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A B S T R A C T

In this paper, both thermal and electrical performance evaluations of a lithium-ion battery pack using real world

drive cycles from an electric vehicle (EV) are presented. For the experimental measurements, a data logger is

installed in the EV, and the real world drive cycles are collected. The EV has three lithium-ion battery packs

consisting of a total of 20 battery modules in series. Each module contains six series × 49 parallel IFR 18650

cylindrical valence cells. The reported drive cycles consist of different modes: acceleration, constant speed, and

deceleration in both highway and city driving at 2 °C, 10 °C and 17 °C ambient temperatures with all accessories

on. Later, the same drive cycles are conducted in an experimental facility where four cylindrical lithium-ion cells

are connected in series, and both electrical and thermal performances are evaluated. In addition, the battery

model is developed using artificial neural network, which is validated with the real world drive cycles. The

validation is carried out in terms of voltage, state of charge (SOC), and temperature profiles for all the collected

drive cycles. The present model closely estimates the profiles observed in the experimental data. Moreover, with

this study, the mathematical function for the average temperature, SOC, and voltage prediction are developed

with weights and bias values.

1. Introduction

Automotive manufacturers are under extreme pressure to improve

fuel economy and reduce emissions of their cars. In conjunction with

this, they have to create and apply recent advancements to meet reg-

ulations. Electric vehicles (EVs), along with fuel cell vehicles (FCVs)

and hybrid electric vehicles (HEVs), are seen as the answer to energy

and environmental issues and they are more energy proficient [1,2]. In

EVs, since the electric motors and inverters are utilized in the drive

systems, in comparison with internal combustion engines, they have

real points of interest. For example, fast torque reaction and control

over every wheel [3]. The heart of EVs is the battery or battery pack.

Among accessible technologies, the lithium-ion battery plays a key part

in the improvement of EVs, HEVs, and PHEVs [4] as a result of their

broad use because of: (1) high specific energy and power densities

[5,6]; (2) high nominal voltage and low self-discharge rate [7]; and (3)

long cycle-life and no memory effect [8]. However, lithium-ion bat-

teries must be precisely observed and managed (electrically and ther-

mally) to avoid safety (inflammability) and performance related issues

[9,10].

This section gives a brief overview of lithium-ion battery structure,

components and types. A lithium-ion battery cell usually has five dis-

tinctive layers, in particular: the negative current collector, negative

electrode (anode), separator, positive electrode (cathode), and positive

current collector. There are generally four sorts of positive electrode

materials [11]: (a) a metal oxide with layered structure, for example,

lithium cobalt oxide (LiCoO2/LCO) [12]; (b) a metal with a three di-

mensional spinal structure, for example, lithium manganese oxide

(LiMn2O4) [13]; (c) lithium nickel manganese cobalt oxide (Li-

NiMnCoO2/NMC); and (d) a metal with a olivine structure, such as li-

thium iron phosphate (LiFePO4/LFP) [14]. The anode is generally made

of graphite or a metal oxide. The electrolyte can be liquid, polymer or

solid. There are various types of lithium-ion batteries available such as

cylindrical, and prismatic. The prismatic batteries are used for high

capacity rating such as in automobiles [15].

In EVs and HEVs, the thermal management of lithium-ion batteries

is a tremendous challenge because of the dynamic utilization of the

battery cells and the extensive range of environments under which they

work [16]. In a high temperature environment, lithium-ion batteries

quickly degrade, while in a cold temperature environment, the power
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output and energy are reduced, which eventually brings about reduc-

tion of performance and driving range [17]. A typical temperature

range is between 20 °C and 40 °C [18] for lithium-ion batteries, and an

extended range is between −10 °C and +50 °C for their fair operation

[16]. There are two common types of cooling: (i) air cooling, and (ii)

water cooling. The water cooling option appears to be more compelling,

because of higher specific heat content contrasted with air cooling. It

occupies less volume, yet brings more complexities and high cost and

weight [19]. The temperature increase in a lithium-ion battery during

charging/discharging follows three processes: (1) the rate at which heat

is created inside the cell, (2) the rate at which heat conducts within the

cell to the outer surface, and (3) the rate at which heat is expelled from

the cell's external surface to the environment. Heat dissipation to the

surrounding relies on the cell geometry and also the cooling system

performance [20]. Temperature estimations and the prediction of the

lithium-ion cell temperature are addressed by various papers including

analytical and numerical modeling [21,22].

Numerous numerical models have been developed to predict the

dynamic behaviors of batteries. An EV designer may use battery models

for sizing the required battery and predict the battery discharge. Battery

models are likewise utilized for on-line self-learning performance and

SOC estimation in battery thermal management system (BTMS)

[23,24]. There are numerous papers in the open literature available for

battery thermal modeling, utilizing diverse methodologies. For ex-

ample, artificial neural network [21,22,25,26], finite element model

(FEM) [27] or lumped parameter model (LPM) [28], the linear para-

meter varying (LPV) model [29], or the partial differential equation

(PDE) model [30], and the power train system analysis toolkit (PSAT)

or Autonomie [31]. Some more studies on SOC estimation based on

drive cycles are also accessible in the open literature [32,33]. Utilizing

smart tools, for example, artificial neural networks (ANNs) has ended

up being effective tools for exact estimating of vehicle pace profile of

moving vehicle. A neuro-genetic predictive tool was produced for

predicting the short-term traffic activity on road [34]. Genetic algo-

rithm (GA) was also additionally utilized for the both optimization and

developing of ANN architectures for short-term traffic flow prediction

[35]. An ANN in view of an exponential smoothing strategy was pro-

duced to come up with a precise intelligent tool for forecasting the

traffic flow, and later confirmed the realness of their system by re-

peating the same simulations using a Levenberge-Marquardt ANN (LM-

ANN) [36]. In another study, a neural network for real-time vehicle

speed predictions showed the legitimacy of the strategy utilized [37].

Here, we used the same methodology called ANN for drive cycle

modeling. Artificial neural networks are generally sorted out in layers

Nomenclature

e e is the number also called as Napier's Number and its

approximate value is 2.718281828

H to Hk k
1 8 Hidden layer neuron from 1 to 8

I Current [A]

i Index of hidden layer nodes

j Index of input layer nodes

k Index of time interval

l Index of output layer nodes

NH Number of neurons in the hidden layer

NI Number of neurons in the input layer

No Number of neurons in the output layer

t Time [s]

Wi,j Weights of connection between hidden layer neuron and

output layer neurons

x Weighted sum of inputs from the preceding layers

β1 to β8 Bias of hidden layer neurons from 1 to 8

Γ Average temperature of all 20 module

θk Time recorded from EV in second

μ Bias associated with the output layer neuron

ξk Battery current recorded from EV in Amp

π Pi

σ (.) Activation function

ωi,j Weights of connection between input layer neuron and

hidden layer neurons

∞ Infinity

Subscripts

act Actual

chg Charge

dis Discharge

int Internal

sim Simulated

oc Open circuit

out Output

Superscripts

T Transpose of a matrix

x power value of the exponent e

Acronyms

ANN Artificial neural network

BC Boundary condition

BMS Battery management system

BTMS Battery thermal management system

C Capacity

CC Constant-current

CV Constant-voltage

DAQ Data acquisition

EV Electric vehicle

FCV Fuel cell vehicle

IFR 18650 “I” stands for Li-ion rechargeable, “F” stands for the

element “Fe” which is Iron, “R” just means the cell is

round, 18650 means 18 mm diameter and 650 means

65 mm height

LiCoO2 Lithium cobalt oxide

LiMn2O4 Lithium manganese oxide

LiNiMnCoO2 Lithium manganese cobalt oxide

LiFePO4 Lithium iron phosphate

LCO Lithium cobalt oxide

LFP Lithium phosphate

LPM Lumped parameter model

LPV Linear parameter varying

LM-ANN Levenberge–Marquardt artificial neural network

MSE Mean square error

NN Neural network

NMC Lithium manganese cobalt oxide

OCP Open circuit potential

PSAT Power train system analysis tool kit

PHEV Plug-in hybrid electric vehicle

PDE Partial differential equation

R Regression

RS-232 Recommend standard number 232

SOC State of charge

TDI Load box for battery testing

UQM Power phase motor developed by UQM
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with nodes or neurons connecting different layers through an activation

function. Data or patterns are presented at the input layer which travels

to the hidden layers through weighted connections and lastly processed

at the output layer which represents the output of the network.

Note that there are various algorithms to train a neural network,

such as: (i) the gradient descent, which is also known as steepest des-

cent, is the simplest training algorithm, requires information from the

gradient vector, and hence it is a first order method. It has a severe

drawback of requiring many iterations for functions, which have long,

narrow valley structures. This is recommended when there are big

neural networks, with many thousands of parameters. (ii) The Newton's

method is a second order algorithm with an objective which aims to

find better training directions by using the second derivatives of the loss

function. This is quite expensive in computational terms. (iii) The

conjugate gradient method can be regarded as intermediate between

gradient descent and Newton's method. This method is more effective

than gradient descent in training networks and is recommended when

there are big neural networks. (iv) The quasi-Newton or variable metrix

methods are known as computationally expensive. This method is faster

than both gradient descent and conjugate gradient methods. (v) The

Levenberg–Marquardt algorithm is known as a method tailored for

functions of the type sum-of-squared-error which makes it very fast

when training neural networks measured on that kind of errors.

Undertaking both experimental investigation and simulation studies

are absolutely much demanded and that is what the present work did.

In addition, a comprehensive investigation and simulation is conducted

on the lithium-ion battery performance under different drive cycles

with various boundary conditions (BCs) or ambient temperature of 2 °C,

10 °C and 17 °C, and the performance is assessed in such a manner.

Furthermore, we designed and developed an experimental facility

which is capable of testing different types of batteries with different

kinds of chemistries. To the best of the authors’ knowledge no similar

studies on a prismatic lithium-ion battery have been reported in the

open literature. This study comprises following specific objectives:

• Design and development of test bench experimental system and

testing of collected drive cycles.

• Development of the battery thermal model using ANN and valida-

tion with the road test data.

• Performance assessment and evaluations under various drive cycles

into test bench.

• Comparison and validation studies for EV real world drive cycles

collected at different ambient temperatures.

2. Experimental set-up

In this section, the vehicle and experimental details are provided

through a description of the test vehicle, a data logger, battery pack or

module, experimental set-up, battery, thermocouple sensor locations,

and thermal data acquisition system.

The EV used for this work is shown in Fig. 1(a) and the main fea-

tures of the EV are displayed in Table 1. There are three battery packs of

lithium-ion battery installed on the vehicle, including a total of 20

battery modules in series. Every module contains 6 series × 49 parallel

IFR 18650 Cylindrical Valence cells, i.e., every battery module in-

corporates 6 strings of battery cells in series and each string contains 49

cells in parallel resulting in an aggregate of 294 cells in every battery

module. The cells utilized as a part of this EV are 18650 cylindrical cells

in configuration and their specifications are shown in Table 2. The first

six modules are associated in series arrangement and are shown in

Fig. 1(b). Note that these are inside the first battery pack at the front

side of the vehicle. The ISAAC data logger is installed in the vehicle

underneath the front passenger seat. The cellular antenna that enables

wireless data transmission is located on top of the car. The data logger

is powered by the existing 12 V battery in the vehicle. The EV has a

125 kW UQM power phase electric motor beneath the front battery

pack.

The drive cycles obtained from the EV were conducted in a hybrid

test bench in the lab as shown in Fig. 2(a). It was originally built to test

various hybrid technologies as well as assess their usefulness in vehicle

design. Notwithstanding, the hybrid test bench was adjusted to test

batteries on various duty cycles and to quantify battery thermal per-

formance and degradation. The test bench comprises a PC for charge/

discharge information, load box, power supply, and a battery man-

agement system (BMS). The low voltage supply and load were Lambda

ZUP20-40-800 and TDI Dynaload RBL323-50-150. The data acquisition

(DAQ), known as BMS, as it appears on the right hand side of Fig. 2(a),

is utilized as a part of the tests to log the battery electrical data and

thermal data. The BMS is utilized to log the battery electrical data,

including time, charge current, discharge current, charge voltage, and

discharge voltage, and for the thermal data, including temperature.

Both the electrical and thermal data were recorded at regular intervals

of one second.

In EV applications, the battery system comprises of various single

Fig. 1. The EV and first six modules connected in series.

Table 1

Key specifications for the EV.

Specification Value

Mass (empty) 1814 kg

Motor peak power 125 kW

Motor peak efficiency 98% at 4000 RPM

Motor peak torque 239 Nm

Battery module nominal voltage 19.2 V

Battery module energy density 89 Wh/kg

Battery module nominal capacity 69 Ah

Total battery pack energy capacity 25 kWh

Typical range for full SOC swing 100 km

Time 0-100 kilometers per hour (kph) About 12 s
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cells connected either in a series or a parallel arrangement, keeping in

mind the end goal to achieve the power and capacity requirements. The

pack, as it appears in Fig. 2(b), consists of four cylindrical 18650 li-

thium-ion cells electrically connected in series. As explained in the

previous paragraph, the pack was instrumented with T-type thermo-

couples, as well as a pack current and individual cell voltage sensor. In

this series, each battery cell was experimentally characterized, so as to

predict the cell voltage and capacity during discharging and charging

operations at an ambient temperature (∼22 °C). In all the conducted

tests, the cells were first charged, and then used until totally dis-

charged. The output voltage of the series connected cells and the dis-

charge current are given by the equations below. It is very clearly un-

derstood that the temperature distribution is not uniform in a battery

pack. Therefore, the operating temperatures of the cells are different

from one another:

= + + …+V V V Vout cell cell celln1 2 (1)

= = = …=I I I Iout cell cell celln1 2 (2)

The internal resistance (rint) can also be calculated based on the

Ohm’s law (covering the voltage drop divided by current values and the

voltage drop is the difference between the open circuit voltage and the

actual or measured terminal voltage) as given by:

= = −
r

V

I

V V

I

∆
int

oc act

(3)

3. ANN model description

Using the ANN approach, a battery model is developed for voltage,

SOC and temperature simulations based upon the information gained

(time, voltage, current, temperature, SOC, and charge/discharge cycle)

from the EV. The ANN architecture for the battery model is shown in

Fig. 3(a). A total of 81,821 samples were considered for this model, out

of which 70% samples (57,271) were utilized for training the model.

Also, 15% samples (12,271) were utilized for validation and, finally,

15% samples (12,271) were utilized for testing the model. While the

selected number of hidden neurons is eight, there are two inputs to the

model: (1) driving time and (2) EV battery current. These two inputs

are particularly chosen since they have a great impact on the entire

performance of the battery during discharge. Here, the average tem-

perature of all 20 modules is a function of EV driving time and EV

battery current, which is given by:

Γ= f(θk, ξk) (4)

The number of hidden neurons is eight in light of the fact that the

regression value is close to one at these neurons. As mentioned above,

there are various strategies for training the algorithm: (1) the

Levenberg–Marquardt method; (2) the Bayesian Regularization

method; (3) the scaled conjugate gradient method; (4) Newton’s

method; and (5) the quasi Newton method. For training the model, the

Levenberg–Marquardt Method was utilized as the default training al-

gorithm for the feed-forward network in many commercial solvers,

including MATLAB, due to its powerful nature. This calculation takes

more memory, however less time. It automatically trains when gen-

eralization stops improving, as indicated by an increase in the mean

square error (MSE) of the validation samples. The model was trained

several times until the MSE is minimal and regression value (R) is near

one, which implied that there is a close relationship between the targets

and outputs. Here, in this model, the R value is 0.99896.

For the input training data, there are essentially two inputs to the

model: the driving time and the EV battery current. For the output

training data, in the output file, there is one output for the temperature,

SOC or voltage. The experimental data are measured with a sampling

period of 1 second. The regression plot is shown in Fig. 3(b), which

demonstrates the regression relation between the actual output and the

targets. When the MSE is low, the model is better. The corresponding

data sets for MSE, R, and R2 for all outputs is given in Table 3. The

coefficient of determination (R2) is the ratio between the expected and

total variations. It is then given by

∑
∑= =

−
−

R
Sum of expected variations

sum of total variations

Y Y

Y Y

( ˆ )

( )

i

i

2

2

2
(5)

where Y is the mean of all observations, Ŷi is the estimated observation

at time i and Yi is the actual observations. The value of R
2 ranges from 0

to 1. The nearer the value of R2 is to 1, the better the observations fit

with the selected forecasting model.

The error histogram showing the difference between the actual and

the target output is plotted as shown in Fig. 4. Among the total samples

Table 2

EV cell specification.

ESS specification, valence IFR18650e Value

Number of battery packs 3

Number of modules 20

Number of cell per module 6 in series

Charge voltage 3.65 V standard (3.4 V float, 4.2 V max)

Nominal operating voltage 3.2 V

Nominal rated capacity (C/5) 1350 mAh (1.4 Ah)

Discharge cut-off voltage 2.5 V

Cell dimensions Length: 65 mm, diameter :18.2 mm

Cell weight 40 g

Fig. 2. Picture of test bench and lithium-ion 18650 cells connected in series.
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considered, the majority of errors lie in the range of−0.38 to 0.52. The

activation functions are used in the network to scale the data output

from a layer. Some commonly used activation functions in neural net-

works are listed as follows:

1) Log sigmoid function: The sigmoid function is given below. The

function is real valued and differentiable, characterized by horizontal

asymptotes as x→ ±∞

=
+ −σ x
e

( )
1

1 x (6)

where σ (.) is the activation function and x is the weighted sum of inputs

from the preceding layers. Here, =σ x( ) 0 when x→−∞, and =σ x( ) 1

when x→∞.

2) Tan sigmoid function: This function is represented by

=
+

−−σ x
e

( )
2

1
1

x2 (7)

In the above equation, = −σ x( ) 1 when x→−∞, and =σ x( ) 1

when x→∞. This function can also be represented by a hyperbolic tan

function by:

= +
−

−

−tanh σ x
e e

e e
or ( )

x x

x x (8)

The previous Equation (8) can also be represented as

=tanh σ x
π
arctan xor ( )

2
( )

(9)

With the specific end goal to acquire a mathematical function of the

average temperature of all 20 modules, Γ from the trained ANN, the

output from each hidden layer neuron Hk
1 to Hk

8 is first determined. The

incoming inputs with suitable weights ωi,j∀i ∈ 1,…, NH, J ∈ 1…NI, are

summed up at each hidden layer neuron. Moreover, each hidden layer

neuron has additional input, the bias β1 to β8, which is used in the

network to generalize the solution and to avoid a zero value of the

output, even when an input is zero. This summed signal is passed

through an activation function (tansig) associated with each hidden

Fig. 3. Neural network architecture and the regression plot.

Table 3

Mean square error and regression.

Outputs MSE R R2

0 2.3524 0.9887 0.9776

1 1.6191 0.9922 0.9845

2 0.7937 0.9962 0.9924

3 0.8192 0.9961 0.9922

4 1.2981 0.9938 0.9876

5 0.5859 0.9972 0.9944

6 0.8319 0.9960 0.9920

7 0.4470 0.9978 0.9957

8 0.4236 0.9979 0.9959

Fig. 4. Error histogram showing the difference between the actual and the target output.
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layer neuron, which transforms the net weighted sum of all incoming

signals into an output signal from the hidden layer neuron. Hk
1 to Hk

8 are

given by

= + +H tansig ω θ ω ξ β(k k k
1

1,1 1,2 1 (10)

= + +H tansig ω θ ω ξ β(k k k
2

2,1 2,2 2 (11)

= + +H tansig ω θ ω ξ β(k k k
3

3,1 3,2 3 (12)

= + +H tansig ω θ ω ξ β(k k k
4

4,1 4,2 4 (13)

= + +H tansig ω θ ω ξ β(k k k
5

5,1 5,2 5 (14)

= + +H tansig ω θ ω ξ β(k k k
6

6,1 6,2 6 (15)

= + +H tansig ω θ ω ξ β(k k k
7

7,1 7,2 7 (16)

= + +H tansig ω θ ω ξ β(k k k
8

8,1 8,2 8 (17)

The weight matrix connecting the input layer neurons to the hidden

layer neurons, i.e. ωi,j ∀i ∈ 1,…, NH, J ∈ 1,…, NI is given by

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

−

− −
−

−
−

−
− −

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

ω

1.4553 0.0407
5.0488 0.6065
12.6462 0.0778
17.9746 0.1370
1.1738 2.0517
1.2520 0.0439
1.2398 2.0596
13.2038 0.0778

i j,

(18)

The bias βi∀i ∈ 1,…, NH, associated with each hidden layer neuron,

is given by

= − − − −β [ 0.7496 3.6840 3.7320 4.1838 0.4161 0.6783 0.4390 3.8915]i
T (19)

Finally, Γ can be obtained from the output neuron of the trained NN

Fig. 5. Details of drive cycles # 1, 2 and 3 and their corresponding battery SOC profiles.
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as follows by

= + + + + +
+ + +

Γ purelin H W H W H W H W H W H W

H W H W µ

( k k k k k k

k k

1
1,1

2
1,2

3
1,3

4
1,4

5
1,5

6
1,6

7
1,7

8
1,8 (20)

where, purelin is a linear transfer function available in MATLAB. The

weight matrix connecting the hidden layer neurons with the single

output neuron Wi,l∀i ∈ 1,…,NH, l ∈ 1,…, No is given by

=
− − −

W

[14.3878 0.2550 8.2288 0.0999 1.4017 14.7792 1.3659 7.8719]

i l,

(21)

and the bias associated with the output layer neuron is given by

μ =−0.6202 (22)

4. Results and discussion

After the information collected from the EV, the experiments done

inside lab and model development study depicted in the former, this

section clarifies the outcomes acquired for a drive cycle and also for a

particular prismatic lithium-ion battery.

4.1. Drive cycle # 1 results

Fig. 5(a) demonstrates drive cycle # 1 acquired from the EV and the

statistics of the same drive cycle are introduced in Table 4. The vehicle

was driven for 1 h and 14 min with a cumulative distance of 90 km and

a battery state-of-charge range of 98%–4%. The peak speed was seen as

125.5 km/h and occurred while driving on expressway 401 in the

Province of Ontario. The average speed was 73.01 km/h. During this

trip, the outside temperature was 10 °C. This drive cycle # 1 in-

corporates both city and highway driving. In Fig. 5(a), the drive cycle

#1 portion between 300 1500s and between 1700–3200s is identified

with the aggressive driving on highway 401 and, in the same way; and

the segment between 3200–4500s represents the city driving. All

electrical accessories were operating during this trip.

4.2. The SOC results for drive cycle # 1

Fig. 5(b) demonstrates the SOC profile (solid line) obtained from the

EV for drive cycle # 1. Here, we can see a SOC range between 98–4%.

Fig. 5(b) additionally demonstrates a comparison of the measured

(actual) SOC with the values anticipated by the model. Overall,

Fig. 5(b) shows good agreement between the experimental and simu-

lation data, which is characteristic of the accuracy of the present model.

There is a great reduction in the SOC profile between 100% to around

20% because of the expressway driving. Each of the three battery packs

consistently withdrew power, after which an increase and decrease in

the SOC curve is observed due to the regenerative braking in city

driving, which involves frequent starts and stops because of intersec-

tions.

4.3. The battery voltage results for drive cycle # 1

Fig. 6(a) demonstrates the comparison of the battery voltage profile

obtained from drive cycle # 1 of an EV with the data from the model.

Overall, Fig. 6(a) shows good agreement between the experimental and

simulation data, which is indicative of the accuracy of the present

model. However, slight discrepancies are observed and the actual va-

lues are slightly higher than the values predicted by the model. These

discrepancies may be due to regenerative braking.

4.4. The temperature results for drive cycle # 1

Fig. 6(b) shows the temperature profile (solid line) obtained from the

EV for drive cycle # 1. In this vehicle; there are a total of 20 modules, of

which this plot is the average temperature. A model-experimental com-

parison for this particular drive cycle # 1 is found in Fig. 6(b), where the

temperature reaches 41 °C toward the end of the drive cycle. The EV

utilizes 20 passively cooled battery modules situated in three packaged

locations on the vehicle. It is clear that these different locations cause

significant differences in cell temperature over the drive cycle. These

differences may cause differential cell ageing, which can be monitored. It

can be likewise observed that there is an extraordinary change in tem-

perature between 500–3500s. As a result, the vehicle was constant in

operation and all three battery packs continuously generated heat.

4.5. The drive cycle # 2 results

Fig. 5(c) demonstrates drive cycle # 2 acquired from the EV and the

statistics of the same drive cycle are exhibited in Table 4. The vehicle

was driven for one hour with a trip distance of 76 km and a battery

state-of-charge range of 91– 33%. The peak speed was observed as

121.5 km/h and the average speed was 76.86 km/h. During this trip,

the outside temperature was 17 °C. This drive cycle # 2 includes the

aggressive driving on highway 401. The corresponding SOC profile for

drive cycle # 2 is exhibited in Fig. 5(d), while the voltage validation is

shown in Fig. 6(c) and the temperature validation is shown in Fig. 6(d).

4.6. The drive cycle # 3 results

Fig. 5(e) demonstrates drive cycle # 3 acquired from the EV and the

statistics of the same drive cycle are displayed in Table 4. The vehicle

was driven for 2 h and 16 min with a trip distance of 106 km and the

battery state-of-charge was 100–2%. The peak speed was observed as

125 km/h while driving on the highway. The average speed was

46.9 km/h. During this trip, the outside temperature was 2 °C. This

drive cycle # 3 incorporates both aggressive and gentle driving. The

corresponding SOC profile validation for drive cycle # 3 is displayed in

Fig. 5(f), while the voltage validation is shown in Fig. 6(e), and the

temperature validation appears in Fig. 6(f).

4.7. The drive cycles validation results

After running all drive cycles in the test bench unit, the next step is

data validation. A comparison between the electrical power input from

drive cycle # 3 and the electrical power output from the test bench

(four series connected cells) is shown in Fig. 7. It can be seen that the

output electrical power closely matches the measured or actual data

obtained from driving. Fig. 8(a) demonstrates the individual cell vol-

tage profile during this drive cycle #3. Likewise, Fig. 8(b) demonstrates

the stack voltage profile for this pack. The voltage window for the stack

voltage profile is 14.5 V–11 V.

Table 4

Details of drive cycles # 1, 2 and 3.

Specification Drive cycle #

1

Drive cycle #

2

Drive cycle #

3

Trip duration (min) 74 59 136

Trip distance (km) 90 76 106

Starting SOC (%) 98 91 100

Ending SOC (%) 4 33 2

Cycle average speed (km/h) 73.01 76.86 46.92

Cycle peak speed (km/h) 125.5 121.5 125

Average positive acceleration (m/s2) 0.60 0.60 0.59

Peak positive acceleration (m/s2) 3.93 3.01 3.43

Outside temperature (°C) +10 +17 +2
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Later on, the temperature profile obtained from the experimental

data and real-world drive cycles were studied. The average battery

surface temperature profile from experiment was almost close to the

surrounding laboratory temperature. The temperature profile obtained

from the real drive cycle # 3 is much higher, and does not follow the

same trend. This was expected because of three main reasons: (1) the

free convection from air in the laboratory has higher heat transfer rate

than the battery installation in the EV module permits, (2) the ambient

temperature in the lab was ∼22 °C, while the real drive cycle was

tested in November when the average ambient temperature was 2 °C,

and (3) the EV has a thermal controller which activates fans auto-

matically and is designed to maintain the pack temperature below

certain point (∼ 40 °C) regardless of the ambient temperature.

5. Conclusions

In this paper, both experimental and theoretical performance as-

sessments of a lithium-ion battery pack using real world drive cycles

from an electric vehicle are presented. The battery model is developed

using artificial neural networks, which are validated with the real world

drive cycles in terms of voltage, state of charge (SOC), and temperature

profiles. The mathematical functions are also developed and presented

with the weight and bias values. For this, three distinctive drive cycles

were purposefully obtained at different ambient temperatures in order

to measure the thermal and electrical performance of the battery

modules. Furthermore, the statistical data analysis is carried out for the

collected drive cycles and presented in the paper. The developed bat-

tery model is then validated in terms of the battery SOC, voltage, and

temperature profiles of all 20 modules. It was found that the developed

model effectively captured the charge/discharge behaviour over a wide

variety of ambient conditions. The maximum temperature is found to

be 41°C from all three reported drive cycles. Note that future work will

concentrate on a more thorough thermal testing of real world drive

cycles under controlled boundary conditions of −5 °C, −15 °C, and

−25 °C. This will be done with the end goal of studying the impact of

the discharge on the performance of the battery.

Fig. 6. Battery voltage profile and average temperature profile for all 20 modules for drive cycle # 1, 2 and 3.
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