

Dr. Hélène DEBEDA, Associate Professor Université de Bordeaux – Laboratoire IMS

Laboratoire IMS, 351, Cours de la Libération 33405 TALENCE helene.debeda@ims-bordeaux.fr

Outline

1.Bordeaux, University and IMS Laboratory

- 2. IMS Lab PRIMS team activities
- 3. Printed technologies for electronics and MEMS
- 4. Screen-printed PZT MEMS
- 5. Printed gas sensors: toward RT detection
- 6. Organic MEMS

Bordeaux, University and Lab...

BORDEAUX AND ITS UNIVERSITY

~730 000 inhabitants

• 3rd rank in France 53 000 students and 5600 employees

• 3 departments

- Science and technology,
- Law, political science and economy
- Medicine

Academic Laboratories

IMS-Bordeaux LABS

IMS-BORDEAUX LABS

Laboratoire d'Intégration du Matériau au Système

400 people working in the field of Engineering (material sciences, electrical engineering, biology, humanities)

10 000 m²: 40% dedicated to experimental facilities

IMS-BORDEAUX LABS

4 Departments	10 Groups			27 Teams	
Sustams and	BIOELECTRONICS	Bio-EM		ELIBIO	ims 🗌
Interactions	S. Renau	d	I. Lagroye	N. Lew	ghi
interdentitio	COGNITICS	СІН		ESC	
B. Veyret	J-M And	é	J-M André	F. Daniellou	
	SIGNAL	мо	~		XXXX XXXXXX
	Y. Berthoumie	u 🧹			
Systems	PRODUCTION ENGINEERING	ME	5-	PRIMS tear	
	Y. Duo	q	KV X43 1000m HD27		
	AUTOMATIC CONTROL	ARI	PRInte	d Microelectro	omechanical
X. Moreau	A. Oustalou	p		Systems (MF)	NS)
	CIRCUIT DESIGN	EC2		Systems (MLI	(0)
Hardwara	J-B Béguer	et	1 non	monont positions	and 6 DhD
Integration	DEVICES RELIABILITY	PAC	4 per	naneni positions	and o PhD
integration	E. Woirga	d			
	NANOELECTRONICS	LAS			
Y. Deval	T. Zimm	er	D. Le	C. Maneux	N. Malbert
	ORGANIC ELECTRONICS & MEMS	ELORGA		PRIMS	
Prom Materials to	L. Hirso	h	L. Hirsch	I. Dufour	
Devices	WAVES	MDA		EDMINA	MIM
L. Vignau	C. Dejo	IS	D. Rebière	L. Béchou	V. Vigneras

420 members including 150 researchers, 160 PhDs, 15 Post-docs, 70 technical staff, 25 administrative staff

IMS Lab-PRIMS team activities

PRIMS: PRInted MEMS Team

www.ims-bordeaux.fr/fr/recherche/groupes-recherche/58-organique/prims/41-PRIMS

4 Permanent positions

- 2 professors
- 1 junior researcher
- 1 associate professor

Cédric Ayela Hélène Debéda Isabelle Dufour Claude Pellet

6 PhD students Frank Bokeloh

Pierre-Henri Ducrot Simon Grall Marco Pereira Maria Isabel Rua Taborda Onuma Santawitee

PRIMS: PRInted MEMS Team

Silicon cantilever: from design to gas detection

Silicon cantilever: from design to gas detection

Dynamic mode: Detection with uncoated microcantilevers

Sensors and MEMS patterning

Clean room facilities , class 10000 (TAMIS)

- Screen-printing (+ sacrificial layer)
- Spray + stencil (+ sacrificial layer)

а

Spin-coating + Xurography (= cutting plotter)

- low cost
- collective fabrication
- large choice of substrates and starting materials
- components and electronics
- bio-compatibility (organic)
- harsh environment (inorganic)

Spray-coating

...

Examples of printed components

Photolithography + wafer bonding: SU8

Photolithography: CNTs /SU8

Stencil + spray: MIP

Screen-printing + Photolithography: SU8 + Ag/époxy

Xurography: CNTs/SU8

Screen-printing:

Cu, Pt, vitroceramic, PZT, epoxy/C

Printed technologies for Electronics and MEMS

Printed technologies → growing demand of the electronic market

- ✓ Low cost: additive process, fast/high volume, low capital investment
- ✓ Good enough quality: repeatable, good resolution
- ✓ **Capabilities:** printed layers, substrates, form factors, temperature process

Printed technologies → Additive process (≠ substractive process)

Printed technologies

High speed printing

Printed technologies

Screen-printing

□ Most simple, flexible and cheap

squeege

- 1. Patterning of a screen by photo-lithography
- 2. Paste transfer onto a substrate through the screen by a squeege

Printed technologies

Direct printing techniques

□ Filament microdispensing systems (Micropen®)

1. Printing pattern created on software

2. Printing via capillarity action

3. Ink loaded in a syringe, compressed and squeezed out into the writing head by controlled pressure

Direct printing techniques

□ Inkjet technology (DOD Drop On Demand *)

http://spie.org/x18497.xml?ArticleID=x18497

Direct projection of drops (\varnothing 15-200 μ m) on localized area

Reel to reel printing techniques (R2R)

□ Flexography printing (flexo)

- 1. Pattern engraved on an elastic printing plate
- 2. Ink in contact with the anilox /scraping off any excess of ink with the doctor blade
- 3. Ink transfer on the elastic printing plate
- 4. Printing on the travelling substrate thanks to the hard impression cylinder

Gravure off set printing

□ Gravure printing process

- 1. Pattern to be printed engraved on the plate
- 2. Filling of engravings by doctor-blade method
- 3. Picking up the ink by rolling action

4. Transfer of the ink to the substrate by similar rolling action

] Direct gravure printing process

- 1. Patterned silicone polymer fastened on a smooth metal plate
- 2. Filling of the grooves in the silicone
- 3. Transfer of ink by pressing the substrate against ink

Kittilä et al, IEEE transactions on electronics packaging manufacturing, 2004

Printed technologies : summary

	Resolution / Thickness	Substrates	Pastes/inks	Viscosity *
(from Southampton Univ	ersity)	, Ag + polymer PZT + polymer AgPd (high T thick film) Alumina substrate Al ₂ O ₃	Conductive, resistive, dielectric Polymer inks (T _{curing} <200°C) - Organic polymers, - Composites (polymer + powders) Inorganic inks (400°C <t<sub>sintering<1000°C) = temporary organic binder + powder</t<sub>	0.1-10 Pa.s 0.005-500 Pa.s <20m Pa.s 0.1-10 Pa.s 0.01-0.5 Pa.s

* Water = 1mPa.s, olive oil = 0.1 Pa.s, Honey= 10Pa.s

Screen-printed PZT MEMS

Processing of piezoelectric MEMS

Processing of piezoelectric MEMS

- 1. Sacrificial layer (epoxy+SrCO₃) curing 20min 120°C
- 2. Bottom electrode (Au), drying 20min 120°C
- 3. PZT+ sintering aid drying 20min 120°C
- 4. Top Electrode (Au), drying 20min 120°C
- 5. Isostatic pressure (1kBar= 100MPa, 1min)
- 6. Cofiring 2h, 900°C →[3.3x3.3x0.08mm³]
- 7. Sacrificial layer removal (0.9mole.L⁻¹ H₃PO₄)
- 8. Poling (270°C, 5kV.mm⁻¹)
- 9. Characterization

Comparison clamped/free-standing PZT

3.3x3.3x0.08mm³

✓ Admittance analysis (HP4194A)

Au/PZT/Au realizations

Cantilever

8x2x0.1mm³

Seas detection and viscosity measurement

Ø9.5mm x0.2mm

Actuation and damage detection (SHM)

Characterizations (µstructure et electromechanical)

	Porosity	Density (g/cm ³)	К _Т ³³	k _p (%)	-d ₃₁ (pC/N)	Q	f _{res} (kHz)	
Au/PZT/Au <mark>disk</mark> Ø9.5mm, t=190µm		55	410	15	40	350	170	ince ance
Au/PZT/Au cantilever 8x2x0.1mm	0004 20KU X450 10++ WD27		330	-	80	400	70	
Au/PZT/Au <mark>pellet</mark> Ø11.5mm, t=950µm	8884 2010 A75 10010 HD16	7.2	900	46	80	280	140	, 85
PIC151commercialØ10mm, t=0.3mm	-	7.7	2900	66	200	90	240	

Thick-films properties < ceramics ... MEMS tests

Au/PZT/Au cantilever: sensor

Solution States and St

Au/PZT/Au disk: actuator

Au/PZT/Au disk Ø9.5mm, t=190µm

Steel beam (200x20x0.48mm³)

U=100 V (peak to peak) f=10 Hz (beam's resonance) ⊸

Oscillations: speed=73 mm/s Max amplitude 1.16 mm (tip)

PI ceramic (Ø10 mm, t=300 μm) Oscillations: speed= 380 mm/s Max amplitude 6.02 mm

Au/PZT/Au disk: sensor

Structural health monitoring

Electro-Mechanical Impedance method (EMI):

damage ⇒ change of the electromechanical coupling of the ceramic bonded or embedded in structure

$$\Delta f_{\text{mean}}(\%) = \frac{\sum_{n=1}^{N_{pks}} |f_n^D - f_n^{UD}| / f_n^{UD}}{N_{pks}} * 100\%$$

Alternative to free-standing PZT: PZT supported on stainless steel

Energy harvesting for smart grid

Piezoelectromagnetic cantilever beam

Optimized *meander shaped beam* and Strain contour plot showing tension (red) and compression (blue).

- In North America AC power transferred at 60 Hz
- Need to tune system to 60 Hz for resonance resulting in maximum power output

Alternative to free-standing PZT: PZT supported on stainless steel

PowerMEMS 2016, E Fernandes et al.

Printed gas sensors: toward RT detection

Gas sensor requirements

• Flexible and biocompatible if possible ...

Selectivity toward CH₄: multi-sensors

Resistive (SnO₂) and catalytic sensors (Pd, Pt)

 $\Rightarrow Sensitive (R_{air}/R_{CH4} \sim 6), selective and stable$ = Figaro MOX sensors (GDF tests)

Reduction of operating T ? ⇒ nanomaterials

• Metal Oxide Semiconductors MOX (SnO₂, ZnO, WO₃...)

• Carbon nanotubes CNTs

Nanoceramics, H₂ resistive ZnO sensors

- 1. ZnO nanopowder (Nanotech \mathbb{R} , APS 40-100nm, S.A. 10-25m²/g)
- 2. Paste preparation
 - 30%wtZnO + organic binder (ESL400)
 - 3 roller mill \rightarrow viscosity 0.1-10 Pa.s
- 3. Printing on Al_2O_3 substrate (Pt IDTs + Pt μ heater)

3 roller mill

ZnO nanoceramics, RT H₂ detection

Higher sensitivity ⇒ Energy activation, UV or T

J. Phys. Chem. 2013, M. R. Alenezi

$$H_2ads + O^2 ads \rightarrow H_2O + 2e^{-1}$$

or
$$H_2ads + O^2ads \rightarrow H_2O + 1e^{-1}$$

ZnO nanoceramics, RT H₂ detection

Halogen lighting (15µW/mm²)

RT	No	0
	Halogen (15µW/mm ²)	44
	UV (7.7 mW/mm ²)	43
150°C	No	38
	Halogen (15µW/mm ²)	71
	UV (7.7 mW/mm ²)	94

V. S. Nguyen et al, Journal of Applied Surface Science, 2015

Nanocomposite based resistive sensor

- Black carbon + epoxy + bistable nanoparticles (NPs Ø 45nm, Fe(Htrz)₂trz]BF₄.H₂O SCO complex)
- Printing, drying 120°C, curing 150°C
- Ag contact

Gas sensor principle

 $H_2O \Rightarrow$ Swelling of epoxy + bistable NPs \Rightarrow Resistance \downarrow (percolation phenomena)

Nanocomposite based resistive sensor

■ RT tests

6x higher with bistable nanoparticles
Possibility to use organic substrate

Gas sensor requirements

• Flexible and biocompatible if possible ...

Screen-printed cantilever gas sensors

Toluene detection with Au/PZT/Au cantilever

- Piezoelectric effect ⇒ actuation and detection

- In plane 31 Longitudinal resonant mode \Rightarrow high resonant $f_r \Rightarrow$ high sensitivity S

f³¹

 C_g : gas concentration

H. Debéda et al, Sensors and actuators B, 2013

Si cantilever + PEUT, bending, $f_r = 3kHz$ S = 9.10⁻⁴Hz/ppm, LOD = 47ppm

Double transduction : PZT + CNTs

□ Simple transduction: *resonant*

Double transduction: *resonant + resistive*

Double transduction: all printed

Sensitive coating deposition

• MWCNTs air brushing

Length 50 μ m, Outer \varnothing 3-15nm, Inner \varnothing 3-7nm (Nanocyl) \rightarrow 300m²/g

Double transduction: PZT + CNTs

Organic MEMS

Attraction of organic electronics

Inorganic

- Rigid, hard, heavy
- Expensive
- Confined in wafer
- Requires clean-room facilities
- Time and energy consuming

X. Lui et al, Lab. Chip., (2011)

- Flexible, streatchable, lightweight
- Low-cost
- High throughput, large surface
- Non-toxic, abundant
- Solution process, low temperature

K. Bourzac et al, Nature News, (2012)

Organic MEMS: gas sensors

Cantilever: static mode

Moleculary Imprinted Polymer (MIP)/ OFET

EPOXY/carbon / agarose coating

L=10mm, b=2.5mm, h=80µm

Organic MEMS: energy harvesting

ORGANIC CANTILEVER

High mass part (composite) Low stiffness part (organic) Electrostrictive layer (CNT composite) Electrodes

PRINCIPLE

Environmental vibrations \rightarrow stress/strain \rightarrow permittivity change of electrostrictive layer \rightarrow capacity change \rightarrow electronics for energy harvesting

Organic MEMS: energy harvesting

H. Nesser et al, flexible and printed electronics., 2016

Organic MEMS: energy harvesting

Resonance frequency

1st vibration mode (out of plane)

- Influence of tip-mass: fr (with tip-mass) = 1/3 fr (without tip-mass)
- Influence of the geometry of the micro-beams + tip-mass: < 10 times
- Repeatability: $fr = 372Hz \pm 16Hz$

Organic MEMS: xurography processing

Xuron (blade, razor) and *Graphe* (to write)

Characteristics:

- Devices can be designed in any CAD program
- Software opens DXF files
- Lateral resolution of 5 μm
- Handle a variety of material
- Cut material up to 250 μm thick
- Large choice of blade

Organic MEMS: xurography processing

Piezoelectric micro-cantilever resonator

Cutting of the shape with the cutting plotter (Xurography)

Organic MEMS: xurography processing

Selectrostrictive MEMS energy harvester

Electrostrictive MEMS energy harvester

	polymer	(µW/cm³)
D Jaaoh et al, 2016	PU	1.11
D Jaaoh et al, 2016	PU/PANI 2wt%	1.54
P.J. Cottinet et al, 2011	P(VDF-TrFE-CFE)	280.00
Our micro-cantilever	PDMS/rGO 3.7wt%	8.15
PU: Polyureth	ane, PANI : polyaniline conducte	eur

Outline

1.Bordeaux, University and IMS Laboratory

- 2. IMS Lab PRIMS team activities
- 3. Printed technologies for electronics and MEMS
- 4. Screen-printed PZT MEMS
- 5. Printed gas sensors: toward RT detection
- 6. Organic MEMS

... Conclusion

Conclusion

- Use of simple, low-cost, versatile and fabrication processes (screen-printing, xurography, spray, etc...).
- It led to successful achievement of stateof-the-art printed MEMS devices
- Toward "green" and flexible electronic: no lead, organic, bio-compatible ...

Thank you. Merci!

Aknowledgements

C. Lucat, I. Dufour, C. Ayela, H. Nesser, PH. Ducrot, ...

Laboratoire de l'Intégration du Matériau au Système

