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MOTIVATION FOR BATTERY
VEHICLES

 There is growing awareness around the world
about energy independence, sustainability and
climate change issues

d Such awareness and the success of the Toyota
Prius — with over 500,000 units sold by 2007 in the
US — are major drivers in spearheading the popu-

larity of battery vehicles (BV's) around the world



BATTERY VEHICLES

d We include all vehicles that can be fully or partially

fueled by electricity
_ U Plug-in hybrid electric vehicles (PHEV'S)

have a battery and an internal
combustion engine; examples include
Q Chevy Volt
Q Prius Plug-in
U Battery vehicles (BVs) have no internal
combustion engine but only a more
versatile battery; examples include
Q Nissan Leaf
Q Fisker




OUTLINE OF THE PRESENTATION

 Integration of BV's into the electricity grid

QO BVs as a load

Q BVs as a generation/storage device

Q role of aggregation

d Development of an implementation framework



OUTLINE

1 Key challenges in implementation

Q design of an incentive program

QO metering and communication/control needs

d Environmental tracking and monitoring

d Concluding remarks



THE ELECTRICITY GRID

d The MWh costs and prices are unequal over time
d The value of each MWh depends on the time of
production/consumption
1 The integration of BJV’s into the grid can fully
exploit the opportunities to:
Q buy electricity when the prices are low
Q sell services when the prices are high

Q provide additional services needed by the grid
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THE BV AS A “PURE LOAD”
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REGULATION SERVICE AND PRICING
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REGULATION SERVICE AND PRICING
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REGULATION SERVICE AND PRICING
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ROLE OF BVs IN FREQUENCY
REGULATION

d A basic objective of the system operator is to
ensure that the supply — demand equilibrium is
maintained around the clock

d Imbalances lead to frequency fluctuations that
need to be regulated

d The supply-demand imbalance is checked every 2

tods
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ROLE OF BVs IN FREQUENCY
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OFF - PEAK REGULATION

d Compliance with the unit commitment schedules
becomes difficult during low load conditions that
characterize the off — peak periods

d While the operator may not wish to turn off units,
there may be no choice

d Wind integration further exacerbates the low load
conditions

d The regulation prices are typically the highest, as

many units are required to reduce their outputs
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PEAK AND OFF - PEAK REGULATION
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BVs AND FREQUENCY REGULATION

1 Batteries have the ability to both absorb and
discharge energy

d The regulation capacity provided by a single BV
battery is relatively small

1 Batteries have very short response times (on the
order of ms)

d The frequent switching of a battery may, however,

severely degrade its life expectancy
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THE BV AS A “SUPPLY-SIDE
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BATTERY ISSUES

d The battery capability of a single BV is small in
terms of kWh storage

 This capability limitation consequently restricts
the “supply-side resource” capacity of each BV

d A key requirement for grid integration is the
aggregation of BV’s into a collection with the

ability to palpably impact the grid
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THE ROLE OF AGGREGATION

d The storage capability C for a typical BV is in the
10 — 50 kWh range

J If we consider the total discharge of the full
battery over 5 h, the outputis inthe 2 -10 iAW
range

1 The aggregator, who gathers together “many”
BVs to result in a nontrivial aggregated output
and load, can play an important role in the
effective integration of BV s into the grid so as to

beneficially impact both supply and demand-side
issues
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2G FRAMEWORK

d Load aggregation

1 Resource aggregation

 Explicit representation of uncertainty

d Communications/control layer construction

J Development of incentives
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PRINCIPAL PLAYERS IN THE V2G
INTEGRATION

d Aggregator

d Aggregated BJ’s

d ISOIRTO

d ESP

 Local distribution company

28



THE INTEGRATION FRAMEWORK
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FLOWS IN THE V2G FRAMEWORK
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REPRESENTATION OF SOURCES
OF UNCERTAINTY

] We take into account various sources of
uncertainty, including:
Q time of arrival
Q parking time
Q state of charge (s.0.c.)
Q storage capability of the B} battery
QO demand

A For the aggregated BJ's, we make use of the
Central Limit Theorem (N > 30) and represent the
uncertainty by using various normally distributed
random variables
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DAILY COMMUTE DISTANCES
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Source: Lucy Sanna, ‘Driving the solution, the plug-in hybrid vehicle,” EPRI journal, Fall 2005
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PARKING LOT UTILIZATION AS A
FRACTION OF ITS CAPACITY
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PARKING LOT UTILIZATION AS A
FRACTION OF ITS CAPACITY
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PARKING LOT UTILIZATION AS A
FRACTION OF ITS CAPACITY
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APPROXIMATION OF PARKING
CAPACITY UTILIZATION
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GAUSSIAN MODEL OF PARKING
CAPACITY UTILIZATION
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s.o.c. OF THE BV BATTERY

(J The role of the s.o.c. is

i BV acts as
key to the effective power output (kW) supply-side

A resource

management of the

aggregated BV
integration into the 5-0-C
100 0
grid
d The utilization of a ,
BV acts as BV acts as either
battery is a function of demand-side demand- or supply-side
resource resource

its storage capability
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BVs PROVIDE IMPORTANT SERVICES

1 The aggregated BV's can constitute a very
important supply-side resource to the grid

 The BVs can provide considerable flexibility to the
ISO/RTO in the scheduling of unit commitment

1 As a result, the start-up of cycling and peaking
units may be delayed or avoided; the provision of
reserves is improved, with the need for reserves,

during off-peak periods, reduced
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CYCLING UNITS WITH V2
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REGULATION SERVICE AND PRICING
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DAY - TIME REGULATION SERVICE
PROVISION BY 100,000 BVs

regulation (MW)
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PROVISION OF LOAD SHAVING
SERVICE IN ADDITION TO REGULATION

1 The number of BVs providing regulation service
remains rather low, with fewer than 10 % of the
BVs in the aggregation providing service at any
point in time from 8 a.m. to 6 p.m.

d We consider the provision of load shaving service
in addition to the regulation service

1 We show that the Aggregator can also provide 100
MWh of load shaving service at a constant power
output between 9:00 and 9:30 a.m. with an
aggregation of 100,000 BV's
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PERCENTAGE OF BVs PROVIDING LOAD
SHAVING AND REGULATION SERVICE
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ENERGY PROVIDED IN ADDITION TO
THE REGULATION SERVICE
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demand for regulation (MW)

REGULATION DEMAND FOR
OFF-PEAK CONDITIONS
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REGULATION DEMAND FOR
OFF-PEAK CONDITIONS
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REGULATION DEMAND FOR
OFF-PEAK CONDITIONS
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REGULATION DEMAND FOR
OFF-PEAK CONDITIONS
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REGULATION DEMAND FOR
OFF-PEAK CONDITIONS
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KEY IMPLEMENTATIONAL ISSUES

d Aggregation

A Information layer construction

d Incentive development

(] Realization of environmental benefits
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2G COMMUNICATION AND
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ESSENTIAL COMMUNICATION /
CONTROL SYSTEM REQUIREMENTS

1 Speed: signals need to be sentevery1to2s

1 Range: every BV in a parking lot must be on the
communication network

d Measurement: metering must be installed to
enable payment for services

 Reliability: full utilization of all parked aggregated
BVs

A Security: BV's make the network vulnerable to

cyber attacks
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ESSENTIAL COMMUNICATION /
CONTROL SYSTEM REQUIREMENTS

d Costs: each BV has an implanted device and the
costs per unit must be low for the large collection
of aggregated BV's

d Extendibility: the communication layer must allow
the integration of additional BV's

 Interoperability: a non-restrictive, flexible standard

needs to be introduced and implemented
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INFORMATION LAYER FLOWS

4 ID of each BV

] Preferences/constraints of each BV
 Parking status of each BV

] Storage capability of the B} battery

d The BV battery s.o.c.

d Power flows from B} battery to the grid

J Measured value of metered quantities
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THE ROLES OF THE AGGREGATOR

1 Development of the parking infrastructure

J Maintenance of the batteries and the network

1 Creation of relationships with the BJ and battery

manufacturers

] Interface with ISO/RTO
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VALUE ADDED BY THE
AGGREGATOR

 Provides a “package deal” to the aggregated BJ’s
in terms of:
Q parking facilities
Q service acquisition and provision
Q charging of BV's
QO battery service

 Allows “one-stop shopping” for potential BV
participants

 Acts as the “representative” for the provision of
environmental benefits from reduced emissions
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CO, EMISSION BY PLANT TYPE
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ENERGY CONSUMPTION UNDER
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AMEREN IP NET GENERATION BY
ENERGY SOURCE FOR 2014
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VARYING COSTS OF BV CHARGING

It's Not Easy Being Green

The underlying source of power affects the environmental footprint of electric cars. Mileage ratings below
take into account such factors as the amount of energy required to produce the electricity for the — ==—_
vehicles in various cities, and other energy inputs. By this measure, a similar car with a combustion -
engine has a rating of 35 MPG.

Major power source Share of electricity from source ~ MPG equivalent” /

HYDRO  seattie I 715 195 7Y
6 PortlandOre. [ 63 157 {3 oY
o

s

%’ : : . ,
S WS
NUCLEAR Charlotte, NC. [ 562 85 PR

|

NATURAL Miami D o 54
GaS Boston — 46 65
~ Hogsston I 50 |
OV sanviego | 59 2 £
New York R s 72 E
=1
2
COAL Kansas City, Mo. _ 82% 38 2
. Denver I <5 o =
Washington, DC _ 53 54 §
oklahoma City [ NG 51 0 =
Minneapolis _45 61 § :
Los Angeles - 33 63 2

Note: Most cities rely on a mix of power sources. For example, coal use in Los Angeles is offset by other sources.
“Miles-per-gallon equivalent is based on the amount of energy contained in a gallon of gasoline (1 gallon = 33.7 kwh). Source: Energy Points The Wall Street Journal

Source: Wall Street J., Aug. 30, 2014 available at http://online.wsj.com/news/interactive/

CHARGERS0830?ref=SB10001424052970203858004580103452981095016
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FUTURE WORK

d Improvement of the B} selection for the provision
of higher energy and regulation performance

1 Design and implementation of a secure and
economic communication/control architecture

1 Design of an effective incentive program for high

BV participation and retention
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CONCLUDING REMARKS

 Integration of BJV’s helps the grid both as loads in
off-peak periods and as supply sources during
the day

1 The Aggregator can provide beneficial services to
ESPs and ISO/RTOs

d Aggregators are key new players in the effective
implementation of 1'2G concept

1 The BV Aggregator has the potential to harness
sizeable benefits for the grid through 12G
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