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MOTIVATION FOR BATTERY 

VEHICLES
 

q There is growing awareness around the world 

about energy independence, sustainability and 

climate change issues 

q Such awareness and the success of the Toyota 

Prius – with over 500,000 units sold by 2007 in the 

US – are major drivers in spearheading the popu-

larity of battery vehicles (BVs) around the world 
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BATTERY VEHICLES
 

q We include all vehicles that can be fully or partially 
fueled by electricity 

q Plug-in hybrid electric vehicles (PHEVs) 
have a battery and an internal 
combustion engine; examples include 

m Chevy Volt 
m Prius Plug-in 

q Battery vehicles (BVs) have no internal 
combustion engine but only a more 
versatile battery; examples include 

m Nissan Leaf 

m Fisker
 

3 
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q  Integration of BVs into the electricity grid 

m BVs as a load 

m BVs as a generation/storage device 

m  role of aggregation 

q  Development of an implementation framework 

OUTLINE  OF  THE  PRESENTATION 



                       5

OUTLINE 

q  Key challenges in implementation 

m design of an incentive program 

m metering and communication/control needs 

q  Environmental tracking and monitoring 

q  Concluding remarks 
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THE  ELECTRICITY  GRID 

q  The MWh costs and prices are unequal over time 

q  The value of each MWh depends on the time of 

production/consumption 

q  The integration of BVs into the grid can fully 

exploit the opportunities to:  

m buy electricity when the prices are low 

m  sell services when the prices are high 

m provide additional services needed by the grid  
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LOAD  AND  LMP 

Source: NE ISO 
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LOAD  AND  LMP 

Source: NE ISO 
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LOAD  AND  LMP 

Source: NE ISO 
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THE  BV  AS  A  “PURE  LOAD” 
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6 24 18 12 

CHARGING  THE  BVs 

Source: Lucy Sanna, “Driving the solution, the plug-in hybrid vehicle,”  EPRI journal, Fall 2005 

6 
time of day 

40 

36 

32 

28 

24 

20 

lo
ad

 ( 
G

W
 ) 

California 
load without 

BVs 

load with 4 million 
PHEVs 



                       13

0 2 4 6 8 10 12 14 16 18 20 22 2411,000

12,000

13,000

14,000

15,000

16,000

17,000

LEVELING  THE  LOAD 

Source: NE ISO 

 lo
ad

  (
 M

W
 ) 

time of day 



                       14

LEVELING  THE  LOAD 
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REGULATION  SERVICE  AND  PRICING 

Source: PJM 
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REGULATION  SERVICE  AND  PRICING 

Source: PJM 
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REGULATION  SERVICE  AND  PRICING 

Source: PJM 
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ROLE  OF  BVs  IN  FREQUENCY  
REGULATION 

q  A basic objective of the system operator is to 

ensure that the supply – demand equilibrium is 

maintained around the clock 

q  Imbalances lead to frequency fluctuations that 

need to be regulated 

q  The supply-demand imbalance is checked every 2 

to 4 s 
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ROLE  OF  BVs  IN  FREQUENCY  
REGULATION 
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ROLE  OF  BVs  IN  FREQUENCY  
REGULATION 
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OFF – PEAK  REGULATION 

q  Compliance with the unit commitment schedules 
becomes difficult during low load conditions that 

characterize the off – peak periods 

q  While the operator may not wish to turn off units, 
there may be no choice 

q  Wind integration further exacerbates the low load 

conditions  

q  The regulation prices are typically the highest, as 
many units are required to reduce their outputs 
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PEAK  AND  OFF – PEAK  REGULATION 

Source: CAISO 
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BVs  AND  FREQUENCY  REGULATION 

q  Batteries have the ability to both absorb and 

discharge energy 

q  The regulation capacity provided by a single BV 

battery is relatively small 

q  Batteries have very short response times (on the 

order of ms) 

q  The frequent switching of a battery may, however, 

severely degrade its life expectancy 
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THE  BV  AS  A  “SUPPLY-SIDE  
RESOURCE” 
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BATTERY  ISSUES 

q  The battery capability of a single BV is small in 

terms of kWh storage 

q  This capability limitation consequently restricts 

the “supply-side resource” capacity of each BV 

q  A key requirement for grid integration is the 

aggregation of BVs into a collection with the 

ability to palpably impact the grid 
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THE  ROLE  OF  AGGREGATION 

q  The storage capability C  for a typical BV is in the  
10 – 50  kWh range 

q  If we consider the total discharge of the full 
battery over 5 h, the output is in the 2 – 10  kW 
range 

q  The aggregator, who gathers together “many” 
BVs to result in a nontrivial aggregated output 
and load, can play an important role in the 
effective integration of BV s into the grid so as to 
beneficially impact both supply and demand-side 
issues 
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V2G  FRAMEWORK 

q  Load aggregation 

q  Resource aggregation 

q  Explicit representation of uncertainty 

q  Communications/control layer construction 

q  Development of incentives 
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PRINCIPAL  PLAYERS  IN  THE  V2G  
INTEGRATION 

q  Aggregator 

q  Aggregated BVs 

q  ISO/RTO 

q  ESP 

q  Local distribution company 
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THE  INTEGRATION  FRAMEWORK 
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V2G  PLAYER   INTERACTIONS 
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FLOWS  IN  THE  V2G  FRAMEWORK 
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REPRESENTATION  OF  SOURCES 
 OF UNCERTAINTY 

q  We take into account various sources of 
uncertainty, including: 
m  time of arrival 
m parking time 
m  state of charge (s.o.c.) 
m  storage capability of the BV battery  
m demand 

q  For the aggregated BVs, we make use of the 
Central Limit Theorem (N  > 30) and represent the 
uncertainty by using various normally distributed 
random variables 
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DAILY  COMMUTE  DISTANCES 
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s.o.c.  OF  THE  BV  BATTERY 

q  The role of the s.o.c. is 
key to the effective 

management of the 

aggregated BV 

integration into the 

grid 

q  The utilization of a 

battery is a function of 
its storage capability 
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BVs  PROVIDE  IMPORTANT  SERVICES 

q  The aggregated BVs can constitute a very 

important supply-side resource to the grid 

q  The BVs can provide considerable flexibility to the 

ISO/RTO in the scheduling of unit commitment 

q  As a result, the start-up of cycling and peaking 

units may be delayed or avoided; the provision of 

reserves is improved, with the need for reserves, 

during off-peak periods, reduced 
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REGULATION  SERVICE  AND  PRICING 

Source: PJM 
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DAY – TIME  REGULATION  SERVICE 
PROVISION  BY  100,000  BVs 
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PERCENTAGE  OF  BVs  PROVIDING  
THE  REGULATION  SERVICE 

 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

8 9 10 11 12 13 14 15 16 17 18 
0 

pe
rc

en
ta

ge
 o

f B
Vs

 p
ro

vi
di

ng
 se

rv
ic

e 

time of day 



                       46

PROVISION  OF  LOAD  SHAVING   
SERVICE  IN  ADDITION  TO  REGULATION 
q  The number of BVs providing regulation service 

remains rather low, with fewer than 10 % of the 
BVs in the aggregation providing service at any 
point in time from 8 a.m. to 6 p.m. 

q  We consider the provision of load shaving service 
in addition to the regulation service 

q  We show that the Aggregator can also provide 100 
MWh of load shaving service at a constant power 
output between 9:00 and 9:30 a.m. with an 
aggregation of 100,000 BVs 



                       47

PERCENTAGE  OF BVs  PROVIDING  LOAD  
SHAVING  AND  REGULATION  SERVICE 
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ENERGY  PROVIDED  IN  ADDITION  TO  
THE  REGULATION  SERVICE 
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KEY  IMPLEMENTATIONAL  ISSUES 

q  Aggregation 

q  Information layer construction 

q  Incentive development 

q  Realization of environmental benefits 
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V2G  COMMUNICATION  AND  
METERING 
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q  Speed: signals need to be sent every 1 to 2 s 

q  Range:  every BV in a parking lot must be on the 

communication network 

q  Measurement: metering must be installed to 
enable payment for services 

q  Reliability: full utilization of all parked aggregated 

BVs 

q  Security: BVs make the network vulnerable to 
cyber attacks  

ESSENTIAL  COMMUNICATION / 
CONTROL  SYSTEM  REQUIREMENTS 
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q  Costs: each BV has an implanted device and the 

costs per unit must be low for the large collection 

of aggregated BVs 

q  Extendibility: the communication layer must allow 

the integration of additional BVs 

q  Interoperability: a non-restrictive, flexible standard 

needs to be introduced and implemented 

ESSENTIAL  COMMUNICATION / 
CONTROL  SYSTEM  REQUIREMENTS 
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INFORMATION  LAYER  FLOWS 

q  ID of each BV 

q  Preferences/constraints of each BV 

q  Parking status of each BV 

q  Storage capability of the BV  battery 

q  The BV battery s.o.c. 

q  Power flows from BV battery to the grid 

q  Measured value of metered quantities 
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THE  ROLES  OF  THE  AGGREGATOR 

q  Development of the parking infrastructure 

q  Maintenance of the batteries and the network 

q  Creation of relationships with the BV and battery 

manufacturers 

q  Interface with ISO/RTO 
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VALUE  ADDED  BY  THE  
AGGREGATOR 

q  Provides a “package deal” to the aggregated BVs 
in terms of: 
m parking facilities 
m  service acquisition and provision 
m  charging of BVs 
m battery service 

q  Allows “one-stop shopping” for potential BV 
participants 

q  Acts as the “representative” for the provision of 
environmental benefits from reduced emissions 
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CO2  EMISSION  BY  PLANT  TYPE 
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ENERGY  CONSUMPTION  UNDER  
MIXED  CONDITIONS 
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VEHICLE  CO2  EMISSIONS 
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wind 7 % 

natural gas 11 % 

hydro 1 % 

oil 1 % 

AMEREN  IP  NET  GENERATION  BY  
ENERGY  SOURCE  FOR  2014  

coal 66 % 

nuclear  
14 % 

Source : Ameren IP, October 2014 retrieved at https://www.ameren.com/-/media/Corporate-Site/Files/billinserts/2014-10-
FOE.pdf?la=en 
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VARYING  COSTS  OF  BV  CHARGING 
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FUTURE  WORK 

q  Improvement of the BV selection for the provision 

of higher energy and regulation performance 

q  Design and implementation of a secure and 

economic communication/control architecture 

q  Design of an effective incentive program for high 

BV participation and retention 
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CONCLUDING  REMARKS 

q  Integration of  BVs helps the grid both as loads in 

off-peak periods and as supply sources during 

the day 

q  The Aggregator can provide beneficial services to 

ESPs and ISO/RTOs 

q  Aggregators are key new players in the effective 

implementation of V2G concept 

q  The BV Aggregator has the potential to harness 

sizeable benefits for the grid through V2G 



                       68

REFERENCES 
q  C. Guille and G. Gross, "A Conceptual Frame-

work for the Vehicle-to-Grid (V2G )Implemen-
tation,” Energy Policy, November 2009, pp. 4379 - 
4390. 

q  C. Guille, “A Conceptual Framework for the 
Vehicle-To-Grid (V2G) Implementation,” MS 
Thesis, ECE Department, University of Illinois, 
Urbana, September 2008; available at: http://
energy.ece.illinois.edu/gross/papers/
Dissertations/Guille.pdf 


