

Smart Grid, Renewables, Electric Mobility: Challenges and Potential of an Integrative Approach

Hartmut Schmeck

Institute AIFB + KIT Focus COMMputation Research Center for Information Technology – FZI

INSTITUTE FOR APPLIED INFORMATICS AND FORMAL DESCRIPTION METHODS - AIFB

KIT – University of the State of Baden-Württemberg and National Research Center of the Helmholtz Association

www.kit.edu

Overview

- Karlsruhe Institute of Technology KIT
- European Energy Policy Targets
- Electric Mobility
- Projects on E-Energy and ICT for Electric Mobility
- Implications
- Summary

Two major locations

Restructuring Research: Competence Portfolio

30 Fields of Competence Bundled into 6 Areas of Competence

Matter and Materials	Earth and Environment		Applied Life Sciences			
 Elementary Particle and Astroparticle Physics Condensed Matter Nanoscience Microtechnology Optics and Photonics Applied and New Materials 	 Atmosphere and Climate Geosphere and Risk Management Hydrosphere and Environmental Engineering Constructed Facilities and Urban Infrastructure 		 Biotechnology Toxicology and Food Science Health and Medical Engineering Cellular and Structural Biology 			
Systems and Processes						
 Fluid and Particle Dynamics Chemical and Thermal Proces Fuels and Combustion 	ss Engineering	 Systems and Embedded Systems Power Plant Technology Product Life Cycle Mobile Systems and Mobility Engineering 				
Information, Communication, a	nd Organization	Technology, Culture, and Society				
 Algorithm, Software, and Syste Cognition and Information Engle Communication Technology High-Performance and Grid Communical Models 	em Engineering ineering omputing	 Cultura Busines Interact with Sc 	 Cultural Heritage and Dynamics of Change Business Organization and Innovation Interaction of Science and Technology with Society 			

Organization and Service Engineering

KIT Focus COMMputation

5 | Hartmut Schmeck

6 | Hartmut Schmeck

Research at KIT – A twofold approach

"top-down" "top-down" KIT-Centers and KIT-Focuses Strategic approach Project-based structures Increase of international visibility Answer to requests of major societal interest

Fields and Areas of Competence

- People-based structures
- Availability of a broad range of competences
- Communication platform for the exchange of know-how
- Starting point for new projects

European Energy Targets:

Strategic Energy Targets 20-20-20:

March 2007:

EU's leaders endorse an integrated approach to climate and energy policy:

- Combat climate change and increase the EU's energy security while strengthening its competitiveness.
- Transform Europe into a highly energy-efficient, low carbon economy.
- Kick-start this process by a series of demanding climate and energy targets to be met by 2020:
 - Reduce EU greenhouse gas emissions at least 20% below 1990 levels.
 - Increase share of renewables to 20% of EU energy consumption
 - Improve energy efficiency to reduce primary energy consumption
 - by 20%.

More ambitious targets of Germany:

30% renewables by 2020, 50% by 2030, 80% (??) by 2050

8 | Hartmut Schmeck

Problems: Fluctuations – in demand and supply

- Variations at different time scales, only partially predictable
- How to deal with fluctuations? \rightarrow demand and supply management
- How to compensate for a "dead calm"??

Management of the power grid

Power grid needs a steady balance between demand and supply.

- Traditional assumptions of energy management and control:
 - Demand cannot be controlled
 - Electricity cannot be stored
- Standard control using spinning reserve, balancing power (primary, secondary, minute, hour,..)
- Future energy management
 - Discover and exploit degrees of freedom for demand (and supply) management.
 - Develop new ways of storing (electric) energy.
- ⇒ Strong need for intelligent demand and supply management to increase the reliability of power supply in spite of fluctuating uncontrollable generation of power from renewable sources.

Electric Mobility

- First electric vehicle in 1892
- Advantage: no time consuming manual start of engine
- Invention of electric starter => since 1920 almost only internal combustion engines (ICEs)
- Since around 1990 increasing revival of electric vehicles.
- Major push: Economic crisis and climate change lead to strong demand for GHG-reduction and increasing use of renewable energy.
- In 2009 economic incentive packet II in Germany invests 500 Mio€ into research and development of technologies for electric mobility (infrastructure, ICT for EM, battery research)
- In 2009 National German development plan for electric mobility

Related German Federal Funding Programs

- Economic incentive package II (2009 2011, 500 Mio €)
 - ICT for electric mobility (7 projects associated with E-Energy program)
 - 8 model regions for electric mobility: install infrastructure and bring EVs on the road
 - Research on electric storage systems (batteries,...)
- In the following:
 - Project MeRegio: ("Moving towards Minimum Emission Regions", e-Energy)
 - Project MeRegioMobile (ICT for Electric Mobility)

13 | Hartmut Schmeck

Moving towards MeRegio Minimum Emission Regions

Gefördert durch das

Research Question / Scenario

Energy Technology

- Smart Metering
- Hybrid Generation
- Demand Side Management
- Distribution Grid Management

Energy Markets

- Decentralized Trading
- Price incentives at the power plug
- Premium Services
- System Optimization

ICT

- Real-time measurement
- Safety & Security
- System Control & Billing
- Non Repudiable Transactions

Pilot Region with ~ 1000 Participants (Freiamt + Göppingen)

5 chairs at KIT:

Energy Economics, Informatics, Telematics, Management, Law

Objectives

- Optimize power generation & usage from producers to end consumers
- Intelligent combination of new generator technology, DSM and ICT
 - Price and control signals for efficient energy allocation
 - Combined Heat and Power
- MeRegio-Certificate: Best practice in intelligent energy management

Partners

MEREGIO system view

- Intelligent system platform
- Central element for integration in the model region.

4 Phases of MeRegio

	Phase 1 Q4/ 2009 – Q2 / 2010	Phase 2 Q3/2010 – Q2/ 2011	Phase 3 Q2 – Q3 / 2011	Phase 4 Q3 / 2011 to Q2 / 2012
	Measure & Respond	Control	Storage	Market place
•	Insights on consumer response to dynamic price signal Hour-based price signal for testing sensitivity of standard demand profile Price elasticity	 Control of consumers and decentral producers using control boxes and complex price and control signals First local optimisation; testing control methods for intelligent components 	 Combining (partially) flexible consumption und storage of decentrally generated power Testing interaction of components and preparation for market entry Simulation of grid events bottlenecks 	 Automatic interconnection of interested participants (consumer, producer) via market place. MeRegio certification Offering different roles / degrees of freedom for participating in energy trading
N	umber of test customers		management	
1.0 5	00 • 100	840	40	980
	Phase 1	Phase 2	Phase 3	Phase 4
1	7 Hartmut Schmeck			EENERGY AIFB

Phase 1 of MeRegio: First results on user response

Demand profile during testing

Relative changes compared to reference group

18 | Hartmut Schmeck

ICT for Electromobility Gefördert durch das

Bundesministerium für Wirtschaft und Technologie

Research Question / Scenario

Methodology

- Computer Simulations
- Field trial with about 50 BEV
- Living Lab

11 chairs at KIT: Electrical Engineering (2), Energy Economics, Informatics (5), Telematics, Management, Law

Objectives

- Intelligent & efficient integration of electric vehicles into the grid
- Technology assessment & feasibility under real life conditions
- Seamless integration into MeRegio pilot region
- Center of competence at KIT (demo and research lab)

Partners

19 | Hartmut Schmeck

Classification of electric vehicles

- Micro hybrid:
 - No electric engine
 - Recuperation: recovering braking energy
 - Automatic start / stop
 - Fuel savings of 5% to 10 %
 - Additional cost of about 430 € (for electric servo and high performance ignition)
- Mild hybrid:
 - Larger battery and an electric engine, supporting the ICE
 - Results in reduced cylinder capacity and corresponding fuel savings
 - Icremental costs of around 1500 to 2000 €
 - Example: Mercedes S400 Hybrid

Classification of electric vehicles (2)

- Full hybrid:
 - Similar to mild hybrid, but larger batteries and engine, allowing electric driving
 - Incremental costs around 2500 to 3000 €
 - Efficiency gains around 25% to 40%
 - Examples: Toyota Prius, VW Touareg, BMW ActiveHybrid X6, Porsche Cayenne, Mercedes ML 450

21 | Hartmut Schmeck

Classification of electric vehicles (3)

- Plug-in Hybrid (PHEV):
 - Similar to full hybrid
 - Allows external recharging of battery
 - 50 % of driving should be electric
 - Incremental costs around 3200 to 7300 €
 - Efficiency gains around 40% to 60%
 - Examples: Toyota Prius PHV, many more at <u>http://phevs.com/indexGalleries.html</u>

Classification of electric vehicles (4)

- Full electric, battery electric vehicle ((B)EV):
 - Electric engine only , no ICE
 - Significantly reduced number of moving parts
 - Extra costs of at least 15.000 €
 - Significantly reduced driving range (100 200 km)
 - Higher weight due to larger battery
 - Long charging times (2 to 8 hours)
 - Examples: many EVs available or announced (smart ed, Mini E, eVito, eMIEV, Ampera, Think, ...)

KIT Focus COMMputation

23 | Hartmut Schmeck

Effects of electric vehicles (EVs) on power grid

- Germany, 2008 (mobility survey):
 - Average daily car usage < 1 h, 94% of trips < 50 km</p>
 - Average net capacity of currently available EVs: 20 KWh
- At 1 Million BEVs (German objective for 2020): available storage capacity of ~ 20 GWh
- At charging/discharging power of 3.7 KW: ~ 3.7 GW potential power
- Consequently: high demand for power, potentially also high supply (if power feedback is possible)
- Average time for charging:
 - Single phase 3.7 KW: 5 to 7 hours.
 - Three phase 10 KW: ~ 2 hours (but high risk of grid overload!)
- Potential of high flexibility for load shifting, but also potential of high peak load!
- Using intelligent control leads to high potential for stabilizing the grid.

Uncontrolled Charging of EV

Simulation:

Distribution Grid:

- rural german area
- ~100 households

Electric Vehicles:

- 20 EVs at grid segment
- power demand = 10KW
- charging after last trip
- high simultaneity expected in the evening

350 300 distribution grid, load curve **≥** 250 · Power Demand in charging power 20 EVs 200 150 100 50 00:00 01:15 03:45 05:00 06:15 07:30 02:30 08:45 00:01 11:15 12:30 3:45 15:00 16:15 17:30 20:00 21:15 22:30 3:45 Time

Conclusion:

- Even a small rate of Electric Vehicles could strongly affect the power demand of a distribution grid.
- Increasing stress of grid equipment expected, overload is possible

Integration Strategies: Load Balancing Potential

26 | Hartmut Schmeck

"Smart Home" – e-Mobility Lab at KIT Testing smart integration of EVs into the (local) grid

28 | Hartmut Schmeck

Smart home lab - structure

O/C-Architecture for DSM

behavior request

30 | Hartmut Schmeck

Intelligent demand management

Challenges of Electric Mobility

- Battery charging infrastructure needs standardization and interoperability (at private, public, semi-public charging stations)
- Need of incentives (regulations?) for leaving recharging control to external provider (otherwise, EVs will lead to severe problems!)
- Effective bidirectional control of batteries needs knowledge on "next drive" → privacy protection problems?
- Limited range of BEVs needs new energy-aware services, e.g.:
 - remaining driving distance
 - energy-optimized routing and driving
 - reservation of next charging station (coordination and booking)
- Exploit potential of effective system services utilizing virtualized storage.
- Security and safety issues
 - Denial of service attacks, viruses, worms all the problems known from data communication networks.
 - Validity of billing for bidirectional charging?

Implications for "Smarter Cities"

EV''s need charging stations

- **Private**: at home (garage, what about apartment buildings???)
- Public: at public parking lots
 - Locations?
 - Users?
 - Roaming problems
- Semi-public: restricted range of users, special contract
 - Company employees
 - Private parking garages
 - Sports arena visitors
 - Shopping centers
- Studies show that *public charging is not really needed* (but very expensive).

Implications for "Smarter Cities"

- Limited driving range → strong need for new mobility concepts
 - Multi-modal mobility
 - BEVs for short trips (94% are below 50 km!!)
 - Switching between different mobility modes for long range trips e-bikes – e-cars – buses – trains – planes -
 - Mobility as a service
 - Car-sharing
 - Public transport
- Green City" concept
 - Regions with "E-traffic only"
 - Municipal services, delivery services with e-traffic only
 - Combinations of BEVs and Hydrogen-Infrastructure (public transport)
 - Utilization of BEVs for stabilizing the power grid (system services)

Implications for "Everybody"

• "When to use your dishwasher?":

- Learn to adjust your power demand to specific profiles (which might be changing frequently).
- Agree to have the devices in your smart home managed by some third party ("your personal power agent").
- Specify your constraints for guaranteed personal comfort levels.
- Learn how to reduce your energy consumption.

"When and how to use or recharge your electric vehicle?"

- Learn to cope with "range anxiety".
- Have your vehicle plugged in as long as possible.
- Agree to have your BEV used for stabilizing the grid.
- Get used to "mobility as a service" and resulting multi-modal mobility.

Summary

- Power generation from renewable sources needs ICT for new approaches to energy management.
- Electric vehicles will generate significant capacity for power storage leading to additional demand and supply of power.
- Potential flexibility of power demand and supply should be exploited in "smart" homes and enterprises.
- Integration of EVs into smart home environments allows for intelligent balancing of power demand and supply and for new power system services.
- An "Internet of Energy" will have to cope with similar safety and security problems as the "Internet of Data".
- Pervasive use of ICT in our vicinity is inevitable but need not reduce our personal comfort.

Thanks for your attention!

Questions?

Contact Address

Prof.Dr. Hartmut Schmeck KIT Campus South Institute AIFB 76128 Karlsruhe Germany hartmut.schmeck@kit.edu Phone: +49-721 608-4242 Fax: +49-721 608-6581

www.aifb.kit.edu www.commputation.kit.edu http://meregio.forschung.kit.edu http://meregiomobil.forschung.kit.edu www.fzi.de www.e-energy.de/en www.ikt-em.de/en