

DESIGN OF A PARTICIPATORY-MODEL/MICROGRID/SMART-FARM SYSTEM FOR THE MAPUCHE INDIGENOUS COMMUNITIES

Mapuche Communities: Huanaco Huenchum & José Painecura

University of Chile Doris Sáez Hueichapan & Roberto Cárdenas, Roberto Hernández

> University of La Frontera Juan Huircán & Carlos Muñoz

University of Waterloo Claudio Cañizares & Paul Parker

National Corporation of Indigenous Development, Chile Fermin Levio & Necul Painemal

Ministry of Energy, Chile

Gobierno de Chile

Gobierno de Chile

<u>www.comunidadesmapuchefcfm.cl/</u>

Project FONDEF IDeA 14110063

STAFF

University of Chile/University of La Frontera

Enrique Espina, B. Elect. Eng. Raúl Morales, B. Elect. Eng. Carolina Vargas, B. Renewable Natural Resources Eng. Cristian Ahumada, Student - B. Elect. Eng. Claudio Alarcon, B. Elect. Eng.

Walter Jarpa, Student - Elect. Eng. Victor Caquilpan, Student - Renewable Natural Resources Eng.

www.comunidadesmapuchefcfm.cl/ Project FONDEF IDeA 14110063

Contents

- Motivation and brief summary
- Project objectives and stages
- Participatory model
- Mapuche communities
- Microgrid design
- Smart farm system
- Integrated system

Motivation

- Access to electrical energy in rural zones has a strong impact on local development.
- Extending the main electrical grid involves high costs and technical issues.
- The microgrids based on renewable distributed units are presented as an attractive solution for rural zones.

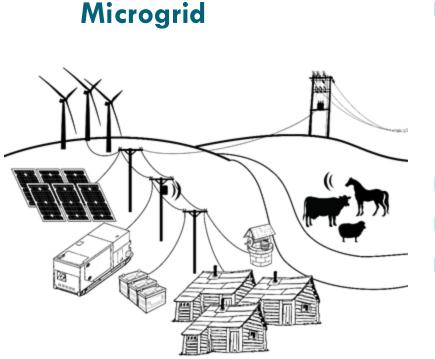
Motivation

- Mapuche people have strongly emigrated from the rural zones → Family disintegration triggered by the migration of young people
- Mapuche means "people of the land" in Mapudungun. The gap between the Mapuche life way and Chilean society has generated loss of their cultural identity.
- The Mapuche culture has a strong respect for the environment and its renewable resources.

Brief Summary

- Design a microgrid/smart-farm system for Mapuche people based on a participatory model.
 - The Mapuche people is the largest ethnic group among the indigenous peoples of Chile (86.4%)
 - For them, the community is above the individual interests.
- The proposed project is designed according to the Mapuche culture.

Project Objetives

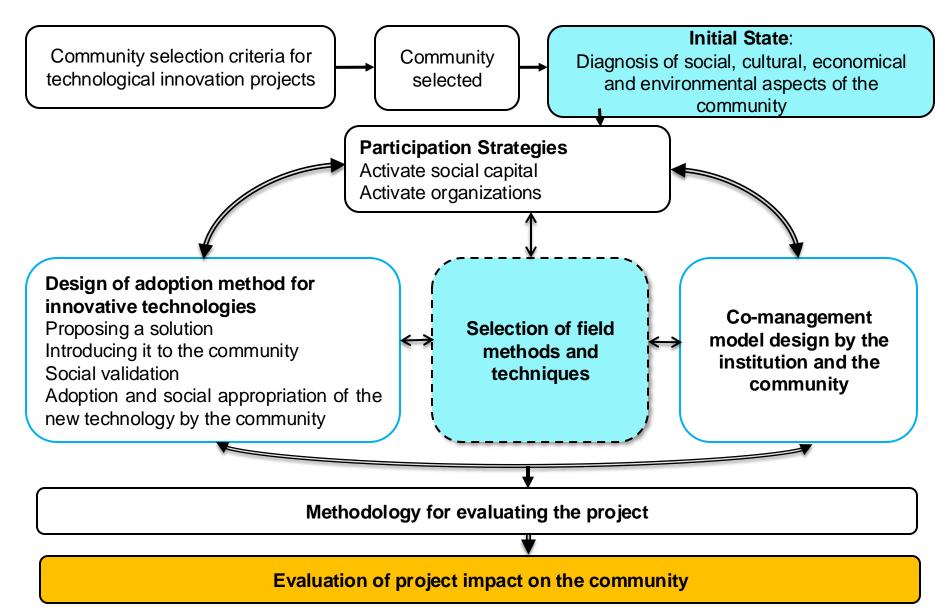


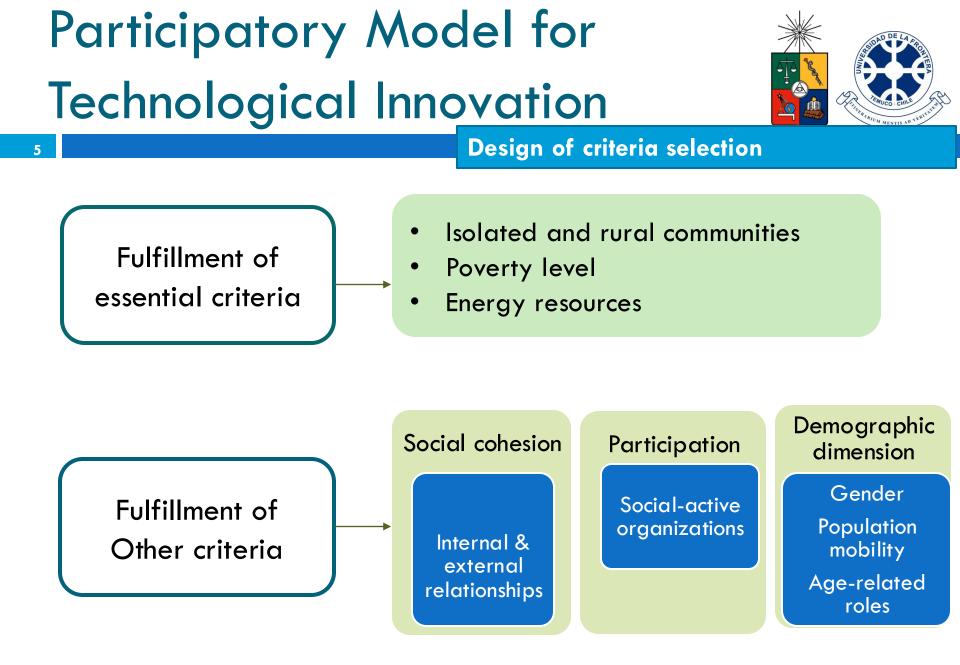
- Design a methodology:
 - To implement microgrids for energy supply in Mapuche communities.
 - To install a smart* farm system considering management of irrigation water and a livestock monitoring system.
- For improving the quality of life for Mapuche rural communities, while strengthening appreciation of their culture and ethnic identity.

*Smart: Sustainable, Manageable, and Accessible Rural Technologies

Project Stages

- Participatory model for technological innovation
 - Technical-social criteria for selecting communities
 - Participatory diagnosis
- Microgrid design
- Smart farm system design
- Integration of microgrid/smart-farm /participatory model


Smart Farm


Participatory Model for Technological Innovation

Participatory Model for Technological Innovation

Participatory Model for Technological Innovation

Participatory Diagnosis

• Environmental aspects

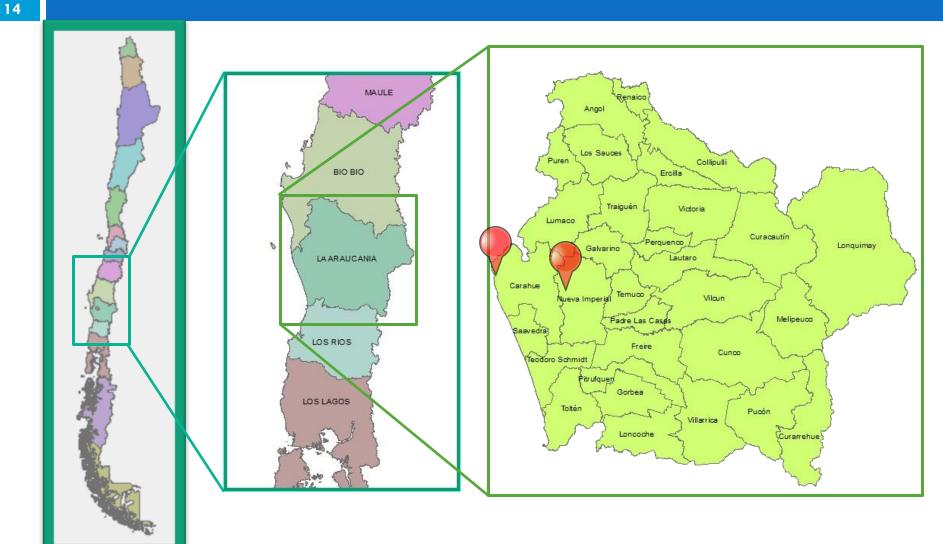
Selection criteria

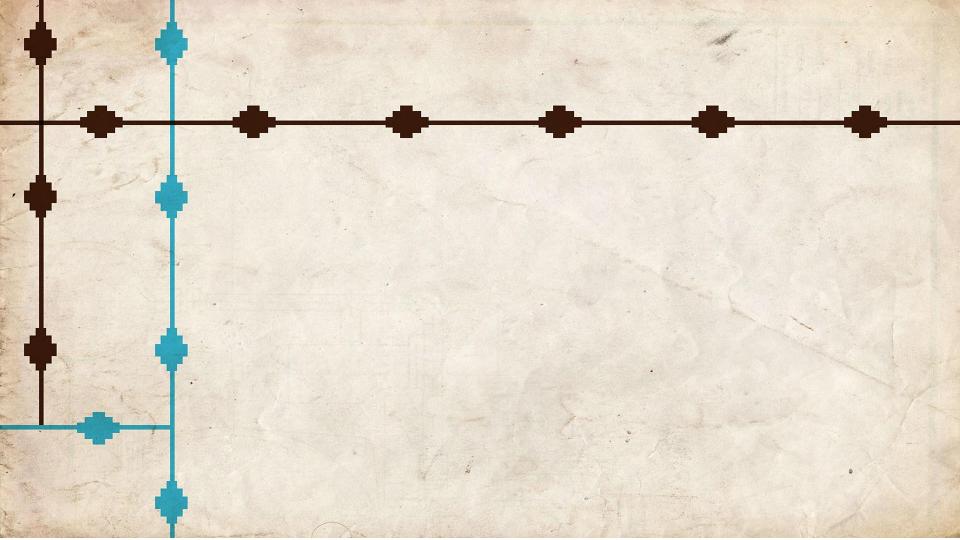
÷

 Economical and productive aspects

Socio-cultural aspects

Participatory Model for Technological Innovation

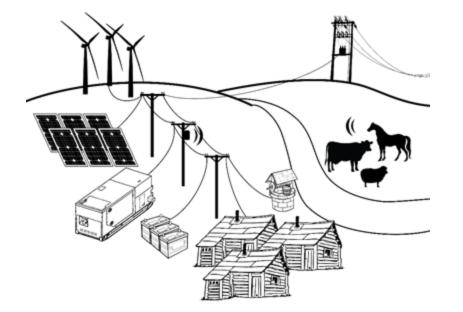

Participatory diagnosis



Mapuche Communities

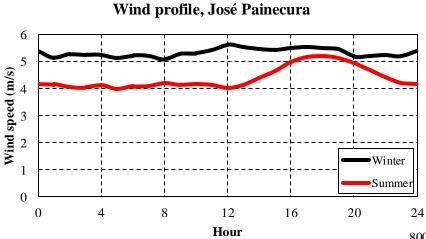
Mapuche Communities

José Painecura

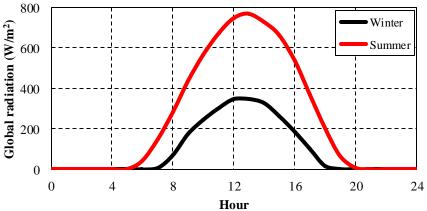

- 100 km from Temuco.
- □ 573 [Ha] (mountains and streams).
- Lafkenche: People of the sea.
- No mobile phone or internet coverage.
- Productive activities.
 - Agriculture for their own consumption
 - Small livestock.
 - Collecting seaweed and seafood.
- They are connected to the an unreliable grid with a high frequency of faults.

Contents

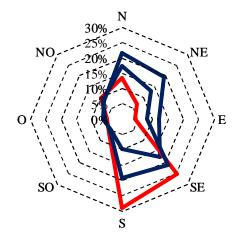
- Motivation and proposal
- \square Project objectives and stages $\sqrt{}$
- Participatory model
- \Box Mapuche communities $\sqrt{}$
- Microgrid design
- Smart farm system
- Integrated system

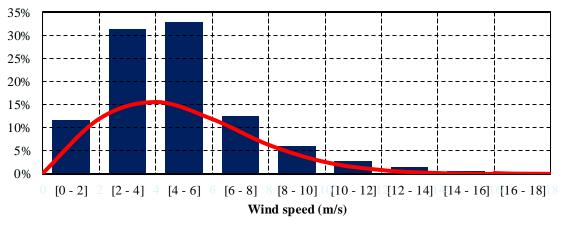

- Wind and solar resources evaluation
- Microgrid planning based on HOMER-PRO Energy software

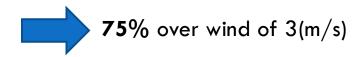
Evaluation of wind and solar resources


Daily Profiles

19

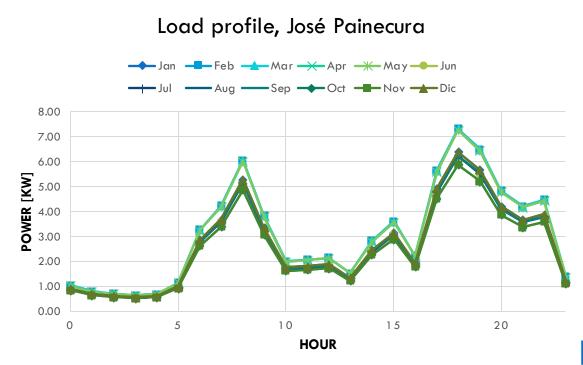

Global radiation profile, José Painecura




Wind resource evaluation

Wind rose, José Painecura

Weibull Wind distribution, José Painecura



21

Demand Estimation

Period	Consumption [kWh]
Dec. – Jan.	3.835
Feb – March	4.391
April – May	4.352
June – July	3.722
August – Sep.	3.736
Oct – Nov.	3.524

Energy Average	65 , 4 [kWh/day]
Power Average	2,72 [kW]
Power Peak	9,45 [kW]
Load Factor	0,29

Field conditions							
Altitude above sea level	94 [m]						
surface roughness	0,29						
Economical data							
Discount rate	10 [%]						
Evaluation horizon	20 [years]						
Inflation	3,1 [%]						

Technical and economical data								
Utility prices								
Price of energy (to sell)	0,2493 [US\$/kWh]							
Price of energy (to buy)	0,0586 [US\$/kWh]							
Faults								
Frequency of faults	43 [1/year]							
Average repair time	9 [hour]							
Maximum repair time	3 days							

Investment costs

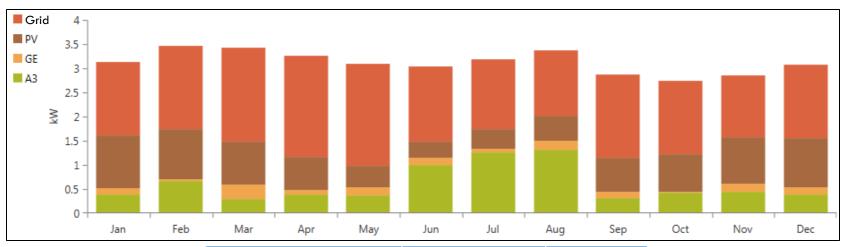
Capital expense [US\$]	PV 0,25 KW	WT 10 kW	WT 3,5 kW	Battery Bank	Converter	Diesel Generator
Equipment	312,01	51.688,99	29.919,69	155,68	2.692,53	9.670,93
Installation	341,02	7.338,38	5.385,54	35,79	0,00	1.364,06
Project	18,72	2.446,13	1.795,18	0,00	0,00	580,26
Management						
Transport	491,52	30.092,93	5.517,04	777,40	1.003,10	436,81
Replacements	65,30	5.902,74	3.530,52	19,15	269,25	1.103,50
Contingency	174,49	13.734,96	6.392,62	145,33	554,34	1.807,81
Taxes	266,58	21.128,79	9.982,71	215,34	858,65	2.843,04
Total investment	1.669,64	132.332,92	62.523,30	1.348,69	5.377,88	17.806,40

23

24

Homer

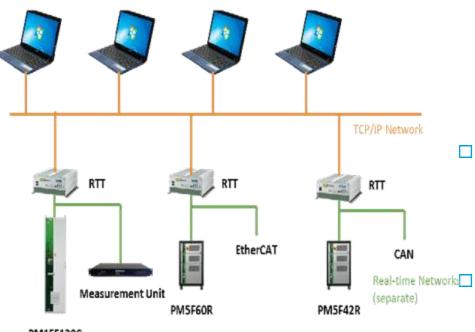
Criterion: To increase the energy consumption without increasing the cost paid by the people of the community


	Architecture									Cost S					System GE							
ų			\$	=	- <u>B</u> -	2	PV (kW)	7 A:	10 🏹	A3 🍸	GE (kW)	ТВ	lat 🍸	AC/DC (kW)	COE (\$) ▼	NPC (\$)	Operating cost (\$)	Initial capital (\$)	Ren Frac (%)	Hours 🍸	Production 😽	Fuel V (L)
			Ê		÷	2					10.0	1	.0	3.00	-\$0.0439	-\$11,372	\$3,662	-\$51,114	0.0	271	1,271	436
Щ.			Ê		Ŧ	2	3.00				10.0	1	.0	3.00	-\$0.0345	-\$8,958	\$2,038	-\$31,079	15	225	1,016	352
Ŵ			Ê		Ŧ	2	5.00				10.0			3.00	\$0.0193	\$5,186	\$3,354	-\$31,209	23		SCHEMAT	IC
			Ê		Ŧ	2				1	10.0	1	.0	3.00	\$0.162	\$43,648	\$2,971	\$11,409	21	A		DC
ų		1	£	÷	á þ	~	3.00			1	10.0	5	i	3.00	\$0.172	\$47.139	\$2.068	\$24.701	35	GE	Jose Painecur	
Ŵ		1	î		÷	~	5.00			1	10.0			3.00	\$0.216	\$61,763	\$2,806	\$31,315	41		→ 🔽	~
			Ê		÷	2		1			10.0	1	.0	3.00	\$0.263	\$92,799	\$1,067	\$81,218	60		65.40 kWh/d 9.45 kW peek	
Щ.			Ê		÷	2	3.00	1			10.0	5	;	3.00	\$0.269	\$99,526	\$462.11	\$94,511	67	Red	AC/DC	Ba
м.			Ê		Ē	2	3.00	1			10.0			3.00	\$0.293	\$108,415	\$1,903	\$87,767	66		↔∕∕∼	> <> interest
			Ê		Ŧ	2		1		1	10.0	1	.0	3.00	\$0.395	\$156,355	\$1,162	\$143,742	67			
м.			Ê		Ŧ	2	3.00	1		1	10.0	5	;	3.00	\$0.399	\$165,388	\$769.82	\$157,034	73	A3		
m.	+	+	Ê		÷	2	3.00	1		1	10.0			3.00	\$0.416	\$172,645	\$2,060	\$150,291	73			

COE: Marginal cost of energy [US\$/kWh] NPC: Net present cost [US\$]

Homer

Monthly energy production


Energy	[kWh/year]	[%]	
5 kW PV	6.486	23,70	
3 kW WT	5.299	19,36	
10 kW Diesel Gen.	1.159	4,24	
Main grid	14.420	52,70	
Total generation	27.363	100,00	
Consumption	-23.869	90,47	
Surplus sold to the	-2.513	9,53	
utility			
Net energy	-26.382	100,00	

25

26

Microgrid prototype

PM15F120C

Equipment:

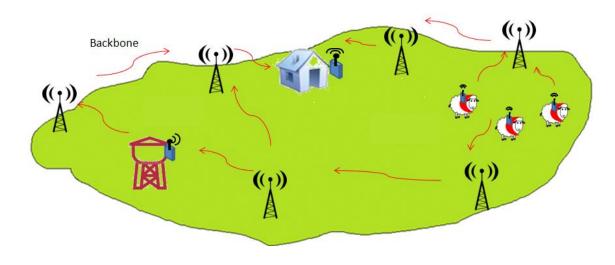
- Laboratory for microgrid control
- Triphase emulator
- Study of the proposed microgrid topologies

Performance evaluation considering technical and economical aspects

Hardware in the loop (PV, WT)

27

Triphase equipment:



Smart Farm System

- Designed for small rural communities
- Wireless sensor network communication
- □ Components:
 - Wireless backbone
 - Real time livestock monitoring
 - Remote measurement of the water levels of wells

Smart Farm System

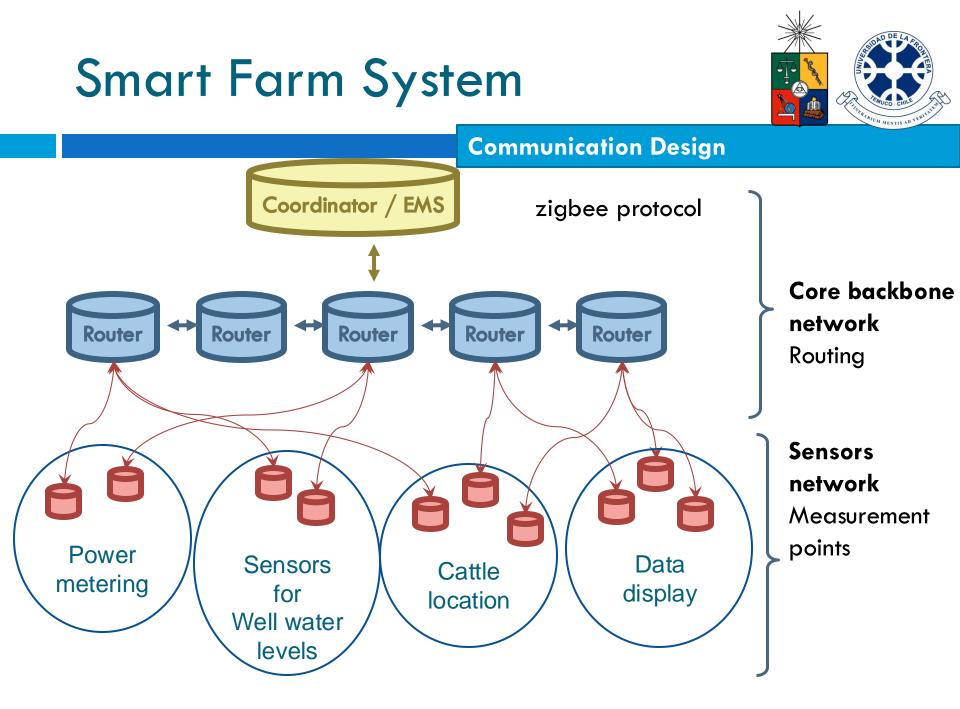
José Painecura



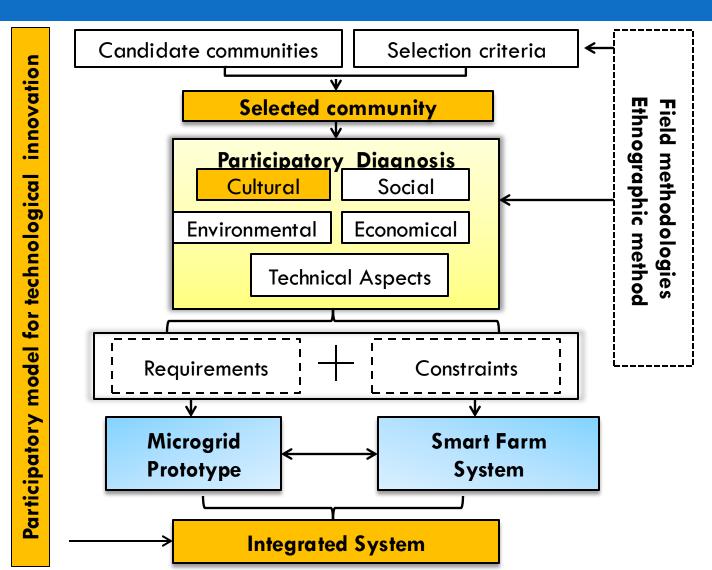
509 [Ha] 44 homes 352 livestock (pigs, cows, sheep and horses) 36 water wells

Smart Farm System

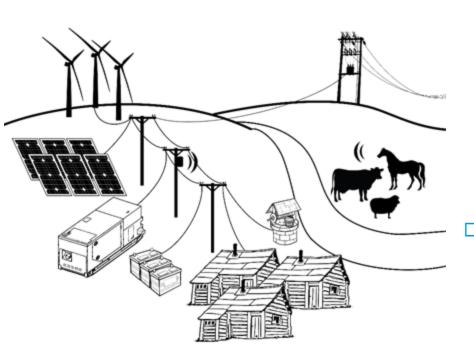
José Painecura



Communication network coordinator EMS/Microgrid


Router

End device (sensors)


Integrated System

Integrated System

The microgrid will cover the energy requirements of the selected Mapuche community and also will integrate a smart farm system considering the social, environmental, technical and cultural aspects.

Final product: Microgrid/Smart Farm/Participatory model system to be implemented and replicated to other indigenous rural communities located in Chile as well as in other countries.

And in 5 years? and in 50 years?

Mapudungun translation "God has given to us this land where natural renewal energy exists. There are also several protective spirits, and their work is to give us strength and power. Therefore, as Mapuche people, we are happy with the work of your team. If the energy from the nature can be used we are going to be pleased"

DESIGN OF A PARTICIPATORY-MODEL/MICROGRID/SMART-FARM SYSTEM FOR THE MAPUCHE INDIGENOUS COMMUNITIES

Mapuche Communities: Huanaco Huenchum & José Painecura

University of Chile Doris Sáez Hueichapan & Roberto Cárdenas, Roberto Hernández

> University of La Frontera Juan Huircán & Carlos Muñoz

University of Waterloo Claudio Cañizares & Paul Parker

National Corporation of Indigenous Development, Chile Fermin Levio & Necul Painemal

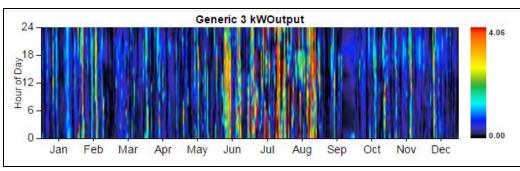
Ministry of Energy, Chile

Gobierno de Chile

Gobierno de Chile

<u>www.comunidadesmapuchefcfm.cl/</u>

Project FONDEF IDeA 14110063


Homer

PV generation

37

24 -						PV O	utput									
													4.01		Value	Unit
- ¹⁸				a set a	UNII UK	AND COD	ALC: N	(Juli)	110.01	a day	Weine			Energy average	17,77	[kWh/day]
- 81 - 18 - 12 - 12 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10				104	N) ()	. (1, 1)	16.4	1.40		Wik	arral las			Total energy	6.485,50	[kWh/year]
Ĭ 6-														Maximum power	4,01	[kW]
0 -	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	0.00	Plant factor	14,81	[%]

□ WT generation

	Value	Unit
Energy average	20,16	[kWh/day]
Total energy	5.298,80	[kWh/year]
Maximum power	4,06	[kW]
Plant factor	20,16	[%]

Technical and economical data

Photovoltaic pa	inel
Model	Amerisolar
	AS-6P30
Nominal Power	250 [W]
Nominal temperature	45 [°C]
Efficiency for standard	15,4 [%]
conditions	
Temperature effect over	-0,44
the power	[%/C]
Useful life	20 [years]
Reduction factor of	80 [%]
power	

WT 1	
Model	Osiris 10
Nominal power	10 [kW]
Shaft height	15 [m]
Starting speed	2,5 [m/s]
Nominal speed	9,5 [m/s]
WT 2	
Model	Enair 3.5
Nominal power	3,5 [k₩]
Shaft height	9 [m]
Starting speed	2,5 [m/s]
Nominal speed	15 [m/s]
Model	20 [years]

38

Technical and economical data

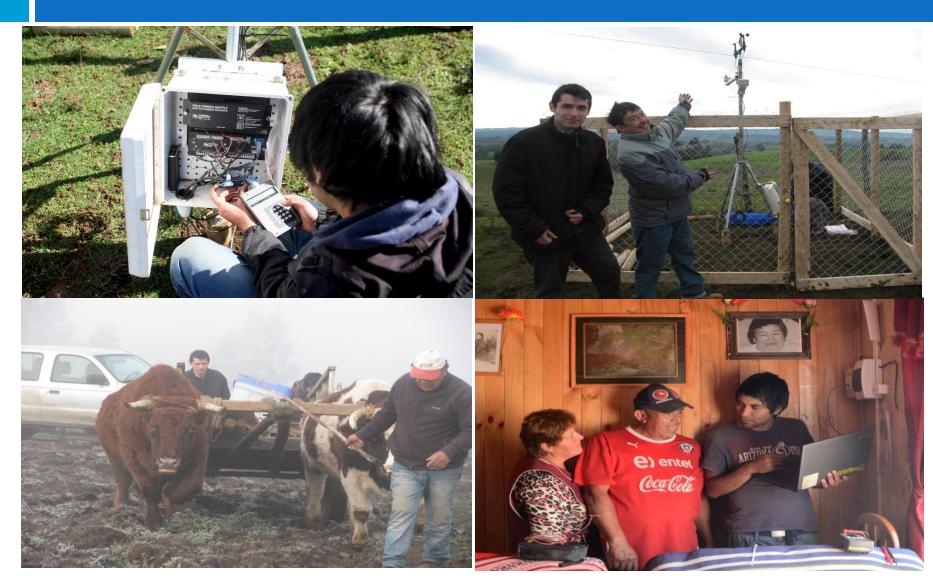
Converters							
Model	Victron						
	Multiplus						
Nominal power	5 [k₩]						
Inverter efficiency	94 [%]						
Rectifier efficiency	85 [%]						
Useful life	20 [years]						

Generator				
Model	Kipor			
	KDE60SS3			
Fuel	Diesel			
Fuel cost	0,64			
	[US\$/litre]			
Useful life	15.000			
	[hours]			

Batteries					
Model	Luxcel 12 V				
	100 AH				
Nominal capacity	100 [Ah]				
Useful life	5 [years]				

Net Present Costs

Component	Capital	Replacement	O&M	Fuel	Salvage	Total
PV 0,25 KW	33.393	0	677	0	-1.828	32.242
WT 3,5 kW	62.523	0	10.178	0	0	72.701
Diesel Generator	273.343	0	15.718	3.053	-37.610	254.504
Grid	0	0	40.086	0	0	40.086
Converter	3.227	0	175	0	0	3.402
Other	-341.171	0	0	0	0	-341.171
System	31.315	0	66.834	3.053	-39.439	61.743


Fieldwork

Fieldwork

