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A B S T R A C T

Analyzing the impact of pricing policies such as time-of-use (TOU) is challenging in the presence of confounding
factors such as weather. Motivated by a lack of consensus and model selection details in prior work, we present a
methodology for modelling the effect of weather on residential electricity demand. The best model is selected
according to explanatory power, out-of-sample prediction accuracy, goodness of fit and interpretability. We then
evaluate the effect of mandatory TOU pricing in a local distribution company in southwestern Ontario, Canada.
We use a smart meter dataset of over 20,000 households which is particularly suited to our analysis: it contains
data from the summer before and after the implementation of TOU pricing in November 2011, and all
customers transitioned from tiered rates to TOU rates at the same time. We find that during the summer rate
season, TOU pricing results in electricity conservation across all price periods. The average demand change
during on-peak and mid-peak periods is −2.6% and −2.4% respectively. Changes during off-peak periods are not
statistically significant. These TOU pricing effects are less pronounced compared to previous studies, under-
scoring the need for clear, reproducible impact analyses which include full details about the model selection
process.

1. Introduction

Pricing schemes intended to reduce peak electricity consumption
such as time-of-use (TOU) are becoming tractable as advanced meter-
ing proliferates. The Ontario Energy Board established a three-tier
TOU pricing scheme with three objectives: (i) to more accurately reflect
the wholesale market cost of electricity in the price consumers pay; (ii)
to encourage electricity conservation across all hours of the day; and
(iii) to shift electricity use from high-demand periods to lower-demand
periods (Ontario Energy Board, 2004). Properly evaluating the impact
of such policies is critical for policy makers trying to reduce demand,
reduce emissions and defer new generating capacity. However, isolat-
ing the moderate effects of TOU pricing is challenging in the presence
of substantial confounding factors. For example, a mild or extreme
summer may skew the estimated impact of TOU pricing if the effects of
weather are not adequately modelled.

We observe that there is no consensus in prior work for modelling
weather effects and discussion of variable selection criteria is limited.
To ensure reliable results, policy makers should insist on clear,
reproducible impact analyses which include details of the explanatory
variable selection process and justification for any variable transforma-
tion used. To help produce such analyses, this paper presents a

methodology for modelling the effects of weather on residential
demand in the context of pricing policies.

The crux of our methodology is to compare a number of aggregate
electricity demand models which have each modelled the effects of
weather differently. We use statistical measures of their explanatory
power, out-of-sample prediction accuracy, and goodness of fit to select
a model that is both well-performing and readily interpretable. After
careful analysis, we have chosen a multiple regression modelling
structure for its interpretability, tractability, and modularity. To
enumerate the possible models, we define three independent compo-
nents: coincident weather (e.g., incorporating humidity and windchill
in addition to temperature), delay or build-up of temperature that
household thermal controls react to (e.g., moving average of tempera-
ture or cooling/heating degree-hours) and the non-linear relationship
of temperature with demand (e.g., piecewise linear and natural spline
transformations). We hypothesize that the effect of temperature on
aggregate residential electricity demand is non-linear. Furthermore, we
hypothesize that past temperature observations and coincident weather
observations each provide additional explanatory value.

The second contribution of this paper is an application of the
proposed methodology to evaluate the effects of Ontario's mandatory
TOU implementation according to two of its stated objectives: energy
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conservation and shifting consumption out of peak demand periods.
We use a smart meter dataset of over 20,000 households in south-
western Ontario, Canada that is particularly suited to our analysis. It
has an adequate numbers of observations before and after the
implementation of TOU pricing. Furthermore, the local distribution
company transitioned all customers from tiered rates to TOU rates at a
single point in time, meaning that there is no uncertainty introduced by
a staggered TOU billing roll-out. Though the sample size and rate
transition are positive assets of the dataset, the sample time period
does not include adequate pre-TOU observations during the winter rate
season to assess its effectiveness. Given this limitation, we present
results only for the summer TOU rate season and make conclusions in
that context.

2. Prior work

A literature review performed by Newsham and Bowker (2010)
discusses the impacts of three types of dynamic pricing pilots: critical
peak pricing, time-of-use, and peak time rebates. Their review includes
13 TOU pilot studies conducted after 1997. They conclude that basic
TOU pricing programs like Ontario's can expect to see residential on-
peak demand change by −5%. An earlier TOU literature review by
Faruqui and Sergici (2010) covering 12 TOU pilot studies concluded
that TOU pricing induces a −3% to −6% change in residential on-peak
demand. From 2010 onwards, there have been several impact studies
of mandatory TOU pricing. We summarize these recent studies as well
as several of the older ones in Table 1.

Our first observation is that results from opt-in experiments and
pilot studies such as Hydro One (2008); Lifson and Miedema (1981);
Ontario Energy Board et al. (2007) and Train and Mehrez (1994) are
often more pronounced than mandatory studies such as Faruqui et al.
(2013b); Navigant Research and Newmarket-Tay Power Distribution
(2010) and Navigant Research and Ontario Energy Board (2013). Our
second observation is that most studies in our review either have a
pronounced demand shift from on-peak to off-peak hours or conserva-
tion across all hours. Only two subsets of one study by Jessoe et al.
(2013) showed the opposite effect. Finally, we observe that the tiered
roll-out of TOU to high-use customers first, analyzed by Jessoe et al.

(2013), showed substantial flexibility to shift demand.
Across these TOU studies, we observedmany different techniques being

used to model weather. When deciding on which modelling techniques to
consider in our methodology, we broadened our literature review to
residential electricity demand analysis in general. Table 2 summarizes this
broadened literature review, grouping prior work by the technique used to
transform temperature observations. An explanatory variable transforma-
tion is a mathematical process that creates derived values from observed
values. For example, a series of dry-bulb temperature observations may be
transformed using humidity and wind chill to become a series of perceived
temperatures. The derived variable would be used as input to the modelling
procedure in place of the observed variable.

Table 1
Results from prior TOU electricity pricing studies.

Study Pilot Mand. Season Total Change
(%)

On-Peak (%) Mid-Peak
(%)

Off-Peak (%) Weekend

Hydro One (2008) Yes No summer −3.30 −3.70 NR NR NR
Lifson and Miedema (1981) Yes No summer −3.17 −8.84 −3.95 +2.86 NA
Ontario Energy Board et al. (2007) Yes No summer −6.00 −2.40 (NS) NR NR NR
Train and Mehrez (1994) Yes No full year NR −9.02 NA +6.51 NA
Jessoe et al. (2013) No Yes Summer −3.14a −6.09a NA −2.00a NA

Summer +0.39b +1.16b NA +0.06b NA
summer +2.64c +3.11c NA +2.4c NA

Faruqui et al. (2013b) No Yes Summer 0 to −0.45d −2.60 to
−5.70

Decrease Increas NR

Winter 0 to−0.45d −1.60 to
−3.20

Decrease Increase

Navigant Research and Newmarket-Tay Power
Distribution (2010)

No Yes Full year −0.66 (NS) −2.80 −1.39 +0.16 (NS) +2.21

Navigant Research and Ontario Energy Board
(2013)

No Yes Summer 0 to −0.10 −3.30 −2.20 +1.20 +1.90
Summer
shoulder

NR −2.20 −1.50 +1.50 +1.40

Winter NR −3.40 −3.90 −2.50 −1.20
Winter shoulder NR −2.10 −2.30 −1.10 +0.50 (NS)

Maggiore et al. (2013) No Yes Jan–Jun NR −0.83 NA NR NA
Mei and Qiulan (2011) No Yes Feb–Dec increase increase NA increase NA

NR – not reported, NA – not applicable, NS – not statistically significant.
a High-use customers only.
b Medium-use customers only.
c Low-use customers only.
d Annual.

Table 2
Categories of temperature transformations found in prior work, used when modelling
residential electricity demand.

Coincident weather transformations

Humidity Mountain and Lawsom (1992)
Humidex Faruqui et al. (2013b)
Temperature

Humidity Index
Faruqui et al. (2013a); Navigant Research and Ontario
Energy Board (2013)

Wind Speed Friedrich et al. (2014); Mountain and Lawsom (1992)
Temporal transformations
Lagged Observations Harvey and Koopman (1993)
Heating and Cooling

Degree-Days
Pardo et al. (2002); Cancelo et al. (2008)

Heating and Cooling
Degree-Hours

Navigant Research and Newmarket-Tay Power
Distribution (2010)

Moving Average Mountain and Lawsom (1992)
Weighted Moving

Average
Friedrich et al. (2014); Bruhns et al. (2005)

Non-linear transformations
Switching Regression Moral-Carcedo and Vicéns-Otero (2005); Faruqui et al.

(2013b); Navigant Research and Newmarket-Tay
Power Distribution (2010); Navigant Research and
Ontario Energy Board (2013); Lifson and
Miedema (1981); Train and Mehrez (1994)

Linear Regions with
Smoothed
Transitions

Bruhns et al. (2005); Friedrich et al. (2014); Moral-
Carcedo and Vicéns-Otero (2005)

Regression Splines Engle et al. (1986); Harvey and Koopman (1993)
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We define coincident weather to be measurable weather phenom-
ena which coincide with temperature observations. For example, the
humidity observed at time i is coincident with dry-bulb temperature
observed at time i. Several studies transform temperature by taking
humidity into account via the temperature humidity index (Faruqui
et al., 2013a; Navigant Research and Ontario Energy Board, 2013), the
Canadian Humidex (Faruqui et al., 2013b), or by incorporating
humidity into some other transformation of temperature (Mountain
and Lawsom, 1992). Humidity may have a direct effect on load via
dehumidification equipment, or an indirect effect via human percep-
tion and comfort levels. Wind speed has also been incorporated into
temperature transformations (Friedrich et al., 2014; Mountain and
Lawsom, 1992). Wind may reduce electricity demand if customers
choose to cool their home by leaving windows open during transition
seasons. Wind chill may also affect perception of winter outdoor
temperatures, inclining a customer to stay indoors.

Temporal transformations account for the delay between when an
outdoor temperature occurs to when its effects are felt within a
customer's home. Heating degree-days and cooling degree-days are
derived values used to measure the prolonged heating and cooling
requirements of a home over time. They have been extended to heating
degree-hours and cooling degree-hours, derived by summing the
difference between recent observations and a selected temperature
break point. For modelling long-term and mid-term analysis horizons,
heating and cooling degree-days are sufficient (Pardo et al., 2002;
Cancelo et al., 2008). Heating and cooling degree-hours are better
suited to the analysis of short-term and mid-term horizons (Navigant
Research and Newmarket-Tay Power Distribution, 2010). Harvey and
Koopman (1993) considered lagged hours of temperature observations
in early models of their study. Mountain and Lawsom (1992) used a
four-hour moving average of recent temperatures as a component of
the space heating index used in their model. Friedrich et al. (2014)
refined work by Bruhns et al. (2005) to account for thermal transfer
inertia. The authors define an exponentially weighted moving average
filter to be the smoothed temperature. Moral-Carcedo and Vicéns-
Otero (2005) describe a single temperature break point as a switching
regression to model temperature's non-linear relationship with elec-
tricity demand. The coefficient found for temperatures below the break
point represents household heating effects. The coefficient for tem-
peratures above the break point represents cooling effects. It is used by
Faruqui et al. (2013b); Navigant Research and Newmarket-Tay Power
Distribution (2010), and Navigant Research and Ontario Energy Board
(2013). Lifson and Miedema (1981), and Train and Mehrez (1994) also
use switching regression, but the lower region has a slope of zero
because households in their regions of study have no heating effects.

Intuitively, the boundary between heating and cooling effects is not
an abrupt break. When subjected to moderate temperatures, occupants
may not heat or cool their home. Each household will heat or cool their
home at different temperatures, resulting in a smoothed transition
region when data is analyzed in aggregate (Bruhns et al., 2005;
Friedrich et al., 2014; Moral-Carcedo and Vicéns-Otero, 2005).
Cancelo et al. (2008) note that extreme low temperatures and extreme
high temperatures exhibit saturation of heating and cooling effects. At
these temperatures, all household thermal controls such as space
heaters, electric baseboard heating, fans, or air conditioning are
working constantly.

Regression splines, a widely-used explanatory variable transforma-
tion in econometric literature, are capable of modelling the smooth
transitions between heating effects, mid-temperatures, cooling effects,
and saturation plateaus at temperature extremes (Engle et al., 1986;
Harvey and Koopman, 1993). The regression spline transformation
first divides the range of temperatures into a number of regions. Within
each region, a polynomial function is fit to the data and constraints may
be placed on the polynomial functions to connect them at the region
boundaries.

3. Data description

List of symbols
N the number of hours in the sample period
J the number of residential smart meters (i.e., households) in the

sample
τ the N × 1 vector of hourly, dry-bulb temperature observations
τ′ the intermediate N × 1 vector resulting from the transformation

of τ incorporating coincident weather observations
τ″ the intermediate N × 1 vector resulting from the transformation

of τ′ incorporating past observations. It represents
temperature's effects over time

ϒ the N J× matrix of hourly electricity demand per household
Y the N × 1 vector of hourly, aggregate residential electricity

demand
X the temporal explanatory variable transformation matrix
V the price explanatory variable transformation matrix
T the weather explanatory variable transformation matrix

Y the N × 1 vector representing the model's estimate of Y

β0
the estimated intercept term from which all other coefficients
are offset

β the vector of coefficient estimates for temporal explanatory
variables in X

ω the vector of coefficient estimates for price explanatory variables
in V

θ the vector of coefficient estimates for weather explanatory
variables in T

The smart meter dataset used in this paper was provided by a local
distribution company in southwestern Ontario. The observations occur
over a period of 20 months, from March 1, 2011 through October 17,
2012. The switch from a seasonal, flat pricing scheme to TOU pricing
occurred on November 1, 2011. The TOU rates, illustrated in Fig. 1, are
comprised of three price levels: off-peak, mid-peak and on-peak.
Summer off-peak hours are 7:00 pm through 6:59 am (overnight) at
6.5 ¢/kWh. Mid-peak hours are 7:00 am through 10:59 am and
5:00 pm through 6:59 pm at 10 ¢/kWh. On-peak hours are 11:00 am
through 4:59 pm at 11.7 ¢/kWh. All hours of weekends and holidays
are off-peak rates.

The data contains hourly smart meter readings from 23,670
residential customers across a four-city service region. We removed
3100 m with customer account changes (e.g., tenant changes).
Additionally, we performed a data cleaning step to remove extreme
outliers. The maximum short-term overloading of a distribution
transformer is 300% of its nameplate rating (IEEE Standards
Association, 2012, Section 8.2.2). Using this as a guideline, 14 smart
meters had an hourly reading that violated the maximum short-term
overloading capacity of the transformer they were connected to and
hence, were removed from the sample.

The remaining sample contains J=20,556 smart meter time series for
study, each with up to N=14,328 data points (the number of hours in our
sample period). Individual meter readings were stored with <1 Wh
precision. Missing observations were stored as zero values, and nearly
all meters have at least a few missing observations over the course of the
sample period. 0.46% of the individual readings were missing. Often, a
meter's missing values occur as irregularly positioned gaps lasting multi-
ple hours, such that data interpolation is not suitable. We consider the
data in aggregate by deriving the average household demand in each hour
from all households. Let the variable ϒ1 represent the N J× matrix of
household smart meter readings fromMarch 1, 2011 through October 17,
2012. I ϒ( > 0)i j, is an indicator function that returns 1 if there exists a
reading during hour i for meter j. As Eq. (1) is evaluated from i=1,…,N, an
N × 1 vector Y representing the aggregate electricity demand for each
hour of the sample period will be created.

1 We use regular font for scalar variables, and bold font for vector and matrix variables.
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The aggregate electricity demand observations fall in the range
0.49 kWh–3.54 kWh and are approximately lognormally distributed
with mean 1.18 kWh and median 1.03 kWh. We use the vector Y as the
response variable for the remainder of this study, plotted over time in
Fig. 2. Notice the summer air conditioning demands during the
summer months and less noticeable heating effects during winter.

We also obtained the corresponding hourly weather data from two
nearby Environment Canada (2015a) monitoring stations. Weather
observations were paired with each meter by selecting the nearest
monitoring station, all within 5–25 kilometres. Hourly observations
recorded are dry-bulb temperature, relative humidity, dew point, wind
direction, wind speed, visibility, atmospheric pressure, humidex, wind
chill and a weather condition description. We define τ to be an N × 1
vector of hourly temperature observations averaged from the two
weather stations, weighted by the number of meters reporting near
that station each hour. The two summers are not drastically different
from one another, as shown by key summary statistics in Table 3.
Summer 2012 had a slightly higher median drybulb temperature of
20.2 °C compared to 19.1 °C in 2011.

Throughout Section 4.3, τ will be used as input to temperature
transformation functions which create a matrix T of dimension
N P× weather , where Pweather is the number of columns in T, deter-
mined by the variable transformation applied. Left untransformed,

τT = .

4. Methodology for modelling the effects of weather

We use a multiple regression model shown in Eq. (2) to represent
electricity consumption as a function of time, price and weather related
variables. Let Y be an N × 1 vector representing the model's estimate of
Y. Let β0 be the estimated intercept term. We store the explanatory
variables using three matrices X, V and T which represent time, price
and temperature transformations respectively. The effects of these
explanatory variables are represented by the coefficient estimate
vectors β , ω and θ fit using ordinary least squares.

β ω θβY X V T= + + +0 (2)

Our treatment of time and price explanatory variables, selecting
categorical variables for inclusion using forward selection and analysis
of variance (ANOVA), follows well-established statistical learning
methods James et al. (2013), Ch.6. ANOVA performs a hypothesis test
comparing two models. The null hypothesis is that the less-complex
model with fewer explanatory variables is sufficient to describe the
response. The alternate hypothesis is that a more complex model is
required. ANOVA tests whether the variance explained by an added
explanatory variable or interaction is significantly different from the
original model. We direct the reader to Faraway (2002), Ch. 10 for full
details of the formulation and use of ANOVA. During forward selection,
we begin with the null model, which contains the intercept β0 but no
explanatory variables in X, V, or T. We then fit a number of alternate
models, each with a single explanatory variable added to X or V. The
explanatory variable which results in an alternate model with the

Fig. 1. This chart from the Ontario Energy Board (2012) shows the 24-h schedule in a clock-like format. Off-peak prices are shown in green, mid-peak in yellow, and on-peak in orange.
The summer schedule is on the left, weekend schedule in the middle (both seasons), and winter schedule on the right. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Fig. 2. Aggregate residential electricity demand plotted as a function of time.
Transparency has been used to give a sense of density.

Table 3
Summary statistics for τ , the weighted average of drybulb temperatures (°C) within the
service region during summer 2011 and summer 2012 rate seasons.

Year Minimum 1st Quartile Median Mean 3rd Quartile Maximum

Summer
2011

0.4 14.0 19.1 18.8 23.8 37.2

Summer
2012

1.3 15.6 20.2 19.8 24.3 37.7
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lowest residual sum of squares is added to the null model. The process
of adding explanatory variables one at a time is continued until the
ANOVA stopping condition is met. Some of the variables that were
considered during forward selection but were ultimately ruled out are:
weather description, visibility, day-of-week, and a schoolyear indicator.

The remainder of this section presents the details of our methodol-
ogy. The first step is to select time-dependent variables (Section 4.1).
The second step is to select price-related variables (Section 4.2). The
third step is to select and justify a model for weather effects, which
comprises the bulk of our effort and contribution (Sections 4.3 and 4.4).

4.1. Time-related variables

We model hour-of-day as a categorical variable with 24 terms,
represented in X by 23 sparse columns with indicators for each hour.
Fig. 3 shows a box plot of electricity demand grouped by hour-of-day
and exhibits the expected patterns of user activity within the home.
People use less electricity in the middle of the night from 01:00–06:00
and are most active in the evening from 18:00–22:00.

Residential electricity demand also differs by day-of-week and on
holidays. We are able to achieve a high level of explanatory power using
only one degree of freedom by defining a working day indicator,
similar to Møller Andersen et al. (2013); Moral-Carcedo and Vicéns-
Otero (2005), such that weekends and holidays are non-working days.

The use of a working day indicator allows for meaningful variable
interactions to be fit. The main effects of each explanatory variable
represent deviation from the sample mean and the two-way interac-
tions represent deviation from their main effects. An interaction
between two categorical factors such as hour-of-day and working day
is a sparse matrix with indicators for each unique combination of two
variables not represented by their main effects. For example, the
baseline for hour-of-day is 00:00 and the baseline for working day is
working_day=FALSE. If observation i occurs at 00:00 on a non-
working day, neither variable's main effects will be added to β0. If
observation i is 07:00 on a non-working day, only the coefficient
estimate for 07:00 will be added to β0 (i.e., main effects). If observation
i is 07:00 on a working day, an interaction effect (denoted by
07:00×working_day=TRUE) is added to β0 representing the deviation
from the main effects of each variable. An example of working day×-
hour-of-day interaction coefficient estimates is given in Table 4.
Aggregate electricity demand begins earlier on working days, indicated
by a positive coefficient estimate that is of noticeable effect size and has
a statistically significant p-value. This is likely caused by residential
customers preparing for work around 07:00 or 08:00 on working days.
10:00 through 17:00 on working days has a negative coefficient

estimate, likely because many residential customers are away at work.
As suggested by Fig. 2, there are clear seasonal patterns during

summer and winter months. Fitting a model with a categorical
explanatory variable for month is statistically significant and increases
Adjusted R2. However, our goal is to evaluate temperature transforma-
tions used to generate T. Any explanatory variable that is collinear with
the temperature transformation matrix masks its effects, meaning that
the estimated effects of two explanatory variables increase and decrease
together. We check for collinearity using variance inflation factor
(VIF) (Fox and Weisberg, 2011). Table 5 shows VIF values when a
categorical variable for month is considered; a VIF > 5 indicates
collinearity (James et al., 2013). Using this measure, we determine
that addition of month masks the effects of temperature. For this
reason we do not include month as a categorical variable.

As a result of forward selection and the justification process
described above, we arrive at a desired set of temporal explanatory
variables in X (we define the notation x p•, to represent the pth column
and all rows of X; this same notation will be used with other matrices
going forward).

x p•, = 1 through x p•, = 23 are hour-of-day indicators representing 01-
:00 through 23:00.

x p•, = 24 is a working day indicator.
x p•, = 25 through x p•, = 48 are indicators representing the hour-of-da-

y×working day interaction.

Fig. 3. Plot of aggregate electricity demand grouped by hour. Note that this plot contains
data from both working and non-working days.

Table 4
Coefficient estimates and p-values illustrating the intuition behind the hour-of-
day×working day interaction. Starred p-values are statistically significant. The coefficient
estimates will change slightly with each temperature transformation compared, but the
sign, intuition and statistical significance remain applicable.

Interaction term Coefficient estimate p-value

01:00×working_day=TRUE 0.001 0.9772
02:00×working_day=TRUE −0.009 0.8642
03:00×working_day=TRUE 0.007 0.8814
04:00×working_day=TRUE 0.017 0.7278
05:00×working_day=TRUE 0.031 0.5377
06:00×working_day=TRUE 0.066 0.1850
07:00×working_day=TRUE 0.135 0.0066**

08:00×working_day=TRUE 0.152 0.0022**

09:00×working_day=TRUE −0.010 0.8336
10:00×working_day=TRUE −0.140 0.0048**

11:00×working_day=TRUE −0.208 0.0000***

12:00×working_day=TRUE −0.246 0.0000***

13:00×working_day=TRUE −0.261 0.0000***

14:00×working_day=TRUE −0.268 0.0000***

15:00×working_day=TRUE −0.252 0.0000***

16:00×working_day=TRUE −0.214 0.0000***

17:00×working_day=TRUE −0.153 0.0020**

18:00×working_day=TRUE −0.086 0.0817.
19:00×working_day=TRUE −0.061 0.2205
20:00×working_day=TRUE −0.025 0.6088
21:00×working_day=TRUE 0.016 0.7501
22:00×working_day=TRUE 0.043 0.3919
23:00×working_day=TRUE 0.038 0.4386

Table 5
VIF of explanatory variable main effects with a categorical variable for month. Note: A
natural cubic spline transformation of temperature has been used in this example,
though similar results are achieved with nearly all temperature transforms discussed in
Section 4.3.

Explanatory VIF Degrees of freedom

Natural Cubic Splines T 8.52 4
Month 7.60 11
Hour-of-Day 1.29 23
Working Day 1.01 1
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4.2. Price-related variables

We use two pricing categorical variables. The first is a TOU billing
indicator. The second is a categorical variable representing the local
distribution company's billing seasons: summer or winter. We were
concerned that similar to the month categorical variable, the utility rate
seasons might also be collinear with temperature. However, Table 6 shows
that the addition of pricing variables are not collinear with a temperature
transformation as we iterate through transformations of T.

We will later saturate the price explanatory variable matrix V with
interactions in our TOU case study in Section 6 after finding a suitable
temperature transformation. To summarize, the explanatory variables
included in V are:

v p•, = 1 is a utility rate season indicator representing summer and
winter rates.

v p•, = 2 is a TOU active indicator representing whether customers are
billed according to flat rates or TOU rates.

4.3. Weather-related variables and transformations

To select a weather effects model, we define three steps of
temperature transformations which are used in conjunction with one
another to generate variations of T.

1. Coincident Weather Transformations: dry-bulb temperature
or feels like temperature

2. Temporal Transformations: current observation, lagged obser-
vations or moving average

3. Non-Linear Transformations: switching regression or natural
cubic splines

Our methodology iterates over all combinations of temperature
transformations listed above. Each iteration uses a different combina-
tion of transformation functions to generate the temperature transform
matrix T while holding the matrices X and V fixed. We begin each
temperature transformation with an N × 1 vector of outdoor, dry-bulb
temperature observations τ . Algorithm 1 shows the general process for
transforming τ into T.

Algorithm 1. Overview of how temperature transformations are
combined to generate the matrix T.

1. Transform dry-bulb temperature observations τ into the vector τ′
using coincident weather observations.

2. Transform the vector τ′ into the vector τ″ using a transformation
which incorporates past observations. This transformation repre-
sents temperature's effects over time.

3. Finally, use the vector τ″ as input into a transformation which
models the non-linear relationship between τ″ and aggregate
electricity demand Y. The result of this third step is the matrix T

used in the multiple regression model.
In Section 4.3.4, we add two complex transformations to our

comparison which violate Algorithm 1: the heating/cooling degree-
hour transformation and the exposure-lag-response transformation.
Both transformations combine algorithm steps two and three, trans-
forming τ′ directly to the matrix T.

4.3.1. Coincident weather transformations
During the first step of Algorithm 1, relative humidity and wind

speed are used to transform dry-bulb temperature observations to a
feels like temperature comprised of heat index and wind chill values
where applicable. Algorithm 2 defines the feels like transformation.

Algorithm 2. The feels like temperature transformation. Formulation
of heat index is described by Rothfusz (1990) and wind chill
formulation is described by Environment Canada (2015b).

if τ Relative Humidityand> 27 > 40%i i then

τ Heat Index′ =i i

else if τ Wind Speedand≤ 10 > 4.8 kphi i

τ Wind Chill′ =i i

else
τ τ′ =i i

end if

If τ is left untransformed during this step, then τ′ would remain a
vector of dry-bulb temperature observations such that τ τ′ = .

4.3.2. Delayed effects of temperature
We also need to account for the delay between when an outdoor

temperature occurs to when its effects are felt within a customer's
home. To assess the importance of past temperature in predicting
present electricity consumption, Table 7 shows the correlation coeffi-
cient of 0–12 lags of dry-bulb temperature τ with yi. The correlation of
yi with past temperatures suggests that there may be an underlying
temporal process interacting with temperature.

The lagged observation transformation shown in Eq. (3) considers
the possibility that temperature's effects on electricity demand may be
delayed by a number of hours ℓ, also known as lags. The cause for this
delay may be the time it takes an outdoor temperature to pass through
a building's insulation. After the time delay, the household's thermal
controls react. This interim transformation vector has ℓ fewer rows than
τ′ used as input, requiring that rows i = 1,…,ℓ must also be removed
from Y, X and V.

τ τ i N″ = ′ , = (1 + ℓ),…,i i−ℓ (3)

A moving average of recent temperatures shown in Eq. (4) reflects
the possibility that household thermal control systems are not reacting

Table 6
VIF of explanatory variable main effects with addition of utility rate season and a TOU
billing indicator. Note: A natural cubic spline transformation of temperature has been
used in this example, though similar results are achieved with nearly all temperature
transforms discussed in Section 4.3.

Explanatory VIF Degrees of freedom

Natural Cubic Splines T 3.08 4
Rate Season 2.85 1
TOU Active 1.08 1
Hour-of-Day 1.17 23
Working Day 1.00 1

Table 7
Up to 5 lags of dry-bulb temperature are correlated with aggregate electricity demand at
levels comparable to dry-bulb temperature at time i.

Lagged Dry-Bulb temperature Correlation with yi

τi 0.539
τi−1 0.551
τi−2 0.558
τi−3 0.558
τi−4 0.550
τi−5 0.533
τi−6 0.509
τi−7 0.477
τi−8 0.440
τi−9 0.400
τi−10 0.361
τi−11 0.328
τi−12 0.302
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only to temperature at time i or some past time i − ℓ. Instead, thermal
control systems may be reacting to a number of recently experienced
temperatures. The variable L represents the number of recent tem-
peratures used in the moving average. The moving average transfor-
mation vector has L − 1 fewer rows than τ′ used as input, requiring that
rows i = 1,…,ℓ must also be removed from Y, X and V.

τ
τ

L
i L N″ =

∑ ′
, = ,…,i

L
iℓ=0

−1
−ℓ

(4)

If τ′ is left untransformed during the second step of the temperature
transformation Algorithm 1, then the output of the past weather
observation transformation would be current observations τ′ such that
τ τ″ = ′.

4.3.3. Non-linear temperature effects
The top graph of Fig. 4 shows the coefficient estimate θ fit for an

untransformed vector of dry-bulb temperature observations. It is clear
that temperature's relationship with aggregate electricity demand in
our dataset is non-linear. The non-linear relationship between tem-
perature and aggregate electricity demand can be approximated by a
number of linear regions. This approach is generally referred to as a
piecewise linear transformation or linear splines (James et al., 2013).
Moral-Carcedo and Vicéns-Otero (2005) describe piecewise linear
models with two linear regions as switching regression, giving mean-
ing for electricity demand analyses; the break point represents the
switch from heating effects to cooling effects. Eq. (5) shows the
transformation of τ″ into a column of T representing heating effects.

τξ i Nt = ( − ″ ) , = 1,…,i break i,1 + (5)

Similarly, Eq. (6) shows the transformation of τ″ into a column of T
representing cooling effects.

τ ξ i Nt = ( ″ − ) , = 1,…,i i break,2 + (6)

Let x max x( ) ≔ (0, )+ and let ξbreak be a temperature break point
estimated empirically (Muggeo, 2003, 2008). The fitted regression line
for this switching regression transformation is shown in the middle
graph of Fig. 4.

Moving beyond piecewise transformations, regression splines have
been used to first divide the range of temperatures into a number of
regions. Within each region, a polynomial function is fit to the data and
constraints are placed on the polynomial functions to connect them at
the region boundaries, known as knots. Similar to switching regression,
the goal of piecewise polynomial transformation is to break τ″ into
regions using break points called knots, represented by the K × 1 vector
ξ. Let K be the number of knots, such that there are K + 1 regions. For
each region, a polynomial function is used to transform observations in
τ″. The bottom graph of Fig. 4 illustrates K=3 knots.

Additional restrictions about the continuity of the polynomial
functions at each knot can be added, known as the order of the spline,
denoted by M. An order M=1 spline indicates that the polynomial
function fit to each region can be discontinuous at the knots. Order
M=2 restricts piecewise polynomial functions of adjacent regions to be
continuous at their shared knot. M=3 places the additional restriction
that the functions' first derivative must be continuous at the knots.
M=4 places yet another restriction that the functions' second derivative
must be continuous at the knots. We have chosen order M=4 splines,
also known as cubic splines, which are widely used (Hastie et al., 2005).
The first M columns of T represent the order of the spline (i.e.,
continuity restrictions), shown in Eq. (7).

τt = ″i m i, (7)

The subsequent K columns of T represent the polynomial function
applied to each temperature region, shown in Eq. (8).

τ ξ k Kt = ( ″ − ) , = 1,…,i M k i k
M

, + +
−1 (8)

One further refinement, used to address erratic behaviour of

polynomials at the extremes where few observations exist, is to place
additional constraints on the fit of the outer spline regions. Natural
cubic splines restrict the polynomial functions of the outer regions to
be linear beyond the sample boundaries. This added bias at the
boundaries is often reasonable considering the sparse number of
observations. The bottom graph of Fig. 4 illustrates a natural cubic
spline fit of aggregate electricity demand to dry-bulb temperature.

Fig. 4. Top: Linear regression line fit to untransformed, outdoor, dry-bulb temperature
observations. Middle: Fitted regression line for switching regression transformation of
outdoor, dry-bulb temperature. Temperature break point at 17.9 °C. Bottom: Natural
cubic splines fit of outdoor, dry-bulb temperature fit to aggregate electricity demand.
Knots are placed at 3 °C, 23 °C and 30 °C. All three plots are conditioned for visualization
purposes using a process described by Breheny and Burchett (2015).
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There are three knots placed at 3 °C, 23 °C and 30 °C, selected
empirically using the highest Adjusted R2 as the selection criterion. A
smooth transition between heating and cooling effects is visible around
17 °C.

If τ″ is left untransformed during the third step of Algorithm 1, then
the output of the non-linearity transformation would be a vector of
observations generated by the first two transformation steps, such that

τT = ″.

4.3.4. Complex temperature transformations
Heating degree-hours (HDH) and cooling degree-hours (CDH) are

derived values which represent the build-up of temperature beyond a
given threshold during a recent window of time. Similar to switching
regression, a temperature break point ξbreak is chosen. HDH is
determined by summing the number of degrees below ξbreak during
a window of L recent hours, shown in Eq. (9).

∑t τξ i L N= ( − ′ ) , = ,…,i

L

break i,1
ℓ=0

−ℓ +
(9)

Similarly, CDH is determined by summing the number of degrees
above ξbreak during a window of L recent hours, shown in Eq. (10).

∑t τ ξ i L N= ( ′ − ) , = ,…,i

L

i break,2
ℓ=0

−ℓ +
(10)

The resulting N L( − ) × 2 transformation matrix T is a piecewise
linear regression, similar to switching regression. Rows i L= 1,…, from
Y, X and V must also be removed from the sample. Since CDH and
HDH values are approximately linear, we do not fit a model using these
values as input to a natural cubic splines transformation.

A finite distributed lag model was initially proposed by Almon
(1965) to compute a weighted sum of past explanatory variable effects
on a response variable. A more recent implementation of this concept
by Gasparrini et al. (2010); Gasparrini (2011) has come to be known as
distributed lag non-linear models (DLNM). In the DLNM framework,
the effects of weather and its relation with time are represented by the
concept of basis. It assumes that the effect at time i is a basis that can
be expressed as a linear combination of exposure and lag transforma-
tions of τ′. These transformations are known as basis functions. For
example, the basis function of temperature's effects may be modelled
with natural cubic splines and is known as the exposure-response
association. The weight of the effect may change with time. The basis
function describing effect weights over time is known as the lag-
response association. Together, they comprise the basis known as
exposure-lag-response association.

4.4. Metrics for model selection

Having described the space of possible models, we now explain how
to choose the best model for the task at hand. For each model, we
compute a measure of variance explained, Adjusted R2. We also check
the value of the Bayesian Information Criterion (BIC). As Adjusted R2

increases, BIC's value should decrease. If Adjusted R2 decreases and
BIC increases or if both Adjusted R2 and BIC increase, then added
explained variance is not justified by added model complexity (James
et al., 2013; Ramsey and Schafer, 2012). Additionally, we compute the
Mean Absolute Error (MAE) and Mean Absolute Percentage Error
(MAPE) to indicate out-of-sample predictive power. We seek a model
that balances explanatory power with out-of-sample predictive power,
while being parsimonious and interpretable.

Aside from examining the relationship of each explanatory variable
with aggregate electricity demand individually, the residuals remaining
after fitting a model to data can provide an indication of underlying
issues with the estimated model. The N × 1 vector of residuals should
be normally distributed, mean zero and independent of each explana-
tory variable.

5. Results for modelling the effects of weather

Table 8 shows the results for each weather model. We also include
several trivial models for comparison: a null model (i.e., intercept-only)
in which X, V and T have been omitted; non-temperature explanatory
variables only in which T has been omitted; and dry-bulb temperature
without any transformation in which τT = . By comparing all combina-
tions of temperature variable transformations and selecting a well-
performing model, a substantial amount of variance can be explained
by weather. Though combinations of temperature transformation steps
each produce incremental improvements, the proportion of variance
explained by any temperature transformations is notable.

Our clearest descriptive results pertain to the time delay between
observed temperature and its effects within residential households. If
an analyst is to use a single temperature observation to explain
electricity demand at time i, the temperature observation at time
i − 2 should be used. Of single temperature variables, it also has the
highest Adjusted R2 and out-of-sample predictive power. We interpret
this to mean that residential customer's household thermal controls are
reacting to temperatures experienced in the past, not the current hour.

All three temporal transformations which include a window of past
observations have high Adjusted R2 values and improved out-of-
sample prediction accuracy. This suggests that a window of recently-
observed temperatures is important to properly describe its relation-
ship with electricity demand. Both CDH/HDH and the moving average
transformations showed that a six-hour window of temperature
observations yielded the highest Adjusted R2. We feel this validates
part of our hypothesis, that past hours' temperature observations have
an effect on the current hour's electricity demand. Notably, despite the
prevalence of the CDH/HDH metric in literature, the moving average
transformation has greater explanatory power and predictive power
in our dataset. This may be caused by the smoothing effect that moving
average has on the temperature explanatory variable.

The use of heat index and wind chill as components of feels like
temperature has greater Adjusted R2 than the use of dry-bulb
temperature in all cases but two. Our analysis cannot provide addi-
tional insight about the underlying process, whether human perception
or mechanical. Conversely, feels like temperature has less out-of-
sample predictive power than dry-bulb temperature. Due to this mixed
result, we reject part of our hypothesis. Namely, the part that stated
coincident weather observations have an effect on electricity demand.
We conclude that the feels like temperature transformation has little
added value over simply using dry-bulb temperature observations.

Despite the strong assumption of linearity made by the switching
regression transformation, it explains untransformed aggregate elec-
tricity demand reasonably well using either dry-bulb temperature or
feels like temperature. When estimating unlagged temperature obser-
vations, its Adjusted R ≈ 0.852 is comparable to Adjusted R ≈ 0.862

using natural splines. The temperature breakpoint has a straightfor-
ward interpretation in relation to electricity demand. The empirical
switching point for dry-bulb temperature in our data is 17.9 °C.
Natural cubic splines do provide more flexibility in modelling the
temperature's non-linear relationship with aggregate electricity de-
mand and has higher Adjusted R2 than switching regression. Both
results support part of our hypothesis, that temperature's effects on
electricity demand are non-linear, having greater impact at low and
high temperature extremes.

Finally, we comment on the exposure-lag-response transformation,
which we have not found in electricity demand analysis literature. Its
intended purpose, to model the weight of an exposure effect over time,
is not easily interpretable when applied to our data sample. Combined
with its minimal improvements to explanatory power and prediction
accuracy, we do not feel its use is justified.

Based on these results, we select the model that uses dry-bulb
temperature, combined with the six-hour moving average and the
natural spline transform. This model obtained an Adjusted R2 of 0.902.
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A similar model that uses feels-like temperature instead has a slightly
higher Adjusted R2 of 0.904 but lower out-of-sample predictive power.
Furthermore, a similar model with exposure-lang-response transfor-
mation rather than the six-hour moving average has an even higher
Adjusted R2 of 0.910, but as mentioned above, is not easily inter-
pretable.

Finally, we comment on the residuals of the selected model, which
fulfill the first assumption of linear regression analysis, that errors be
normally distributed with mean zero. The next step of residual analysis
is to assess heteroscedasticity of residuals. The plots in Fig. 5 indicate
that heteroscedastic and autocorrelation consistent (HAC) standard
errors must be used when performing hypothesis tests in the TOU
pricing case study (Zeileis, 2004). The first plot shows increased
variability of residuals at warm temperatures. The middle plot shows
greater variance associated with summer and winter seasons. This is
likely a result of temperature and season's collinearity with dry-bulb
temperature. This result is supported quantitatively by the Durbin-

Watson statistic in Table 8. A Durbin-Watson value <1 indicates
positive serial correlation of residuals Bhargava et al. (1982). The
bottom plot illustrates that variance of residuals increases with larger
values of the response variable. This too is likely related to tempera-
ture. Because warmer temperatures are associated with higher elec-
tricity demand, it follows that greater residual variance is associated
with higher electricity demand.

6. Methodology for TOU impact analysis

In Section 4, we described the methodology for modelling time,
price and weather explanatory variables as the matricesX, V and T. We
show Eq. (2) below again for clarity, since the same form will be used
during the TOU impact analysis.

β ω θβY X V T= + + +0

We set the temperature transformation matrix T to be a dry-bulb,

Table 8
Results of temperature transformation comparison. The first three columns show how temperature transformations from the three categories are combined. Adjusted R2 column is our
primary evaluation criterion. BIC and Durbin-Watson columns provide secondary measures of model complexity and serially correlated errors. The final two columns report predictive
accuracy using average MAE and average MAPE measured using time series cross-validation (Hyndman and Fan, 2010). The model identified in Section 5 as having the greatest
explanatory power, out-of-sample prediction accuracy, and interpretability has been bolded.

Temporal transform Weather
transform

Non-linearity transform Adj. R2 BIC Durbin-
Watson

Avg. MAE
(kWh)

Avg. MAPE (%)

ideal=1 ideal=low ideal=2 ideal=0 ideal=0, max=100
Null Model (i.e., intercept only) 0.000 22339.7 0.056 0.432 37.57
Non-Temperature Explanatory Variables Only 0.438 14497.9 0.042 0.397 37.36
None (i−0) None (Drybulb) None (Linear) 0.580 10324.2 0.060 0.266 23.51
None (i−0) None (Drybulb) Switching Regression 0.854 −4822.3 0.201 0.166 14.20
None (i−0) None (Drybulb) Natural Splines 0.862 −5551.9 0.198 0.157 13.19
None (i−0) Feels Like Switching Regression 0.857 −5097.0 0.208 0.164 14.00
None (i−0) Feels Like Natural Splines 0.862 −5550.1 0.210 0.158 13.35
i−1 None (Drybulb) Switching Regression 0.875 −7068.5 0.229 0.149 13.05
i−1 None (Drybulb) Natural Splines 0.884 −8028.3 0.228 0.141 12.02
i−1 Feels Like Switching Regression 0.878 −7326.9 0.236 0.149 12.82
i−1 Feels Like Natural Splines 0.884 −8036.4 0.241 0.143 12.19
i−2 None (Drybulb) Switching Regression 0.881 −7741.3 0.258 0.144 12.71
i−2 None (Drybulb) Natural Splines 0.889 −8722.6 0.262 0.135 11.64
i−2 Feels Like Switching Regression 0.883 −7974.6 0.266 0.144 12.46
i−2 Feels Like Natural Splines 0.890 −8810.8 0.276 0.137 11.76
i−3 None (Drybulb) Switching Regression 0.873 −6803.5 0.248 0.149 12.96
i−3 None (Drybulb) Natural Splines 0.880 −7627.2 0.250 0.138 11.72
i−3 Feels Like Switching Regression 0.875 −7026.7 0.257 0.149 12.73
i−3 Feels Like Natural Splines 0.882 −7807.8 0.266 0.139 11.81
i−4 None (Drybulb) Switching Regression 0.853 −4683.5 0.232 0.159 13.50
i−4 None (Drybulb) Natural Splines 0.859 −5294.1 0.231 0.147 12.05
i−4 Feels Like Switching Regression 0.855 −4925.3 0.240 0.158 13.28
i−4 Feels Like Natural Splines 0.862 −5563.3 0.244 0.147 12.13
i−5 None (Drybulb) Switching Regression 0.825 −2171.8 0.192 0.173 14.29
i−5 None (Drybulb) Natural Splines 0.830 −2628.2 0.191 0.160 12.84
i−5 Feels Like Switching Regression 0.828 −2437.6 0.199 0.172 14.11
i−5 Feels Like Natural Splines 0.834 −2940.9 0.201 0.161 12.94
i−6 None (Drybulb) Switching Regression 0.790 387.4 0.166 0.189 15.39
i−6 None (Drybulb) Natural Splines 0.796 −9.7 0.165 0.179 14.34
i−6 Feels Like Switching Regression 0.794 114.4 0.171 0.188 15.24
i−6 Feels Like Natural Splines 0.801 −321.1 0.172 0.179 14.41
CDH/HDH (L=6) None (Drybulb) Switching Regression 0.895 −9493.4 0.183 0.133 11.53
CDH/HDH (L=6) None (Drybulb) Natural Splines N/A N/A N/A N/A N/A
CDH/HDH (L=6) Feels Like Switching Regression 0.896 −9629.3 0.184 0.134 11.36
CDH/HDH (L=6) Feels Like Natural Splines N/A N/A N/A N/A N/A
Moving Avg. (L=6) None (Drybulb) Switching Regression 0.895 −9492.1 0.195 0.139 12.33
Moving Avg. (L=6) None (Drybulb) Natural Splines 0.902 −10537.5 0.196 0.128 10.94
Moving Avg. (L=6) Feels Like Switching Regression 0.897 −9771.0 0.193 0.138 11.99
Moving Avg. (L=6) Feels Like Natural Splines 0.904 −10718.9 0.199 0.130 11.16
Lag-Response: Cubic

Polynomial (L=6)
None (Drybulb) Exposure-Response: Switching

Regression
0.902 −10388.5 0.197 0.127 10.93

Lag-Response: Cubic
Polynomial (L=6)

None (Drybulb) Exposure-Response: Natural
Splines

0.910 −11559.9 0.209 0.118 9.86

Lag-Response: Cubic
Polynomial (L=6)

Feels Like Exposure-Response: Switching
Regression

0.901 −10257.2 0.192 0.129 10.88

Lag-Response: Cubic
Polynomial (L=6)

Feels Like Exposure-Response: Natural
Splines

0.911 −11732.2 0.213 0.123 10.43
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six-hour moving average, natural cubic splines transformation.
Because collinearity of temperature and seasonal explanatory variables
is not a concern when analyzing the effects of TOU, we add a
categorical explanatory variable for month to X, supported by

ANOVA, such that the categorical variables in X are:

x p•, = 1 through x p•, = 11 are month indicators representing January
through December.

x p•, = 12 through x p•, = 34 are hour-of-day indicators representing 00-
:00 through 23:00.

x p•, = 35 is a working day indicator.
x p•, = 36 through x p•, = 58 are indicators representing the hour-of-da-

y×working day interaction.

To model effects associated with TOU pricing with hourly fidelity,
the time and temperature matrices X and T are then held constant. We
will use backward selection, ANOVA and HAC standard errors to
remove insignificant variables from a saturated matrix V of explanatory
variables related to price. Backward selection starts with all possible
explanatory variables in X, V and T. All two-way and three-way
interactions combining a TOU billing indicator, working day, hour-
of-day and utility rate season are included. This initial model is also
called the saturated model. The variable interactions provide the
necessary degrees of freedom to explain the effects of TOU billing for
each hour of day. We remove variables with the largest p-value (i.e., the
least statistically significant variable) one at a time until the analysis of
variance stopping condition is met (James et al., 2013). The remaining,
significant explanatory variables in V are used as components of the
multiple regression model in a “what if” analysis. We use the results
from the “what if” analysis to quantify the change in demand associated
with TOU pricing. The categorical variables in V before backward
selection are:

v p•, = 1 is a utility rate season indicator representing summer and
winter rates.

v p•, = 2 is a TOU active indicator representing whether customers are
billed according to flat rates or TOU rates.

v p•, = 3 through v p•, = 25 are indicators representing the hour-of-da-
y×rate season interaction.

v p•, = 26 through v p•, = 48 are indicators representing the hour-of-da-
y×TOU active interaction.

v p•, = 49 is an indicator representing the working day×rate season i-
nteraction.

v p•, = 50 is an indicator representing the working day×TOU active i-
nteraction.

v p•, = 51 is an indicator representing the rate season×TOU active in-
teraction.

v p•, = 52 through v p•, = 74 are indicators representing the hour-of-da-
y×working day×rate season interaction.

v p•, = 75 through v p•, = 97 are indicators representing the hour-of-da-
y×working day×TOU active interaction.

v p•, = 98 through v p•, = 120 are indicators representing the hour-of-da-
y×rate season×TOU active interaction.

v p•, = 121 is an indicator representing the working day×rate season×-
TOU active interaction.

Using backward selection, we remove variables from the saturated
matrix V to create a more parsimonious model. The following inter-
actions cannot be justified by ANOVA and are dropped from V:
working day×rate season×TOU active, hour-of-day×working
day×TOU active and working day×TOU active. The model used in this
case study yields Adjusted R = 0.9352 .

Algorithm 3. “What if” analysis used to quantify the effects of
mandatory TOU electricity pricing.

1. Fit a model to the entire sample of data. Our sample runs from
March 1, 2011 – October 17, 2012.

Fig. 5. Top: Residuals as a function of dry-bulb temperature observations, resulting
from a comparison model using dry-bulb, six-hour moving average and natural cubic
splines to generate the temperature transformation matrix T. Middle: Residuals as a
function of time, resulting from a comparison model using dry-bulb, six-hour moving
average and natural cubic splines to generate the temperature transformation matrix T.
Bottom: Residuals as a function estimated response, resulting from a comparison model
using dry-bulb, six-hour moving average and natural cubic splines to generate the
temperature transformation matrix T.
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2. For the summer utility rate season, select subset where TOU
active=FALSE (i.e., May 2011 – October 2011).

3. Group the selected observations by working day indicator. For each
working day type find the mean electricity demand observations for
each hour. These hourly averages for each working day type
represent the observed summer.

4. Copy the selected sample data from step 2 into a new hypothetical
sample of data called the counterfactual summer.

5. In the counterfactual summer, change the TOU active indicator from
FALSE to TRUE.

6. Estimate a response vector using the adjusted counterfactual
summer from step 5. Because TOU active has been changed to
TRUE, the coefficients estimated in step 1 will create a response
vector as if TOU billing had been active during summer 2011. This
estimated response vector is the “what if” analysis.
Algorithm 3 describes our “what if” methodology, similar to that

used by Navigant Research and Ontario Energy Board (2013).
However, because our sample of data does not have a complete winter
utility rate season of TOU active=FALSE from November 2010 through
May 2011, we are only able to carry out the analysis for summer utility
rate season.

7. Results for TOU impact analysis

The average demand change during summer on-peak and mid-peak
periods is −2.6% and −2.4% respectively. This translates to
−0.035 kWh ( ± 0.024 kWh) per household each hour during on-peak
periods and −0.030 kWh ( ± 0.024 kWh) change during mid-peak
periods. Changes during working day and non-working day off-peak

periods are −0.9% and −0.6% but are not statistically significant.
Table 9 summarizes the hourly effects averaged by TOU price period.
Fig. 6 shows this same information graphically. The estimated effects of
TOU pricing for each hour are plotted over coloured regions represent-
ing the three price periods of a summer working day.

The results from Table 9 can be extrapolated to all 20,556
residential customers in the local distribution company's service
region. Demand during each on-peak hour would change by −0.72
MWh ( ± 0.49 MWh), mid-peak hours would change by −0.62 MWh (
± 0.49 MWh), off-peak would change by −0.23 MWh ( ± 0.49 MWh),
and each hour of non-working days would change by −0.17 MWh ( ±
0.62 MWh).

We study the daily peak-to-average ratio since it is a metric often
used by utilities to measure how extreme demand fluctuations are.
Each day's peak-to-average ratio is defined as the peak demand for the
day divided by the average demand during that day. The average
observed peak-to-average ratio for summer 2011 under flat pricing was
1.441. The estimated summer peak-to-average ratio of the counter-
factual sample is 1.429. This represents an estimated change of
−0.844% to the peak-to-average ratio, with a 95% confidence interval
of ± 0.6%.

The local distribution company's peak hour observed during the
pre-TOU summer occurred on Thursday, July 21, 2011 at 18:00 EDT,
averaging 3.54 kWh per household. Using estimated demand from the
“what if” analysis, on-peak TOU pricing would have reduced the
average household consumption during that hour to 3.42 kWh ( ±
0.03 kWh), a reduction of 3.4%. The most extreme peak-to-average
ratio was observed on Tuesday, June 21, 2011 with a value of 1.65. Had
TOU pricing been in place that summer, the estimated peak-to-average
ratio on that date would have been 1.57, a reduction of 4.8%.

8. Conclusions and policy implications

The main policy implication of this paper is the introduction of a
methodology that energy researchers and practitioners may use to
model residential demand, including the effects of weather, when
analyzing the impact of pricing strategies such as TOU. Our methodol-
ogy evaluates a wide variety of approaches used to cope with the effects
of time, weather and price, and selects the best model based on
explanatory power, out-of-sample prediction accuracy, interpretability
and goodness of fit. These effects can vary greatly by region, so no

Table 9
Estimated change in average household electricity demand for each TOU price period.

Summer
price period

Hourly
impact
(kWh)

95% Conf.
interval
(kWh)

Hourly
impact (%)

95% Conf.
interval (%)

On-Peak −0.035 ± 0.024 −2.641 ± 1.819
Mid-Peak −0.030 ± 0.024 −2.403 ± 1.933
Off-Peak −0.011 ± 0.024 −0.888 ± 1.901
Non-Working

Day
−0.009 ± 0.030 −0.617 ± 2.212

Fig. 6. The hourly effects of a “what if” analysis estimated using summer 2011 data from our sample. The observed data is the solid, black line, indicating the mean of observed demand
for each hour of working days. The dotted blue line indicates the mean of estimated demand for each hour of working days, had TOU billing been in place. A 95% confidence interval is
also plotted for each hour.
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single residential electricity demand model is universally applicable.
For this reason, policy makers should insist on clear, reproducible
methodologies such as ours, which include details about variable
selection and model assessment measures. The results of an analysis
should only be considered reliable if adequate supporting metrics are
provided.

Furthermore, policy makers should strive to make more electricity
demand data available in order to validate new pricing schemes and
conservation programs; our analysis would not have been possible
without access to a large smart meter dataset.

The second policy implication stems from our TOU impact analysis.
We conclude that TOU helped mitigate peak electricity demand,
reducing summer on-peak demand by 2.6%. Our findings are consis-
tent with those of Newsham and Bowker (2010), which estimates that
TOU implementations typically see on-peak demand reductions <5%.
However, we observe that the estimated effects in our dataset are less
pronounced than initial results elsewhere in Ontario. Faruqui et al.
(2013b) estimated first-year results from four Ontario TOU programs
with summer on-peak reductions in the range 2.6–5.7%. Our result
falls at the bottom of that range. Our result is also lower than that of
Navigant Research and Ontario Energy Board (2013), which analyzed a
sample of 10,000 residential consumers in various locations within
Ontario, finding a summer on-peak reduction of 3.3%. It is worth
noting that Navigant's 3.3% demand reduction estimate falls within our
95% confidence interval.

Both the slight decrease in peak-to-average ratio and the hourly
demand reduction across all TOU price periods indicate that manda-
tory TOU pricing can achieve electricity conservation. However,
analysis of electricity demand shifting is more complex. Table 9 shows
that the majority of estimated summer demand reduction occurs in on-
peak and mid-peak periods. Change during off-peak periods for both
working days and non-working days is minimal. We interpret this to
mean that electricity demand is not being shifted to off-peak periods,
but is only being conserved. Conservation is focused during on- and
mid-peak periods. Given this finding, the local distribution company
should adjust its long term forecasts. If conservation is the trend in
many other local distribution companies, the province might be able to
defer construction of new generation facilities. If demand shifting were
more substantial (e.g., an increase during off-peak periods) it would
result in a flattened demand curve. If such a trend were to exist in many
local distribution companies, then the make-up of generation facilities
throughout the province could shift from those with fast ramp rates,
such as natural gas or reservoir hydroelectric, to those that are more
constant, such as nuclear.

The demand reduction during the off-peak hours of 19:00 through
21:00 during working days is counter-intuitive. When the hours 17:00
through 18:00 during the second mid-peak period are also considered,
demand reduction seems focused during the evening after typical work
hours. Residential customers may be attempting to conserve electricity,
but they may only have flexibility in their after-work household activity.
Because Ontario's TOU pricing also applies to commercial customers, it
may not be optimally structured around residential demand flexibility.
This misalignment was also noted by Adepetu et al. (2013) in their
results when studying aggregate provincial data. The province of
Ontario could study the impact of placing commercial and residential
customers on separate TOU schedules and adjusting rates accordingly.
If Ontario's residential TOU rate schedule remains unchanged, there is
an opportunity for technology companies in the realm of connected
devices. This result suggests that residential customers, unaided by
automated devices, have difficulty reacting to TOU rates when outside
the home. Devices and software which can incorporate the user's TOU
rate schedule could reduce the household electricity bill and associated
on-peak emissions to a greater extent.

Because our sample of data is from one local distribution company
in south west Ontario, we acknowledge that our results are only directly
applicable to that region. Additionally, because we only have data for

one summer of before and after the switch to TOU pricing, we cannot
assess the effects of TOU pricing during winter rates. We restate our
original question in this context: Is Ontario's mandatory TOU policy
associated with energy conservation or load shifting during the winter
rate season in this local distribution company's service region?
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