Waterloo Institute for Sustainable Energy

Helical Piling Applications

Presented by Jeff Lloyd President, Almita Piling Inc. July 22, 2016

> <u>Jeff.Lloyd@Almita.com</u> 780-995-7016

© 2015 Almita Piling Inc.

Our Agenda Today

- Almita Helical Pile Overview
- Environmental and Economic Advantages
- Helical Pile Applications
- Design Considerations
- Q & A

Individual Bearing Model (IBM) Ultimate Uplift Capacity (Qu) Ultimate Compression Capacity (Qc)

Cylindrical Shear Method (CSM)

Ultimate Uplift Capacity (Qu)

Ultimate Compression Capacity (Qc)

About Almita

- Canada's leader in engineering, manufacturing and installation of helical piles since 1991
- Almita and our External Installer Network install nearly 40,000 "Fit for Purpose" helical piles a year
- 191 employees including 11 geotechnical and structural engineers
- Founding Member of Institute of Helical Pile Engineering

complete support

© 2015 Almita Piling Inc.

Almita's Locations

Edmonton

- Ponoka
- Calgary
- Saskatoon

Industries we serve

Power Transmission and Distribution

- Solar panel & related infrastructure foundations
- Wind turbine foundations
- Transmission tower and power pole base foundations
- Substations

Oil & Gas

- Mining and SAGD CPFs and wellpads
- Facilities and plant sites
- Oilfield pumpjacks and batteries
- Pipelines, pump stations and anchor blocks

Commercial & Infrastructure

- Work-camp & office trailer structures
- Commercial and industrial buildings
- Streetlight and sign bases
- Municipal and private bridges

Environmental and Economic Advantages

© 2015 Almita Piling In

Advantages of Helical Piles

- Cost effective alternative less material fewer trucks
- Rapid installation typically 10 minutes per pile with agile installation units
- Versatile foundation system works well in compression and tension and can be installed at any angle
- Can be installed in most soil profiles, on uneven terrain, and in any weather condition
- Can sustain load immediately after installation
- Very safe installation!

Screw Piles vs. Cast In Place Concrete

- No large diameter auger or bucket drill is required for pre-excavating
- No tailings
- No concrete curing time
- No rebar, anchor bolts, no liners
- No dewatering (no casing)
- Installed in all types of weather
- Avoid typical installation problems such as necking or cavities within concrete
- Smaller crew size

Screw Piles vs. Steel Driven Piles

Driven Piles

- Large safety zone due to working height of piling rig
- Pounding force may necessitate larger pile than needed for working loads
- Usually require deep embedment
- Driven pile equipment is large (high mast) and slow to move

Screw Piles

- No hammer noise pollution preferred method in environmentally sensitive areas or urban areas
- Achievable install rates of 5-8 piles / hr
- Easy to remove when site restoration required
- Extra support vehicles not normally required for screw pile installation
- Approximately half the steel to support a similar load

Helical Pile Applications

© 2015 Almita Piling In

Solar Farm

- 5 installation crews
- ~350 piles/day installed
- 65 Semi-truckloads of materials
- 26,000 piles installed in less than 4 months
- Finished 17 days ahead of schedule

Monopole Tower Base

Transmission Line Bucket Pile

Street Lighting

Rail Stabilization

Batter Angles (from vertical to horizontal)

Helical Pile Design

© 2015 Almita Piling Ir

CANADIAN FOUNDATION ENGINEERING MANUAL 4th EDITION

CANADIAN GEOTECHNICAL SOCIETY 2006

Canadian Foundation Engineering Manual

Helical (Screw) Piles have been incorporated into the latest Edition of the CFEM - Almita contributed Section 18.2.1.4

Conventional Bearing Capacities

- 1. Individual Bearing Model (IBM)
- 2. Cylindrical Shear Model (CSM)

Selection depends mainly on:

- Helical pile configuration: Spacing ratio (SR)
- Surrounding soil properties: Cohesive or Cohesionless

Both **IBM** and **CSM** should be used for optimization of designs

Individual Bearing Model (IBM) Ultimate Uplift Capacity (Qu) Ultimate Compression Capacity (Qc)

Cylindrical Shear Method (CSM)

Ultimate Uplift Capacity (Qu)

Ultimate Compression Capacity (Qc)

Estimation of Torque Installation

For Cohesive Soil:

$$T = \frac{1}{2} \pi d^2 \sum L_i C_{ui} \alpha + \frac{1}{6} \pi D^3 C_u n$$
For Cohesionless Soil:

$$T = \frac{1}{4} \pi d^2 \gamma H^2 K_p \tan \delta + \sum \frac{1}{6} \pi D_i^3 \gamma H_i K_i \tan \delta$$
Where: n = number of helices

Driven vs. Helical Piles Comparison in Clay Till

Helix Diameter vs. Pipe Shaft

* Rounded to the nearest 5mm.

Most Common Helix Size Available Helix Size

"Special Conditions" Helix Size

Design Considerations

Group effect Frost depth (cold climate) Down-drag from fill Expansive soils Groundwater Cobbles & boulders Remove shallow boulders if encountered Use battered piles to avoid obstacle. Relocate pile or bridge obstacle with two piles.

Trim helixes

Corrosion protection - design life Large lateral loads Restricted access Connections to superstructure Capacity to torque correlation

Things to Remember

- Economic, efficiency and environmental advantages
- Versatile and can be installed in all weather and at any angle
- Custom designed, or designated using Almita's CCMC certification
- Almita is the leading supplier of helical piles in Canada

Thank You!

© 2015 Almita Piling Inc.

Anchor Thrust Block

Anchor Thrust Block Suncor 2014

Pump Stations

Central Processing Facility

Pipe Racks

Wellpads

Gathering Lines

Elevated Pipelines – Temporary Support

Elevated Pipelines & Piperacks

Lateral Supports

Facilities and Terminals

Conventional Oil Facilities

Terminals

Substations

Very Soft Terrain

P7-A /P8-A

ALL X BURT

48" X 0.375" WALL

36" X 0.375" WALL

HELDX /4ELDX 48/ (191 X 1067) (191 X 1269) (201 X 1067) (191 X 1269)

HELIX 1' X 30' 125.4 X 7621 / 125.4 X 9141

3/8* 19.53

3/8" [9.5]

3/8* 19.53

HELDX 3/4" X 24" [19.1 X 610]

> HELIX 3/4' X 24 [19.1 X 6]

Commercial Buildings

Cactus Club Restaurant

3 Story Condo

Self Erecting Crane Supports

Piles will be removed once cranework is complete

Bridge Retrofit

20 Tonne becomes 40 Tonne bridge Screw piles installed from bridge deck and spilt the span

Work-Camps – Single & Multi Story

Shoring / Retaining Wall

Retaining Wall Tie-Backs

