Microalgae for Energy production

... between dream and reality

Eric Prouzet *University of Waterloo*

Chemistry, Waterloo Institute of Nanotechnology Waterloo Institute of Sustainable Energy

eprouzet@uwaterloo.ca

Imagine

A World where our one-way use of resources Resource WAY OFICE Waste

would change into a

cyclical behaviour

Resource Waste Waste

Is there a way to make this dream true?

Let's think about the liquid fuels

How does it work now?

UNIVERSITY OF WATERLOO FACULTY OF SCIENCE Department of Chemistry

How do we wish it might work?

Why do we hope to find a solution?

Because we can hardly expect to spend money to capture CO² only to hide it under the carpet

Achieving this dream requires…

innovation

… and innovation is

a PROFITABLE EXECUTION of STRATEGIC **CREATIVITY**

innovation is like surfing

identify the good wave before it rises

begin to paddle before it comes \bullet

Don't fall until you reach the beach

So, here is our problem

CO²

Could part of the solution come from microalgae?

0 國語 圖

Chlamidomonas

 $2 \mu m$

 $3 \mu m$

♦

Microalgae = microfactories

plants synthesize oil that gives fuel

The oil generated by the microalgae is converted into "biodiesel" by a transesterification reaction that generates a large amount of glycerol

Microalgae offer the highest oil production Yield

Do we need alternative fuels?

Fossil fuels are still here for long, but…

- Global demand for alternative fuels is expanding due to population growth, increased attention to energy security, and environmental policy mandates.
	- *Environmental Protection Agency set 2011 renewable fuel* \bullet *standards volume requirements at 1.35 billion gallons of advanced biofuels.*
	- U.S. Navy's goal is to operate at least 50 percent of its fleet \bullet *on clean renewable fuel sources by 2020.*
	- *All major Aircraft companies are looking for substituting resources to fossil jet-fuels.*

give me my forest back

We could use palm oil, *compete with wildlife protection* but…

give me my cornflake back

We could use corn-based ethanol, but… *compete with edible culture*

How do we grow microalgae?

Photosynthesis = the autotrophic pathway

6 CO₂ + 12 H₂O + 48 photons \rightarrow C6H12O6 + 6 O₂+6 H₂

The heterotrophic approach

Some microalgae strains can grow in dark by feeding on dissolved sugars

Example: Solazyme, Inc. (USA) \bullet

ERSITY OF WATERLOO

FACULTY OF SCIENCE artment of Chemistry

Solazyme, Inc. is a renewable oil and bioproducts company that transforms a growing range of abundant plant-based sugars into high-value triglyceride oils and other bioproducts. Headquartered in South San Francisco, Solazyme's renewable products can replace or enhance oils derived from the world's three existing sources – petroleum, plants and animal fats. Solazyme is commercializing its primary products as either tailored oils, powdered oils, and closely related products in the chemicals, fuels and food markets or as branded consumer products.**They announced a 450,000 ton oil production with USA and Brazil partners.**

Heterotrophic *vs* Autotrophic

Heterotrophic growth

- Does not require light
- Uses adapted bioreactors
- Does not consume CO₂
- Requires specific microalgae strains \bigodot
- **Autotrophic growth**
	- Uses a larger range of microalgae (> 40,000)
	- consumes CO₂ \bullet
	- \bullet
	-

Three types of autotrophic production

- Level 1: Gathering
	- Cheap, but no control, and low efficiency

Level 2: Agriculture

Better control, higher productivity, but still \bullet dependent on external parameters (temperature, seasonal & daily light fluctuations)

Level 3: Industrial

More expensive, but independent from external parameters, major improvements required

What do we need?

energy CO

need for a free energy source

UNIVERSITY OF WATERLOO FACULTY OF SCIENCE Department of Chemistry

water

temperature

sun

=

et's go there.

D.A.ST. ARTEAM

Not such a good idea

- **Sun is here but not water**
- How do we bring CO₂ on site?
- **Important temperature fluctuations**
- **Daily light & temperature fluctuations do not** favour continuous production
- Deserts are fragile ecosystems
- What about water evaporation?

50 m³/ha.day => 1,000 ha = 50,000 m³/day!

A system must be implemented near the most expensive resource: CO² *vs* light

Main CO₂ emitters

- Fossil fuelled power plants
- Cement factories
- Biodigesters

All are in industrial/urban locations where lands surfaces are limited & expensive

From Dream to reality

Challenges for an industrial production

- Efficient conversion of CO₂ emissions into valuable biomass.
- Providing a 24/7 production to fulfill industrial requirements.
- Be independent from fluctuating parameters (temperature, light) to allow for a worldwide implementation.
- Provide for a full control and prevent any contamination to allow for the future use of Genetically Modified microalgae.
- Allow for limited footprint biofactory

From Dream to reality *Challenges for a successful technology*

- Creating a photobioreactor (PBR) able to work continuously and independently from daily, seasonal or geographical variations
- **Dissolving 100% CO₂ being injected as a gas into water**
- **Keeping constant the optimum conditions for microalgae** growth (light, temperature, concentration)
- Providing a design compatible with cost-effective scaling up.
- Using artificial light with a positive energy balance

Dissolve 100% CO₂

Dissolve 100% CO₂ Bubble-less gas injector

Optimized commercial ceramic support modified by hydrophobic treatment

Dissolve 100% CO₂ Bubble-less gas injector

cost-effective lighting

Green microalgae absorb only in blue and red

We use only blue/red LEDs

cost-effective lighting Algae cannot absorb high intensity light

above a given light intensity, the photosynthesis is inhibited

photons are only required for a very small part of time of the photosynthesis mechanism

We switch on light only for 1/100 of the total time

as a result, the energy balance overall is at least a 5:1 operation

Industry-ready process Cost effective industrial platform

ACULTY OF SCIENCE artment of Chemistry

IERSITY OF WATERLOO State-of-the-art in open pond production... WISE

Industry-ready process Cost effective industrial platform

State-of-the-art in open pond production.wise \mathbb{X} **JLTY OF SCIENCE** rtment of Chemisti

A suitable design

Scaling up

One tube: ∅ = 10 cm

- to obtain a total volume of 100 m³ \bullet
- tube length $= 12,700$ m \bullet

Our solution

- closed photobioreactor for complete control and industrial production
- a tank for easy and cheap scale up
- a lighting system adapted to the correct wavelength
- a lighting frequency adapted to minimize the energy cost

how a production platform could look like

One more thing…

biomass high concentration production is required

- open pound = 0.3 g/L
- tubular photobioreactor = 3 g/L
- biomass extraction:
	- up to 40% overall cost
- higher concentration (40-100 g/L) required for harvesting

Yes, we can…

…achieve these high concentrations

So... Can we dream?

"Eole" of Clément Ader

one "passenger"

1890

Only 117 years

2007*

850 passengers

Why dreaming about new solutions?...

... because only dreams are worth being lived

thank you for your attention

