

Research Objectives

We aim to develop a one-step continuous catalytic process to convert bio-ethanol into 1-butanol, 1-hexanol, and some other compounds that are useful as fuel additives.

$2 C_2H_5OH \rightarrow C_4H_9OH + H_2O$

Molecular weight (g/mol): 92 74 74 Theoretical yield: 1 kg (basis) 0.8 kg 0.2 kg

 \geq Commercial anhydrous ethanol (purity>99%) from Commercial Alcohols (GreenField Ethanol) \triangleright Self-prepared less expensive supported metallic catalysts

Experimental Setup

Different catalysts performance in bioethanol conversion to 1-butanol

¹ Catalyst was diluted with crushed Pyrex glass beads of 20-50 mesh (1:3

 w/w).

An schematic of process flow diagram for producing n-butanol and fuel additive

 $2 C_2 H_5 \text{OH} \rightarrow C_4 H_9 \text{OH} + H_2 \text{O}$

Acknowledgements

Acknowledgements

