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Context

Australia

4000km
3000km



Context

The Australian National Electricity Market

Wattle Point

This network encompasses 
80% of the population



Operation of the Electricity Market

• The market operates on a five minute basis and is cleared

every half hour.

• Every five minutes, generators submit a bid stack detailing

their offers of the volumes at each of ten price bands.

• The Australian Energy Market Operator (AEMO) runs a linear

program to decide on how much energy to take from each

generator.

• The marginal price for that five minute period is determined.

• At the end of the half hour, the spot price is set as the

average of the five minute prices.

• All energy dispatched to the system during the half hour is at

that spot price.



Spot Price and Demand

 



Bid Stacks

 



Context

Wind energy in South Australia





Motivation

• Reduce dependence on conventional centralised generation to

a situation where more diversified, more volatile and less

controllable generation sources contribute a significant

percentage of the energy.

• Develop new techniques for modelling the volatility so that

the output from these wind farms can be reliably estimated in

order to enter fully into the competitive electricity market.

• Generation of synthetic data to be used as input into an

optimisation model being constructed by others members of

our team for the purpose of designing the future grid

architecture to ensure the security of supply.



Modelling wind farm output

• We are focussing on two time scales of wind farm operation, 5

minute and half hour. These are the two most relevant time

scales for the electricity market.

• We use both classical and modern time series analysis

methods, the so-called modern being adapted from financial

time series and dynamical systems.



Processing the data

• 10 second data for 2 locations is used

• 5 and 30 minute data sets are formed by aggregating from 10

second data

• Processing of the data includes

• Identifying and removing any seasonality

• Forecasting the output level

• Forecasting the volatility



3 days of wind energy output at 5 minute intervals
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3 days of wind energy output at 10 second intervals
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Time series modelling of 5 minute data

• Identification of underlying process relies on investigation of

autocorrelation function (ACF) and partial autocorrelation

function (PACF).

• The sample ACF is a measure of the linear relationship

between time series observations separated by some time

period, denoted the lag k .

• If Xt is correlated with Xt−1, and Xt−1 is correlated with

Xt−2, and . . ., Xt−k+1 is correlated with Xt−k , it will seem

like Xt is correlated with Xt−k .

• The sample PACF sorts out this interaction arising through a

transitive action.



Data and model fit
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ACF of Residuals

 



ACF of Squared Residuals

 



ARCH and GARCH

• The noise is uncorrelated but dependent. This phenomenon is

prevalent in financial markets - it called volatility clustering.

Periods of high volatility are followed by periods of low

volatility.

• Engle developed the autoregressive conditional heteroscedastic

(ARCH) model to cater for this. The figure above indicates

that the model will have to have a long lag AR structure.

• For this lack of parsimony and other reasons, Bollerslev

developed the generalised ARCH or GARCH model, where we

replace the long lag AR model with a short lag ARMA model.

• Often, an ARMA(1,1) for the residuals squared is sufficient

and the GARCH model is derived from that

σ2
t = 0.006 + 0.122a2

t−1 + 0.821σ2
t−1



Hidden Markov Model

• We also applied an HMM to modelling the variance.

• It gave more physically interesting results in that for every

farm, only two states were required.



Alternate Formulation

• It is crucial to obtain accurate estimates of the volatility and

prediction of the wind farms’ output so that the wind energy

can enter fully and reliably into the competitive electricity

market.

• Aim is to estimate the volatility at 5 minute time scale.

• We do have high frequency data available (at every 10 second)

• The 10 sec data follow an AR(p) process [indeed, an AR(8)

process, but if we go for a simpler model, it could be taken as

an AR(3)].



AR(3) - fit of 10 sec data
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AR(8) - fit of 10 sec data
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Volatility (unobservable)

• We develop a method to estimate volatility when high

frequency data follow an AR(p) process.

• Many researchers have made use of high frequency data to

estimate the volatility. Their approach involved computation

of covariance etc.

• Our approach is different, as we use model of high frequency

data to estimate the volatility.

• We will describe how to use ten second wind farm output to

estimate the volatility on a five minute time scale.



10 sec data (Xt), an AR(3) process

• 10 sec data (Xt) is an AR(3) process:

Xt = α1Xt−1 + α2Xt−2 + α3Xt−3 + Zt

Or equivalently,

φ(B)Xt = Zt

where φ(B) = 1− α1B − α2B
2 − α3B

3, and B denotes the

backshift operator, that is, BXt = Xt−1.

• As φ(B) is invertible, the process is equivalent to an infinite

moving average process.

Xt = ψ(B)Zt

where ψ(B) = ψ0 + ψ1B + ψ2B
2 + ψ3B

3 + . . .

• Thus, in simple terms, we got

Xt = ψ0Zt + ψ1Zt−1 + ψ2Zt−2 + ψ3Zt−3 + . . . ,



10 sec data (Xt), an AR(3) process

• It can be shown that

ψj = α1ψj−1 + α2ψj−2 + α3ψj−3 (1)

with ψ0 = 1 and ψj = 0 for j < 0.

• We develop an expression for ψj , j > 0 in subsequent slides.



Summing variables that follow an AR(3) process to get a 5

minute variable

Let {Xt} denote the time series of wind energy output at intervals

of every 10 seconds, and let {Yt} denote the time series of

aggregated energy output at every 5 minute. The five minute

process as a sum of thirty ‘ten second observations’ can be

expressed as

Yt = Xt + Xt− 1
30

+ Xt− 2
30

+ . . .+ Xt− 29
30

(2)

It is understood throughout that Xt− i
30

represents the wind energy

output at the i th 10 second prior to time t, so that t − 1 remains

the consistent notation for five minutes to t.



Summing variables that follow an AR(3) process to get a 5

minute variable

Yt = ψ0Zt + (ψ0 + ψ1)Zt− 1
30

+ (ψ0 + ψ1 + ψ2)Zt− 2
30

+(ψ0 + ψ1 + ψ2 + ψ3)Zt− 3
30

+ . . .

+(ψ0 + ψ1 + . . .+ ψ29)Zt− 29
30

+(ψ1 + ψ2 + ψ3 + . . .+ ψ30)Zt−1

+(ψ2 + ψ3 + ψ4 + . . .+ ψ31)Zt− 31
30

+ . . .

+(ψ29 + ψ31 + . . .+ ψ58)Zt− 59
30

+(ψ30 + ψ32 + . . .+ ψ59)Zt−2 + . . . (3)

Note that in (3), up to 30th term the coefficients have different

form than those after 30th term.



σ2(Yt) in terms of ψi ’s

We will assume that within each 5 minute interval, the Zt ’s are

i.i.d. with zero mean. The variance of Yt is thus

σ2(Yt) = [ψ2
0 + (ψ0 + ψ1)2 + (ψ0 + ψ1 + ψ2)2

+(ψ0 + ψ1 + ψ2 + ψ3)2 + . . .

+(ψ0 + ψ1 + ψ2 + . . .+ ψ29)2]σ2(Zt)

+[(ψ1 + ψ2 + ψ3 + . . .+ ψ30)2

+(ψ2 + ψ3 + ψ4 + . . .+ ψ31)2 + . . .

+(ψ30 + ψ31 + . . .+ ψ59)2]σ2(Zt−1) + . . .

(4)



σ2(Yt) in terms of ψi ’s

σ2(Yt) =

 29∑
n=0

(
n∑

i=0

ψi

)2
σ2(Zt) +

 59∑
n=30

(
n∑

i=0

ψi −
n−30∑
i=0

ψi

)2
σ2(Zt−1) +

 89∑
n=60

(
n∑

i=0

ψi −
n−30∑
i=0

ψi

)2
σ2(Zt−2) + . . .

(5)



The components
n∑

i=0

ψi

The basic components in the expression for σ2(Yt) are
n∑

i=0

ψi .

We are able to prove that

n∑
i=0

ψi =
n∑

k=0

∑
(n1,n2,n3)∈A

(n1 + n2 + n3)!

n1! n2! n3!
αn1

1 α
n2
2 α

n3
3

where the triplets (n1, n2, n3) come from the set

A = {(n1, n2, n3) | n1 + n2 + n3 ≤ k & n1 + 2n2 + 3n3 = k}



Results: For any AR(p)

• Equation(5) is valid for the situation when the high frequency

time series (Xt) follow an AR(p) process. But REMEMBER,

ψi ’s would be described differently for different p.

• It can be proved that

ψj = α1ψj−1 + α2ψj−2 + . . .+ αpψj−p (6)

with ψ0 = 1 and ψj = 0 for j < 0.



The components
n∑

i=0

ψi : For any AR(p)

For AR(p) case, we prove that

n∑
i=0

ψi =
n∑

k=0

∑
(n1,n2,...np)∈A

(n1 + n2 + . . .+ np)!

n1! n2! . . . np!
αn1

1 α
n2
2 . . . α

np
p

where A = {(n1, n2, . . . , np) | n1 + n2 + . . .+ np ≤ k &

n1 + 2n2 + . . .+ pnp = k}



How do we apply these results?

• The prime assumption is that over a five minute interval, the

noise Zt in the ten second model is sufficiently close to being

i.i.d.

• With this assumption, we use the 30 ten second Zt values (the

residuals after fitting the model) to calculate the variances

σ2(Zt), σ2(Zt−1) . . . to use in the calculations in Eqn (5).

• We calculate a separate variance for each five minute interval.



Volatility Estimates
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Further Work

• Similar arguments will work if high frequency data follow an

ARMA(p, q) process. However, the expressions for the σ2(Yt)

(Eqn (5)) will no longer be the same.

• It would be good to explore the distribution of the aggregated

variable.

• The theoretical results are as well applicable to similar other

situations, e.g., in financial time series.

• We are presently comparing the results from this formulation

with more empirically based studies in the literature.

• Modelling the realised volatility series. We use a resonating

model from a paper entitled A resonating model for the

power market and its calibration - Lucheroni.



Resonating Model

xi+1 = xi + ziδt

zi+1 = zi + [κ(zi + xi )− λ(3x2
i zi + x3

i )

−εzi − γxi − b + f (ti )]
∆t

ε

−σ(d)
√

∆tψi



Comparison of Model versus a GARCH Model
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Use of the Resonating Model with Deseasoned Hourly

Solar Data
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Augmentation of the Electricity Grid

(P)



minimize {
∑

(i ,j)∈Ω cijnij}
s.t.

Sf + g = d Kirchoff I,power balance

fij − γij(n
0
ij + nij)(θi − θj) = 0 Kirchoff II,voltage balance

|fij | ≤ (n0
ij + nij)f̄ij line limits in link(i , j)

0 ≤ g ≤ ḡ generation limit at every node

0 ≤ nij ≤ n̄ij link expansion constraint

nij integer variables

fij , θj free continuous variables

(i , j) ∈ Ω set of all possible links

(7)



Storage - Renewable Supply and Demand

 



Storage - Mix your solar

 



Storage - Add the Supply

 


