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• Measured fuel cell-battery hybrid power
system dynamics in a Toyota Mirai 2
vehicle.

• Data taken from Mirai CAN bus in
chassis dynamometer tests for various
drive cycles.

• Designed machine learning architecutre
to model real-time power dynamic
attributes.

• Included dynamic attriburtes of both
fuel cell and lithium-ion battery pack.

• Found the developed machine learning
model accurately predict real-time
dynamics.
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A B S T R A C T

Electrification is considered essential for the decarbonization of mobility sector, and understanding and
modeling the complex behavior of modern fuel cell-battery electric-electric hybrid power systems is challenging,
especially for product development and diagnostics requiring quick turnaround and fast computation. In this
study, a novel modeling approach is developed, utilizing supervised machine learning algorithms, to replicate the
dynamic characteristics of the fuel cell-battery hybrid power system in a 2021 Toyota Mirai 2nd generation
(Mirai 2) vehicle under various drive cycles. The entire data for this study is collected by instrumenting the Mirai
vehicle with in-house data acquisition devices and tapping into the Mirai controller area network bus during
chassis dynamometer tests. A multi-input - multi-output, feed-forward artificial neural network architecture is
designed to predict not only the fuel cell attributes, such as average minimum cell voltage, coolant and cathode
air outlet temperatures, but also the battery hybrid system attributes, including lithium-ion battery pack voltage
and temperature with the help of 15 system operating parameters. Over 21,0000 data points on various drive
cycles having combinations of transient and near steady-state driving conditions are collected, out of which
around 15,000 points are used for training the network and 6,000 for the evaluation of the model performance.
Various data filtration techniques and neural network calibration processes are explored to condition the data
and understand the impact on model performance. The calibrated neural network accurately predicts the hybrid
power system dynamics with an R-squared value greater than 0.98, demonstrating the potential of machine
learning algorithms for system development and diagnostics.
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1. Introduction

Transport sector, including land transportation, surface ships, and
aviation, contributes to about one-third of the world’s anthropogenic
greenhouse gas emissions [1,2] and is recognized to be the most difficult
to decarbonize due to its mobile, transient, and distributed nature and
variable drive/load conditions as well as extensive infrastructure spread
over large areas [3,4]. Hence, electrification is essential for the decar-
bonization of the mobility sector, mainly through the development and
deployment of battery electric, fuel cell electric, and fuel cell-battery
electric-electric hybrid power systems – hybridization resolves range
anxiety, offers fast refueling and fast load response, and alleviates the
excessive degradation arising from variable load operations [5–7]. As a
result, almost all fuel cell electric vehicles (FCEVs) are actually powered
by fuel cell-battery hybrid systems, and the development and deploy-
ment of FCEVs will revolutionize sustainable transportation and address
critical environmental challenges [8,9].

The 2021 Toyota Mirai 2nd generation (hence often referred to as
Mirai 2) marks a significant milestone in the development and
commercialization of FCEVs, and its complex operational strategy,
hybrid energy management, is regarded as a benchmark in the auto-
motive industry [10,11]. It is challenging to develop models of such
complex fuel cell systems that can run in real-time for diagnostics and
system development using traditional empirical or physics-based
models, especially if the system attributes and material properties are
not available [12–15]. The dynamic nature of power demands and the
interactions between the fuel cell and battery during various driving
conditions require sophisticated modeling techniques to capture tran-
sient behaviors accurately across the drive cycle [16–19]. Components
such as the fuel cell stack exhibit non-linear behaviors due to electro-
chemical reactions, temperature variations, and humidity levels, and
these nonlinearities require advanced mathematical modeling and
computational approaches [20–22]. The fuel cell’s core involves elec-
trochemical reactions influenced by numerous factors, including cata-
lyst properties, membrane conductivity, gas diffusion layers, liquid flow
within the fuel cell, and the associated manifolds, which are critical for
performance prediction [23–25] Considering the onboard diagnostic-
s/prognostics and product development applications for an FCEV hybrid
power system, a computationally fast and accurate model is essential to
predict system outputs such as fuel cell voltage, fuel cell coolant out

temperature, fuel cell air outlet temperature, battery pack voltage, and
battery temperature over various driving conditions.

Most of the existing literature on fuel cell-battery hybrid modeling
and FCEV energy dynamics focuses on a cell level, small stacks, or a
virtual environment; it is very limited for the development of models
from a vehicle point of view and experimentally validating them on a
drive cycle with the vehicle’s data acquisition system and controller area
network (CAN) bus signals. Mauro [26] developed an empirical pow-
ertrain model to understand and optimize the energy management in the
Toyota Mirai based on the CAN data acquired from the vehicle while
operating at Argonne National Laboratory. In this study, Mauro utilized
multiple curve fitting models to somewhat replicate the behavior of fuel
cell battery voltage dynamics but could not comprehend the thermal
behavior. Such empirical models can help simulate the energy man-
agement strategy. Still, they cannot be used for diagnostics or system
development as they lack a correlation with reactant pressures and flow
rates. Venkata [27] has developed a fuel cell hybrid model to downsize
the fuel cell stack and analyzed the behavior on various drive cycles in a
MATLAB – SIMULINK-based virtual environment; however, this lacks
any experimental validation and consideration of thermal constraints.
Markus [28] has experimentally investigated the aspect of reverse en-
gineering the Toyota Mirai vehicle by collecting the data and investi-
gating the behavior of the hybrid system over different driving profiles,
providing valuable insights; however, the study lacked the model
development aspect that can replicate the behavior in a virtual envi-
ronment. Tsuyoshi [29] published their research on developing a
physics-based fuel cell control system for Mirai vehicles to address
vehicle operation at sub-zero temperature conditions. This study con-
siders the thermal aspects, water balance of the fuel cell hybrid system,
and operational strategy but misses the role of battery dynamics, and
most of the physical parameters needed for the model are not disclosed.
Hasegawa [17] has comprehensively modeled the dynamics of the Mirai
fuel cell system using the physics-based approach and considered all the
reactant flow parameters and associated thermal attributes. However,
such models cannot parallelly accommodate battery dynamics and will
need another similar model to simulate hybrid dynamics.

The objective of the present study is therefore to develop an accurate
and computationally fast predictive model for fuel cell-battery electric-
electric hybrid power systems for vehicles, that can be used for the
development and diagnostics of such hybrid systems in real time. The
dynamic behavior of the hybrid power system is measured when the
FCEV, Toyota Mirai 2, is on chassis dynamometer tests under various
drive cycles covering a broad spectrum of vehicle operating conditions.
Then machine learning algorithms, such as neural networks, are devel-
oped based on these vehicle test data to achieve a rapid computational
model with accurate prediction of the critical outputs of the fuel cell and
battery dynamics over a drive cycle. Correlations between the hybrid
system operating parameters are identified, and the appropriate feature
vectors and prediction attributes are developed. The machine learning
model is trained on data obtained from various drive cycles having
combinations of near-steady-state and transient driving conditions, and
their prediction accuracy is evaluated. The developed machine learning
model is accurate and computationally fast to be useful for real-time
diagnostics or system development.

2. Data acquisition procedure

The 2021 Toyota Mirai XLE, with the specifications listed in Table 1,
was procured and instrumented with sensors to measure voltages, cur-
rent, power, pressure, flow, temperature, and the OEM CAN signals. All
signals were captured on state-of-the-art in-house data acquisition sys-
tems, and high-speed CAN signals from the non-OBD (on-board di-
agnostics) proprietary bus were reverse-engineered using SwRI
intellectual property. A Yokogawa power analyzer was used to measure
AC, DC, and power factor signals in the fuel cell, inverter, and motor.
Wire routing had to be optimized to minimize electromagnetic

Table 1
Specification for the 2021 Mirai 2nd generation fuel cell electric vehicle (FCEV)
tested in the present study.

Attribute Value

Range 402 mi (647 km) Vehicle specification
Fuel economy - city/
highway/combined

76/71/74 MPGe

0 – 60 mph 9.0 s
Maximum speed 108 mph (175 km/h)
Fuel Hydrogen (H2)
Purity of H2 99.97 %
Storage 3 x type four

hydrogen tanks
Tank capacity 5.6 kg (12.3 lbs)
Power plant Fuel-cell electric Fuel cell (FC) stack

specificationNumber of fuel cells 330
Specific power density 5.4 kW/l
Power 128 kW (172 bhp)
Aspiration Inlet air compressor
Motor location Rear wheel drive Transmission specification
Power 136 kW (182 hp)
Torque 300 N-m (221 lb-ft)
Battery cells 84 Lithium battery (LIB) pack

specificationNominal voltage 310.8 V
Energy capacity 1.24 kWh / 4.0 Ah
Peak output 31.5 kW x 10 s
Battery pack mass 44.6 kg
Energy density 27.6 Wh/kg

A. Legala et al. Energy and AI 17 (2024) 100415 

2 



interference between high-power motor power signals and data acqui-
sition signals. The test matrix and vehicle instrumentation were focused
on acquiring the vehicle data on relevant drive cycles using a chassis
dynamometer. The driving tests extracted data on the hybrid operation
of the fuel cell and battery during transient and near-steady-state ma-
neuvers as specified by the driving cycles. Test data was used to evaluate
and understand the behavior of fuel cell stack, high-voltage systems,
lithium batteries, and drive motors.

Fig. 1 illustrates the 2021 Mirai 2 FCEV powertrain architecture and
the systems in the fuel cell (FC) compartment under the front hood. The
air and hydrogen react in the FC stack to generate electrical potential,
and the FC boost converter then steps up the FC stack voltage. The FC
inverter with converter assembly receives power from the FC boost
converter or the lithium-ion battery (LIB), depending on the direction of
the demand.When the traction drive motor demands power, the inverter
inverts the power from DC to 3-phase AC and sends power to the drive
motor. When the regenerative braking is active, the converter converts
the power from 3-phase AC to DC and sends power to the LIB to increase
its state of charge (SOC). The LIB pack receives a charge from the FC
boost converter when the SOC is low enough to accept a charge and
when there is no drive motor demand on the LIB.

The chassis dynamometer tests were performed on a Horiba 48-inch
single-roll chassis dynamometer. Chassis dynamometer coefficients and

equivalent test weights were taken from the Environmental Protection
Agency’s (EPA) test car list. Dyno set coefficients were determined using
test procedure SAE J2264 [30]. The vehicle was operated in dyno mode
during all testing phases; following J2572 [31], the car was driven over
the EPA Urban Dynamometer Driving Schedule (UDDS) [32] and the
Highway Fuel Economy Test (HwFET) [32]. Vehicle data was acquired
on UDDS, Federal Test Procedure (FTP) [32], Highway Fuel Economy
Test (HwFET), Neutral Cycle (In neutral/idle), and Gradient Cycle
(Grade Testing Cycle). The gradient cycle is a non-standard in-house
cycle designed to record operational data by pushing the vehicle to
maximum operating conditions. The Mirai vehicle was repeatedly
operated at full pedal on the dyno at different loads and speeds during
the gradient cycle until the vehicle changed operational strategies and
finally hit a thermal derate.

3. Vehicle data

The operating parameters for the vehicle’s fuel cell and battery
system, such as stack current, voltage, reactant flow rates, reactant
pressures, coolant temperatures, air temperatures, and vehicle speed,
are acquired during the experimentation and illustrated using pair plots
as shown in Figs. 2, 3, and 4. A total of over 21,000 data points are
collected for the vehicle running on various drive cycles, including

Fig. 1. 2021 Toyota Mirai 2 fuel cell electric vehicle. (A) Schematic of, and (B) the actual layout (under the hood) of, the fuel cell-lithium-ion battery hybrid
powertrain system.
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transient and near-steady-state driving conditions. The Mirai vehicle,
similar to other light-duty vehicles, predominantly operates by utilizing
less than 50 kW of power and maintains the fuel cell stack coolant
temperature around 55◦C to 65◦C during normal driving conditions, be
standard or near steady-state drive cycles. The battery pack is main-
tained around 25◦C to 30◦C and at a state of charge (SOC) between 50 %
to 60 % when operated on standard drive cycles. However, during peak
load conditions, i.e., during the gradient cycle, the fuel cell can produce
close to 110–120 kW. The fuel cell coolant temperature rose close to
95◦C during the peak load, and exceeding this temperature resulted in a
thermal derate condition to protect the fuel cell system; during these
high loads, the battery pack’s SOC also dropped to 20 %, and the battery
temperature rose to 35◦C. Fig. 2 illustrates the correlation between the

vehicle speed, fuel cell, and lithium battery operating parameters during
various drive cycles; here, besides standard drive cycles, ’SS_45′ and
’SS_60′ refer to near-steady-state driving around 45 and 60 miles per
hour, ’Neutral’ refers to the vehicle in neutral/idle condition after
running for a while. It can be noted from Fig. 2 that a wide range of
vehicle speeds from idle to 100 km/h are covered under the test matrix.
The gradient cycle pushes the fuel cell into an unusually high load
condition, facilitating data acquisition in extreme conditions to cover
the entire spectrum of the powertrain operation.

Fig. 3 illustrates the thermal management system behavior of the fuel
cell and battery; the data is very transient as the coolant and reactant
flow attributes directly correlate to the vehicle’s power demand, i.e.,
load on the fuel cell and battery. Neutral and gradient cycles are the two
outlying conditions among all the drive cycles, as the load on the fuel

Fig. 2. The electrical attributes of the 2021 Toyota Mirai 2 fuel cell electric
vehicle under various loading conditions, as represented by the data acquired in
this study: (A) Fuel cell (FC) stack; (B) Lithium-ion battery (LiB) Pack.

Fig. 3. The thermal attributes of the 2021 Toyota Mirai 2 fuel cell electric
vehicle under various loading conditions, as represented by the data acquired in
this study: (A) Fuel cell (FC) stack; (B) Lithium-ion battery (LiB) Pack.
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cell is extremely low or high; this is reflected in the reactant and coolant
flow rates being excessively high during the gradient cycle and the
coolant temperature being very low during the idle (neutral) condition.

Fig. 4 illustrates the fuel cell stack’s reactant flow attributes over
different drive cycles. Similar to the electrical and thermal parameters,
the gradient cycle stands out with respect to the reactant flow rates and
pressures. The anode (H2) and cathode (air) reactant input follow stoi-
chiometric correlation and exhibit transient behavior over the standard
drive cycles.

The bulk of the fuel cell stack’s reactant and vehicle data is acquired
through CAN, and one of the most taxing problems is signal noise, as the
CAN bus operates in an electrically noisy environment, often leading to
some signal interference. Despite the precautions to minimize electrical

interference, some measurement noise is still present in acquiring the
vehicle data in real-time during a chassis dynamometer test. It is thus
challenging to use vehicle-level data to build advanced machine-
learning algorithms to predict system dynamics by implementing data
augmentation and signal-conditioning techniques. However, data such
as system temperatures, reactant flow rates, and electrical attributes
acquired through stand-alone data acquisition systems are relatively
robust. As observed from the plots, the hybrid powertrain predomi-
nantly operates at the lower end of the spectrum when evaluated on
standard drive cycles, and the gradient cycle helps us to capture the
reactant flow data on the higher extremes. The pair plots illustrate that
the data clusters and parameter correlations aid in understanding the
system’s nonlinearity; it can be concluded that the data acquired
through vehicle testing covers most of the operating conditions for the
fuel cell-lithium-ion battery hybrid power system.

4. Machine learning models/data-based modeling

Machine learning techniques are a subset of artificial intelligence
that helps develop algorithms that learn and make predictions based on
data by recognizing patterns and correlations embedded in the data.
These algorithms are adopted in many industries, particularly in sectors
or applications that do not have well-defined governing equations or
where the process is too complex for mathematical representation and
solution. Supervised machine learning involves training a model on a
defined dataset acquired from the system, where the input data is paired
with the output data during the training process, allowing the model to
learn the relationship between inputs and outputs of the system once the
training is complete, the developed algorithm mimics the behavior of
the system that is trained on.

Supervised machine learning, such as an artificial neural network, is
particularly effective for regression prediction problems and is espe-
cially suited for multi-input - multi-output (MIMO) systems. Although
there are different types of neural network architectures that can be
considered for adoption, after analyzing the measurement noise and
nonlinearity of the FCEV hybrid system parameters, a simple feed-
forward neural network is considered for this study due to its robust-
ness to noise compared to some time series networks. The structural
schematic and working of a feed-forward neural network is available in
literature [22,33,34,35].

4.1. Feature vector and prediction variable selection

Accurately predicting the fuel cell voltage during various driving
conditions purely with a physics-based model is a challenge from a
vehicle point of view, and it is critical to understand the difference be-
tween the degradation profile and system fault. Similarly, predicting the
thermal attributes, such as the fuel cell stack’s coolant and air-out

Fig. 4. The reactant attributes of the 2021 Toyota Mirai 2 fuel cell electric
vehicle under various loading conditions, as represented by the data acquired in
this study: (A) Anode; (B) Cathode.

Table 2
Feature vectors and prediction variables adopted in the present study.

Feature vectors (model inputs) Prediction variables (outputs)

Vehicle-speed FC H2 flow FC avg min voltage
FC stack current H2 pump speed FC stack coolant out T
FC stack coolant in T H2 humidity stream temp FC air outlet T
FC stack coolant flow H2 post injector pressure LIB voltage
FC stack air in T LIB current LIB battery temp
FC stack air in P LIB SOC
FC air flow LIB intake air T
LIB coolant in temp
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temperatures, is necessary to identify the formation of hot spots and
system health before a catastrophic failure. Precise prediction of battery
pack voltage and temperature not only helps from an energy manage-
ment standpoint but also aids in identifying sensor faults and enhances
the system’s overall safety.

Because of the reasons mentioned above, fuel cell voltage, coolant
out temperature, air outlet temperature, battery pack voltage, and bat-
tery temperature are selected as the five prediction variables (model
outputs). Considering the fundamental electrochemical governing
equations of fuel cells and batteries and the heat transfer basics of
thermal management systems, the following feature vectors (model in-
puts) specified in Table 2 are selected.

4.2. Neural network architecture and hyperparameter tuning

Determining the architecture and hyperparameter for a neural
network to mimic the system is the most critical step in model devel-
opment. Understanding the parameter correlation and nonlinearity of
the system is necessary to select the activation function, hidden layers,

Fig. 5. Schematic of the input, output and architecture of the neural network adopted in the present study.

Table 3
Neural network hyperparameters optimized for the present study.

ANN hyperparameters Final value

Feature vectors (inputs) 15
Target variables (outputs) 5
Number of hidden layers 2

Number of neurons for hidden layers 250 – 1st layer, 150 - 2nd layer
Activation function ‘ReLU’ – 1, 2 Hidden layers
Loss function Mean square error - ‘MSE’
Optimizer Adam (learning rate – 0.005, beta_1 =

0.975)
Number of data points 21,146 (Split: 70-training/30 validation)
Batch learning 50

Dropout probability for hidden
layers

0.5 – 1st layer, 0.5 - 2nd layer

Loss function MSE – mean squared error

Fig. 6. Prediction accuracy of the trained neural network for various hybrid system attributes.
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and number of neurons. Considering the computational resources,
shallow neural network architecture (two hidden layers) is preferred for
automotive applications as deep neural networks require greater storage
and higher computational power. A non-exponential activation func-
tion, the Rectified Linear Unit (ReLU), is chosen due to its computational
efficiency, nonlinearity, sparsity, and relatively quick convergence
during training. Optimizing neural network architecture and hyper-
parameters involves combining domain knowledge and systematic
experimentation.

Considering the noise in the CAN data and the system’s nonlinearity,
a feed-forward neural network is chosen, as described earlier. In
contrast, advanced time series-dependent neural network architectures
may not yield any significant improvements and sometimes even lead to
higher errors in prediction attributes when the data is noisy. The
Savitzky-Golay filter [36] is tried with various observation windows and
polynomials to smoothen the data without distorting the fundamental
behavior of the attribute. Early stopping feature is implemented to limit
the epochs, prevent overfitting, and reduce training time. Any extreme
outlier data points and noisy data attributes during the data acquisition
process are omitted from the data set to prevent any bias or misleading
patterns. The feed-forward neural network architecture developed is
illustrated in Fig. 5 and the tuned hyperparameters for the network are
tabulated in Table 3.

After tuning the neural network with the hyperparameters as given
above, the prediction results after normalization are illustrated in Fig. 6;
here, the model can predict the output attributes with an accuracy of R-

squared value greater than 0.98. In Fig. 6 the points line up on the di-
agonal when the prediction and experimental values match, and the
presence of the scattered points away from the diagonal suggests that
some predictions are less accurate, which can be attributed to both noise
in the dataset and the limitations of the model. There is a more signifi-
cant spread of points at higher values, which might suggest that the
data’s noise or variability increases with the values’ magnitude; how-
ever, it should be noted that the model should not be predicting the
system noise as it indicates the overfitting of the model. In this case, the
initial observation of the loss plot shows that training and testing losses
are low and stable, suggesting that the model has effectively learned the
patterns in the data without overfitting, making the model reliable for
these regression tasks.

5. Results and discussion

This section evaluates the performance of the trained model in the
prediction of the dynamic characteristics of the Mirai’s fuel cell-battery
hybrid power system operating under various drive cycles. Once the
iteration results during the training are satisfactory, the input data from
HwFET, FTP, and Gradient drive cycles are fed into the model as a time
series (sequential) to assess the accuracy and the capability of the model
developed.

Fig. 7. The performance of the present neural network model for the vehicle operating on HwFET (highway fuel economy test) cycle.
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5.1. HwFET cycle (highway fuel economy test)

The HwFET cycle simulates the usual highway driving conditions,
which is relatively stable compared to the FTP or Gradient cycle. The
average speed is around 77.7 km/h, and the maximum speed reached
during the test is approximately 97 km/h (60 mph), including the ac-
celeration and deceleration phases to mimic real-world driving. The
vehicle’s operating parameters during the HwFET cycle are the model’s
input to predict the hybrid power system dynamics. The predicted
values from the trained model compared to measurement are illustrated
in Fig. 7, from which it can be concluded that the model performance
during the near steady-state or limited transient conditions is excellent.
The model could predict minor changes in the system outputs but does
not follow the system noise, demonstrating its robustness.

As it is seen from the vehicle speed subplot shown in Fig. 8, the Mirai
vehicle during HwFET is subjected to a hard deceleration and subse-
quent acceleration event that occurred around 800 s. During this
deceleration, the vehicle speed was dropped to zero and accelerated to

60 km/hr; in this instance, a rapid change is observed in the fuel cell-
battery hybrid dynamics where the average minimal fuel cell voltage
falls below 0.6 V when the vehicle approached idle as both the hydrogen
flow and fuel cell stack current drops to zero. On the other hand, LiB
stack voltage spikes during deceleration because of the battery regen-
eration, which can be inferred from the negative LiB stack current. In
both cases at the same deceleration instance, the model accurately
predicts the drop in fuel cell voltage and increase in battery voltage
during the deceleration by correlating the change in vehicle speed,
hydrogen fuel flow, fuel cell, and battery current. Similarly, as the
vehicle is accelerated, the fuel cell recovers or reverts back to the
standard operating voltage of 0.8 V as the hydrogen flow is turned back
on proportionally to the vehicle speed, and the LiB stack voltage falls
back as the battery stack current is utilized for the vehicle acceleration.
The temperature dynamics are relatively unchanged in the HwFET
cycle, and the model could accommodate these minor changes by
tracking these subtle changes. These results demonstrate the capability
of the model to accurately predict the hybrid system dynamics by

Fig. 8. The fuel cell-battery hybrid power system dynamics and the prediction accuracy of the developed neural network model during a vehicle deceleration and
acceleration event for the vehicle operating on the HwFET (highway fuel economy test) cycle.
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correlating the vehicle’s operational parameters in a near-steady state
condition and during challenging decelerate-accelerate events.

5.2. FTP cycle (federal test procedure)

The FTP cycle is a standardized driving test to evaluate emissions and
overall performance of a vehicle operating under various driving con-
ditions, which is a relatively more transient drive cycle when compared
to HwFET presented earlier. The average speed throughout the cycle is
around 34.1 km/h, and the maximum speed reached during the test is
approximately 91.2 km/h, including a mix of idling, acceleration,
deceleration, and cruising phases to simulate real-world urban and
suburban driving conditions. Like the case for HwFET, the operating
parameters of the vehicle during the FTP cycle are used as inputs for the
model to predict the hybrid power system dynamics during the transient
operation. The prediction performance of the trainedmodel is illustrated
in Fig. 9. It is evident that the model prediction accuracy in extreme
transient conditions is outstanding, especially when compared to similar
physics-based models [37,38]. To a certain extent, the model can also
distinguish the system noise in extreme transient conditions.

The extreme transient part of the FTP cycle is illustrated in Fig. 10,
where the vehicle is subjected to high-frequency acceleration and
deceleration events in a short period. As observed from the first minute
of the illustrated time series (between 3500 and 3550 s), despite the
vehicle being idle, the measured fuel cell voltage is at 0.8 V, the fuel cell
stack current is around 20 A, and hydrogen flow fluctuates around 0.5
kg/hr while the measured LiB stack current is around -20A and rising LiB

voltage indicates that the fuel cell is recharging the battery as deter-
mined by the supervisory controller. Here, the neural network model
accurately identifies the battery regeneration event at idle during the
start of the second FTP cycle and not only accurately predicts the fuel
cell and battery pack voltage simultaneously, but also captures the rising
temperature dynamics accurately. On the other hand, there are two
more instances between 3560 and 3750 s where the vehicle is idle, and
there is no battery regeneration; here, the model accurately distin-
guishes and predicts the voltage dynamics similarly.

In the second (3600–3700 s) and third phase (3700–3800 s) of the
drive cycle, the high-frequency vehicle acceleration-deceleration events
pushes the hybrid dynamics into another zone where the bulk of the
transient power demand is fulfilled by the fuel cell, and the battery pack
supplements and regenerates during the peak transient conditions. Here,
the model again accurately correlates the changing transients of the
vehicle speed and operating parameters, such as hydrogen flow rate and
current outputs, to predict the voltage and temperature dynamics
without any time delay (lag) associated with the reactant transport and
diffusion dynamics, demonstrating the potential of the developed model
for real-time application.

5.3. Gradient cycle

The gradient cycle is a non-standard in-house drive cycle developed
to subject the vehicle to high loads and speeds, extracting the rated
power to understand the powertrain system behavior at extreme con-
ditions, as typical automotive drive cycles do not cover the entire

Fig. 9. The performance of the present neural network model for the vehicle operating on the FTP (federal test procedure) cycle.
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operating spectrum of the vehicle. Gradient cycle pushes the system
performance to its design limits, as in this case, the vehicle hits the
thermal derate to protect the fuel cell system from being exposed to
excessive high operating temperatures. This cycle combines idle, steady-
state, and transient modes where the operating parameters of the vehicle
are fed as inputs to the model for the prediction of the powertrain system
output attributes in extreme conditions. The measured and predicted
results are illustrated in Fig. 11, where a wide range of fluctuations in
the system attributes, such as rising system temperatures and dropping
voltages during acceleration, can be observed. Fig. 11 shows that the
model prediction is in good agreement with the experimental data,
encompassing the entire fuel cell hybrid operational spectrum, even for
extreme conditions.

Fig. 12 illustrates the final phase, or the most challenging part of the
gradient cycle, where the vehicle is subjected to transient driving con-
ditions almost at rated power. In the first half of the illustrated timer

series (between 20,500 and 20,800 s), the vehicle is subjected to quick
deceleration followed by rapid acceleration at a high load in the second
phase (after 20,800 s). As observed from Fig. 12, the vehicle is operated
in extreme conditions at almost thrice the hydrogen fuel flow rate and
fuel cell stack current with fuel cell temperature dynamics consistently
over 85◦C to reach a vehicle speed close to 120 km/hr. Here, the neural
network model identifies both the deceleration and acceleration events
under these extreme operating conditions and accurately predicts the
wide swings in the fuel cell and battery voltages along with temperature
dynamics.

The rapid change in the fuel cell temperature dynamics can be
observed at the end of the deceleration and the start of the acceleration
phase (20,600–20,900 s), where both the fuel cell coolant out and air
(cathode) outlet temperatures fall and rise between 65 C and 95 C
coupled with the swings in fuel cell voltage and LiB stack voltage. Here,
the model correlates the extreme operating conditions and predicts the

Fig. 10. The hybrid power system dynamics and the prediction accuracy of the developed neural network model during high-frequency deceleration and accel-
eration events for the vehicle operating on the FTP (federal test procedure) cycle.
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fluctuations in temperatures and voltages across all the transient phases
without any significant changes in the prediction accuracy and also
avoids replicating the measurement noise to some extent, demonstrating
the robustness and applicability of such models across broad operating
spectrums.

It is crucial to consider a range of error metrics that provide a more
comprehensive assessment of the model’s prediction accuracy. Metrics
like Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean
Squared Error (RMSE), and Mean Absolute Percentage Error (MAPE)
offer valuable insights into different aspects of prediction accuracy. MAE
provides a straightforward measure of average absolute errors, MSE
emphasizes more significant errors due to its squaring nature, RMSE
offers a measure of error magnitude that is interpretable in the same
units as the original data, and MAPE gives an understanding of the
average error as a percentage of the actual values. By considering these
metrics together, as shown in Table 4, a more nuanced and complete
evaluation of a model’s performance can be achieved, especially in the
context of complex, nonlinear, or transient data.

The above results suggest that the presently trained machine-
learning model has accurately predicted the Mirai vehicle’s critical
fuel cell hybrid power system attributes, even under extreme transient
operating conditions with noisy measurement and limited signal pro-
cessing. The computational speed for each time step is around 740 Mi-
croseconds, or ~ 0.00074 s when operated on a computer equipped with
an Nvidia Graphic Card – RTX 3070, 12th Gen Intel (R) Core (TM) i9-
12900, and 32 GB of RAM. Considering the model development time,
computational speed, and excellent prediction performance, the devel-
oped machine learning model has great potential for use in diagnostics
and product development.

6. Conclusions

In this study, a full-fledged machine-learning model based on a feed-
forward neural network has been developed to model the dynamics of
the fuel cell-lithium-ion battery (LIB) hybrid power system implemented
in the 2021 Toyota Mirai 2nd generation fuel cell electric vehicle. The
data is acquired from the vehicle in real-time during a chassis dyna-
mometer test under various driving cycles, including the US Environ-
mental Protection Agency’s Urban Dynamometer Driving Schedule
(UDDS) and the Highway Fuel Economy Driving Schedule (HFEDS),
Federal Test Procedure (FTP), Highway Fuel Economy Test (HwFET),
Neutral Cycle, and Grade Testing Cycle. During the training and vali-
dation phase, the model utilizes the data generated from the vehicle’s
onboard controller area network (CAN) bus and other data acquisition
systems. Over 21,000 data points across the different driving cycles are
acquired from the vehicle testing to understand the dynamic charac-
teristics and nonlinearity of the fuel cell battery hybrid powertrain
system under the various operating conditions. After analysis, 15 oper-
ating parameters are chosen as the feature vectors for the neural
network mode to predict the averageminimum cell voltage, coolant, and
cathode out air outlet temperatures of the fuel cell, along with LiB
voltage and temperature. The hyperparameters used for training the
neural network, testing cases, and resultant data spread are analyzed,
and the trained model demonstrates excellent accuracy in predicting the
fuel cell-battery hybrid power system dynamics with an accuracy of R-
squared value greater than 0.98. The neural network model perfor-
mance across the various drive cycles representing steady state and
extreme transient operating conditions is outstanding and robust despite
measurement noise, illustrating their applicability in system develop-
ment and onboard diagnostic systems.

Fig. 11. The performance of the present neural network model for the vehicle operating on the gradient cycle.
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Fig. 12. The hybrid power system dynamics and the prediction accuracy of the present neural network model during extreme driving conditions at the rated power
for the vehicle operating on the gradient cycle.

Table 4
Error attributes for the model predicted fuel cell-battery electric-electric hybrid power system attributes over the different drive cycles investigated.

Cycle Predicted parameter MSE RMSE MAE MAPE

HwFET Fuel cell avg_min_voltage (V) 0.001 0.028 0.014 2.17 %
FC coolant out T (C) 2.802 1.674 1.004 1.92 %
FC air out T (C) 1.532 1.238 1.001 1.82 %
LIB pack voltage (V) 0.224 0.473 0.348 0.11 %
LIB battery temp (C) 0.021 0.146 0.113 0.50 %

FTP Fuel cell avg_min_voltage (V) 0.001 0.032 0.021 5.06 %
FC coolant out T (C) 1.617 1.271 0.925 1.70 %
FC air out T (C) 1.183 1.088 0.799 1.54 %
LIB pack voltage (V) 0.289 0.537 0.422 0.13 %
LIB battery temp (C) 0.015 0.122 0.096 0.41 %

Gradient Fuel cell avg_min_voltage (V) 0.000 0.014 0.009 1.32 %
FC coolant out T (C) 0.622 0.789 0.545 0.73 %
FC air out T (C) 1.514 1.230 0.728 1.00 %
LIB pack voltage (V) 0.361 0.601 0.449 0.15 %
LIB battery temp (C) 0.018 0.135 0.102 0.37 %

MSE – Mean Squared Error; RMSE – Root Mean Squared Error; MAE – Mean Absolute Error; MAPE – Mean Absolute Percentage Error.
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