A PRACTICAL FRAMEWORK FOR IMPLEMENTING THE VEHICLE–TO–GRID (V2G) CONCEPT presentation by **George Gross** University of Illinois at Urbana-Champaign at the Waterloo Institute for Sustainable Energy Lecture Series at the University of Waterloo Waterloo, Canada, April 17, 2015 © 2014 George Gross, All Rights Reserved 1

MOTIVATION FOR BATTERY VEHICLES

- □ There is growing awareness around the world
 - about energy independence, sustainability and
 - climate change issues
- □ Such awareness and the success of the *Toyota*
 - Prius with over 500,000 units sold by 2007 in the
 - US are major drivers in spearheading the popu-
 - larity of battery vehicles (BVs) around the world

BATTERY VEHICLES

We include all vehicles that can be fully or partially fueled by electricity

Plug-in hybrid electric vehicles (PHEVS)
have a battery and an internal
combustion engine; examples include
O Chevy Volt
O Prius Plug-in

Battery vehicles (BVs) have no internal combustion engine but only a more versatile battery; examples include

- **O** Nissan Leaf
- **O** Fisker

OUTLINE OF THE PRESENTATION

□ Integration of *BV*s into the electricity grid

 \bigcirc *BV*s as a load

O *BV*s as a generation/storage device

O role of aggregation

Development of an implementation framework

OUTLINE

□ Key challenges in implementation

O design of an incentive program

O metering and communication/control needs

Environmental tracking and monitoring

Concluding remarks

THE ELECTRICITY GRID

- □ The *MWh* costs and prices are unequal over time
- The value of each *MWh* depends on the time of production/consumption
- The integration of *BV*s into the grid can fully exploit the opportunities to:
 - **O** buy electricity when the prices are low
 - **O** sell services when the prices are high
 - O provide additional services needed by the grid

Source: NE ISO

THE BV AS A "PURE LOAD"

CHARGING THE BVs

Source: Lucy Sanna, "Driving the solution, the plug-in hybrid vehicle," EPRI journal, Fall 2005

LEVELING THE LOAD

LEVELING THE LOAD

controlled impacts of the charging of the BVs

Source: PJM

ROLE OF BVs IN FREQUENCY REGULATION

- □ A basic objective of the system operator is to
 - ensure that the supply demand equilibrium is
 - maintained around the clock
- Imbalances lead to frequency fluctuations that
 - need to be regulated
- □ The supply-demand imbalance is checked every 2

ROLE OF *BV*'S IN FREQUENCY REGULATION

ROLE OF *BV*'S IN FREQUENCY REGULATION

OFF – PEAK REGULATION

- Compliance with the unit commitment schedules becomes difficult during low load conditions that characterize the off – peak periods
- While the operator may not wish to turn off units, there may be no choice
- Wind integration further exacerbates the low load conditions
- The regulation prices are typically the highest, as many units are required to reduce their outputs

PEAK AND OFF – PEAK REGULATION

BVs AND FREQUENCY REGULATION

- Batteries have the ability to both absorb and discharge energy
- The regulation capacity provided by a single BV battery is relatively small
- Batteries have very short response times (on the order of *ms*)
- The frequent switching of a battery may, however, severely degrade its life expectancy

THE BV AS A "SUPPLY-SIDE RESOURCE"

BATTERY ISSUES

- □ The battery capability of a single *BV* is small in
 - terms of kWh storage
- □ This capability limitation consequently restricts
 - the "supply-side resource" capacity of each BV
- ❑ A key requirement for grid integration is the aggregation of *BV*s into a collection with the
 - ability to palpably impact the grid

THE ROLE OF AGGREGATION

- □ The storage capability *C* for a typical *BV* is in the $10 50 \ kWh$ range
- □ If we consider the total discharge of the full battery over 5 h, the output is in the 2 – 10 kW range
- The aggregator, who gathers together "many" BVs to result in a nontrivial aggregated output and load, can play an important role in the effective integration of BVs into the grid so as to beneficially impact both supply and demand-side issues

V2G FRAMEWORK

□ Load aggregation

□ **Resource aggregation**

Explicit representation of uncertainty

Communications/control layer construction

Development of incentives

PRINCIPAL PLAYERS IN THE V2G INTEGRATION

□ Aggregator

□ Aggregated *BV*s

ISO/RTO

Local distribution company

THE INTEGRATION FRAMEWORK

V2G PLAYER INTERACTIONS

capacity/energy flows

FLOWS IN THE V2G FRAMEWORK

REPRESENTATION OF SOURCES OF UNCERTAINTY

- We take into account various sources of uncertainty, including:
 - O time of arrival
 - **O** parking time
 - **O** state of charge (s.o.c.)
 - **O** storage capability of the *BV* battery
 - **O** demand

For the aggregated BVs, we make use of the Central Limit Theorem (N > 30) and represent the uncertainty by using various normally distributed random variables

DAILY COMMUTE DISTANCES

Source: Lucy Sanna, "Driving the solution, the plug-in hybrid vehicle," EPRI journal, Fall 2005

PARKING LOT UTILIZATION AS A FRACTION OF ITS CAPACITY

PARKING LOT UTILIZATION AS A FRACTION OF ITS CAPACITY

PARKING LOT UTILIZATION AS A FRACTION OF ITS CAPACITY

APPROXIMATION OF PARKING CAPACITY UTILIZATION

GAUSSIAN MODEL OF PARKING CAPACITY UTILIZATION

s.o.c. OF THE BV BATTERY

□ The role of the s.o.c. is key to the effective power output (kW) management of the $\frac{C}{5}$ aggregated BV **60** integration into the grid C 5 The utilization of a **BV** acts as **BV** acts as either demand-side demand- or supply-side battery is a function of resource its storage capability

S.O.C.

(%)

100

resource

BV acts as

supply-side

resource

BVs PROVIDE IMPORTANT SERVICES

- □ The aggregated *BV*s can constitute a very important supply-side resource to the grid
- □ The *BV*s can provide considerable flexibility to the *ISO/RTO* in the scheduling of unit commitment
- As a result, the start-up of cycling and peaking units may be delayed or avoided; the provision of reserves is improved, with the need for reserves, during off-peak periods, reduced

CYCLING UNITS WITHOUT V2G

CYCLING UNITS WITH V2G

Source: PJM

DAY – TIME REGULATION SERVICE PROVISION BY 100,000 BVs

PERCENTAGE OF BVs PROVIDING THE REGULATION SERVICE

PROVISION OF LOAD SHAVING SERVICE IN ADDITION TO REGULATION

- □ The number of *BV*s providing regulation service remains rather low, with fewer than 10 % of the *BV*s in the aggregation providing service at any point in time from 8 *a.m.* to 6 *p.m.*
- We consider the provision of load shaving service in addition to the regulation service
- We show that the Aggregator can also provide 100 MWh of load shaving service at a constant power output between 9:00 and 9:30 a.m. with an aggregation of 100,000 BVs

PERCENTAGE OF BVs PROVIDING LOAD SHAVING AND REGULATION SERVICE

ENERGY PROVIDED IN ADDITION TO THE REGULATION SERVICE

size of BV aggregation in thousands

53

KEY IMPLEMENTATIONAL ISSUES

□ Aggregation

□ Information layer construction

□ Incentive development

Realization of environmental benefits

V2G COMMUNICATION AND METERING

ESSENTIAL COMMUNICATION / CONTROL SYSTEM REQUIREMENTS

- **Speed:** signals need to be sent every 1 to 2 s
- Range: every BV in a parking lot must be on the communication network
- Measurement: metering must be installed to enable payment for services
- Reliability: full utilization of all parked aggregated BVs
- Security: BVs make the network vulnerable to cyber attacks

ESSENTIAL COMMUNICATION / CONTROL SYSTEM REQUIREMENTS

- **Costs:** each *BV* has an implanted device and the
 - costs per unit must be low for the large collection
 - of aggregated BVs
- **Extendibility**: the communication layer must allow
 - the integration of additional *BV*s
- □ Interoperability: a non-restrictive, flexible standard

needs to be introduced and implemented

INFORMATION LAYER FLOWS

- $\Box \text{ ID of each } BV$
- □ Preferences/constraints of each *BV*
- □ Parking status of each *BV*
- □ Storage capability of the *BV* battery
- □ The *BV* battery *s.o.c.*
- □ Power flows from *BV* battery to the grid
- □ Measured value of metered quantities

THE ROLES OF THE AGGREGATOR

Development of the parking infrastructure

□ Maintenance of the batteries and the network

Creation of relationships with the *BV* and battery

manufacturers

□ Interface with ISO/RTO

VALUE ADDED BY THE AGGREGATOR

- Provides a "package deal" to the aggregated BVs in terms of:
 - **O** parking facilities
 - **O** service acquisition and provision
 - O charging of *BV*s
 - **O battery service**
- Allows "one-stop shopping" for potential BV participants
- Acts as the "representative" for the provision of environmental benefits from reduced emissions

CO₂ EMISSION BY PLANT TYPE

g/kWh

ENERGY CONSUMPTION UNDER MIXED CONDITIONS

VEHICLE CO₂ EMISSIONS

AMEREN IP NET GENERATION BY ENERGY SOURCE FOR 2014

Source : Ameren IP, October 2014 retrieved at https://www.ameren.com/-/media/Corporate-Site/Files/billinserts/2014-10-FOE.pdf?la=en

VARYING COSTS OF BV CHARGING

It's Not Easy Being Green

The underlying source of power affects the environmental footprint of electric cars. Mileage ratings below take into account such factors as the amount of energy required to produce the electricity for the vehicles in various cities, and other energy inputs. By this measure, a similar car with a combustion engine has a rating of 35 MPG.

Note: Most cities rely on a mix of power sources. For example, coal use in Los Angeles is offset by other sources. *Miles-per-gallon equivalent is based on the amount of energy contained in a gallon of gasoline (1 gallon = 33.7 kwh). Source: Energy Points

The Wall Street Journal

FUTURE WORK

- □ Improvement of the *BV* selection for the provision
 - of higher energy and regulation performance
- **Design and implementation of a secure and**
 - economic communication/control architecture
- Design of an effective incentive program for high
 - **BV** participation and retention

CONCLUDING REMARKS

- Integration of *BV*s helps the grid both as loads in off-peak periods and as supply sources during the day
- The Aggregator can provide beneficial services to ESPs and ISO/RTOs
- □ Aggregators are key new players in the effective implementation of *V2G* concept
- The BV Aggregator has the potential to harness sizeable benefits for the grid through V2G

REFERENCES

- C. Guille and G. Gross, "A Conceptual Framework for the Vehicle-to-Grid (V2G)Implementation," Energy Policy, November 2009, pp. 4379 -4390.
- C. Guille, "A Conceptual Framework for the Vehicle-To-Grid (V2G) Implementation," MS Thesis, ECE Department, University of Illinois, Urbana, September 2008; available at: http:// energy.ece.illinois.edu/gross/papers/ Dissertations/Guille.pdf