CNRC-NRC

De la découverte à l'innovation...

Electrochemical Clean Energy Storage and Conversion: Fuel Cell Catalysts and Supercapacitors at NRC

Jiujun Zhang, Ph.D

Principal Research Officer National Research Council of Canada (NRC) May, 2013

Conseil national de recherches Canada **National Research Council Canada**

Global Energy Status: Types of Energy

Global Energy Status: Estimated dates of nonrenewable fuel exhaustion

From Renewable Energy Sources (January 1st 2009)

http://www.renewable-energy-sources.com/2009/07/14/depletion-of-non-renewable-energy-sources-july-2009-status/

Global Energy Status: Portion of renewable energy

 From 2010 Survey of Energy Resources, World Energy Council (http://www.worldenergy.org/)

Major driving forces behind sustainable clean Energy:

- sustainable energy supply (If all fossil energy is • Sustainable living and developing of mankind need a exhausted, globe will largely rely on sustainable energy);
- caused by fossil fuel burning (Fossil fuel consumption terrestrial geography, and causing acid rain fall and soil • Sustainable living and developing of mankind need a sustainable clean environment free of pollution brings air pollution and global warming and their associated climate changes, such as rising ocean temperature, changing degradation).

Major Challenges for Sustainable Clean Energy

- • **Insufficient reliability (Disrupted Supply of electricity at around the clock whenever they are demanded)**
- **from cities)** • **Difficult transmission and distribution (Limited remote locations**
- • **Unbalanced integration of renewables on the power grid (Power grid balance between supply and demand)**
- • **High capital cost (High energy infrastructure cost)**

In overcoming these challenges, cost-effective, reliable and efficient clean-energy storage and conversion technologies are necessary and critical!

Technology Review for Sustainable Clean Energy Storage and Conversion

- **Electrochemical technologies** (Thermal storage and conversion, Batteries, fuel **and diversified options, high efficiency, high power/energy densities,** cells, supercapacitors, Solar cells, Hydrogen, CO₂ electro-reduction, Flexible **Environmentally-friendly)**
- • **Fly Wheels (Mechanical storage and conversion, High energy density, Light, but Short cycle life)**
- **Geological structure reliance)** • **Compressed Air (Mechanical storage and conversion, Fast start-up, but**
- **of electricity (over 2000 MW), Low energy density, Geographical dependence, Massive capital cost, Soil erosion, Land inundation, and Silting of dams)** • **Pumped Hydroelectricity (Mechanical storage and conversion, Largest capacity**
- • **Magnetic super-conductors (Thermal storage and conversion, Environmental friendly and Highly efficient but limited applications)**
- **Ice-melting, utility financing, etc.**

 and conversion. Electrochemical technologies are approved as the most feasible and effective ways in clean energy storage

Working principle:

Electrochemical reactors convert electrical energy into chemical energy for storage, and/or chemical energy into electrical energy for conversion

Major advantages (different devices have their own advantages):

- **Wide variety of applications in stationary, transportation,** $\qquad \qquad \blacksquare$ \bullet **portable/micro electronics;**
- **Wide variety of power and energy density ranges;**
- **Mobile (wireless);**
- **High storage-conversion efficiency (40-95%);**
- **Rechargeable;**
- **Environmentally-friendly**

Power density vs. Energy density

Interface (The Electrochemical Society), Vol. 10, No. 1 (Spring 2001)

Electrochemical energy storage-conversion will be a central component in the future Smart Grid!

Sources: The Economist: ABB

*Future grid***:**Two-way flow, multi-stakeholder interactions

Courtesy AEP

 Present and future efforts will be largely put on how to convert wired-power into mobile-power used in cell-phones, portable electronics, and automotive vehicles. *continuously play a central role in Mobile Powers! Electrochemical energy storage-conversion is playing and will*

Cutting-edge research and development directions:

- **1. Fuel cells in particular polymer electrolyte membrane fuel cells for automobile applications (Exploring and developing nano-structured electrode catalysts and membranes to improve energy/power densities and durability as well as reduce the cost)**
- **2. Metal-air batteries in particular Li-air and Zinc-air batteries for automobile applications (Exploring and developing nano-structured materials-based cathode (O2 reactions) to significantly improve cycle life)**
- **3. Lithium-sulfur battery for automobile applications (Exploring and developing nanostructured materials-based electrodes to significantly improve cycle life)**
- **4. Supercapacitors for automobile applications** (**Exploring and developing nanostructured electrode & electrolyte materials (hybrid and composite materials and widepotential-window electrolytes) to significantly improve energy densities)**
- 5. Photoelectrochemical cells for hydrogen generation (Exploring and developing nano**structured photo-electrode materials to significantly improve photo-electricity conversion efficiency)**

Current Technology Gaps for the PEM fuel cells

- **Cost (factor of 2 10 times too high at volume)**
- **25-50% of target) • Reliability (early failure modes) and Durability (for many applications only**
- **Operational flexibility (issues with sub-zero operation, high temperature operation and duty cycles)**
- **Limited direct fuel capability and performance**
- **Technology simplification and integration**
- **Fundamental understanding and modeling of root causes of performance effects**
- **Materials and processes suitable for mass production**
- **Limited materials performance and availability**
- **New materials development**

 PEMFC key material breakthrough is the highest priority in order to achieve a real commercialization:

 high stability, suitable for mass production) (1) Catalysts (Cost-effective (50% more in the total stack cost), high activity, availability and

 (2) Membranes (Cost-effective, high conductivity, high operating temperature, low humidity and high durability)

(3) GDLs (Cost-effective and high durability)

(4) Bipolar plates (Cost-effective and high durability)

PEMFC catalyst activity for ORR

 Activity = TOF x 1.6x10-19 x ASD

$$
(A.cm-3) = (e-1.s-1.s-1) X (C.(e-1)-1) X (site-1.cm-3)
$$

* H.A. Gasteiger and N.M. Markovic, **Science** (2009) 324:

Typical results achieved

 Fuel cell catalysts synthesized in the last 7 years:

- (1) Alloys (PtBi₂ Pt-Co/C, Pt-Ru-Ir-Sn/C, Pd-Co/C, Ir-**Co/C, PtRu/C, PtPd/non-carbons)**
- **(2) Macrocycles (Co-TMPP/C, Co-PPY/C, Fe-N4/C, Mo-N/C)**
- **(3) Chalcogenides (Ir-Se/C, W-Co-Se/C)**
- **(4) Mesoporous carbon supported and self-supported catalysts (Pt/MC, PtCo/MC, Fe-N/C)**

Typical results achieved

 Hollow Pt-Co sphere catalysts

Typical results achieved

Ceramic nanofiber-supported Pt catalysts

Typical results achieved (core-shell catalysts)

Carbon supported Ru@Pt core-shell catalyst

Ti₄O₇ supported Ru@Pt core-shell **Carbon supported Ru@Pt core-shell catalyst** *catalyst catalyst catalyst catalyst catalyst catalyst catalystime in H₂ oxidation*

Porous carbon sphere: A new catalyst support

 Objective: *Improve catalyst performance through controlling carbon support structure*

Conventional Pt/C aggregate Mew Pt/C aggregate (carbon particle aggregate) (carbon pore aggregate)

 Challenges: *1. How to controllable synthesis of such a carbon structure? 2. How to deposit Pt nanoparticles into this carbon sphere?*

Synthesis method

 Template assisted ultrasonic spray pyrolysis — a unique technique for porous materials (Pending US Patent application)

Advantages:

- **Spherical particle---facilitate electrode fabrication**
- **Controllable surface area---maximize the reaction activity**
- **Tuneable porosity---satisfy the needs of different reactions**
- • **Scalability---grams per day at labs, kilograms per hour by industry**

Typical example achieved

Porous Carbon Sphere

- \triangle Narrow particle size distribution (~1 μ m)
- Controllable specific surface area $(200-2000 \text{ m}^2/\text{g})$

• Controllable porosity (pore size: $1-100$ nm, pore volume: $0.5-5.0$ cm³/g)

Typical example achieved

Porous Carbon Sphere Supported Pt Catalyst

Alloy deposition by microwave-polyol method

Porous Carbon Sphere Supported Pt-Co alloy Catalyst

* This alloy catalyst has a double specific activity to a Pt catalyst.

Other applications of porous carbon spheres

Double Layer Capacitors

Hydrogen storage **No. 1998 Drug delivery**

Supercapacitor Lithium ion battery

Why we need to explore non-noble metal catalysts?

Pt loading reduction R&D Status

 Pt price increase offset the efforts of Pt loading reduction during the past 18 years!

 Further low-Pt efforts face the high risk to loss performance and lifetime.

Three ways to approach the success of non-noble metal catalysts

#. Volumetric surface area is a new concept, independent on active site mechanism.

 Self-supporting strategy to prepare non-noble catalysts with high volumetric surface area

Synthesis process and morphology of self-supported iron-polypyrrole mesoporous catalyst

• TEM micrograph of Fe-TPTZ/C after heat treatment at 800°C

 (Mag.: 120K)

Electrochemical activity comparison (CoTPTZ, FeTPTZ, (Fe,Co)TPTZ)

Enhanced activity of binary (Fe, Co)TPTZ compared to single Fe or Co-TPTZ

Comments on Future PEMFC Catalysts

- Supported Pt-based alloy catalysts should be the near future direction in order to meet the requirement of PEMFC early commercialization. However, non-carbon supported Pt alloy catalysts are the priority
- Future PEMFCs seem may not only rely on Pt-based catalysts for commercialization (It is only a near- or mid-term or demo solution).
- Non-noble catalysts seem to be the necessary choice for PEMFCs in terms of sustainable commercialization.
- become history New understanding for non-noble catalysts must Understanding achieved on Pt-based catalysts is useful but will be established.

Differences between supercapacitor and battery or fuel cell

- • **Supercapacitors have much higher power density and less energy density than batteries and fuel cells**
- • **For double-layer supercapacitors, there is not Faradic process during charge and discharge process**
- • **There is an intrinsic cell voltage increase or decrease with charging cell voltage during the charging and discharge or discharging of a supercapacitor, while a battery has a constant**
- **shorter than batteries or fuel cells** • **The charge and discharge times of supercapacitors are much**
- • **Cycle life of supercapacitor is much longer than batteries or fuel cells**
- • **Electrode structures of supercapacitor are not changed during the charge/discharge processes**
- • **Supercapacitors are much safe than batteries and fuel cells.**
- **Heat management in supercapacitors is much easier than batteries**

Advantages of supercapacitors

Long cycle life (>100,000)

- **Much High power density than batteries**
- **Wide operating temperatures**

Can be combined with other electrochemical energy conversion systems for hybrid applications

When coupled with battery or fuel cell, the lifetime of such a device can be significantly improved (~5 times)

Ideal for powering vehicle accelerations

Regenerative braking (fast recharge of the supercapacitor during braking, impossible for Li-ion batteries)

Stop-and-go applications (very high cyclability)

Heat management is much easier than batteries and fuel cells

 Environmentally Friendly Solution

Source US Defence Logistics Agency

Challenges and solutions for supercapacitors

Supercapacitor test cell design and validation

Charging-discharging curves

Typical Results for supercapacitors

High Surface Area Porous Materials

Typical Results for supercapacitors

Next Generation Supercapacitor Materials

- γ -MnO₂ phase
- Well-formed shell shape with nano-fibrous features on the surface
- ~300 nm particle size

Typical Results for supercapacitors Anodic deposition of $MnO₂$ on stainless steel current collector

 50°C and 30 mA cm-2 50°C and 15 mA cm-2

Typical Results for supercapacitoirs

Synthesis and characterize graphene-based carbon material

Material specific capacitances

Cyclic voltammograms for MnO_x electrode materials

- **Obtained -phase by solution method**
- **BET surface area reached to 223 m2/g**
- **Well developed CV curve indicates the good charge behaviour at high scan rate**
- **100 -300 F/g specific capacitance has been reached**

Supercapacitor electrode layer optimization

Optimized electrode layer (0.5 M Na₂SO₄ aqueous solution):

- **15 wt% of Super C45**
- **5 wt% of PTFE**

100 μm of electrode layer thickness

Key points for supercapacitors:

- **long cycle life, and are environmentally Friendly energy Electrochemical supercapacitors have high power density, devices, proven to be the best complements to batteries and fuel cells;**
- **When coupled with battery or fuel cell, the lifetime of such a device can be significantly improved (~5 times)**
- **and can regenerate braking (fast recharge of the Supercapacitors are Ideal for powering vehicle accelerations, supercapacitor during braking, impossible for Li-ion batteries)**
- **necessary to increase supercapacitors' energy density in Breakthrough in both electrode and electrolyte materials is order to match with batteries and fuel cells**
- **If supercapacitor's energy density can be higher than 150 Wh/kg, it would be able to replace other batteries**

Thank You for Your Attention!