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Part I: 

About Michigan 

Tech and me!



Michigan Tech

Student 
Enrollment 7000

83% in STEM

ChemEECECivil &
EnvironmentalGeological & Mining

Material Sci & Eng

ME
UG: 1395
Grad: 367

Madison

327 Miles



AVERAGE SNOWFALL IS 5.3 METER!
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My Background
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Energy-Themo

Fluids
(Thermodynamics, 

Combustion, HVAC,     

Renewables,…)

Experimentation
(Thermal-Mechanical-

Electrical Systems, 

Control Software, 

Electronics,…)

Controls
(Sliding Mode, Model 

Predictive, Adaptive 

Control, Modern 

Control, …)
Energy 

Mechatronics



Research at Michigan Tech

Focus: Increasing efficiency of energy systems 

through utilization of advanced control techniques
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Focus: Increasing efficiency of energy systems 

through utilization of advanced control techniques
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Smart City/

Community

Research at 
Michigan Tech
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Part II: 

Control of building 

energy systems



Part II: Control of building energy systems

 Modeling of building energy systems

 Predictive control of building HVAC systems

 Building-to-grid optimization
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Building Research Test Bed 13



HVAC System at Lakeshore Center
14
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HVAC System at Lakeshore Center

AHU
Heat pump

GSHP
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Building Thermal Modeling-RC Model
16
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Building Thermal Modeling-RC Model
17
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Building Thermal Model

Thermal and circuit model of a 

wall with window

Energy balance for a wall node:

Energy balance for a room node:
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Radiation
Conduction &

convection

Conduction &

convection
Radiation Heat 

generation

HVAC heat

flow

Maasoumi, Shahbakhti, et. al, 

2013 ASME DSC Conf.
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Building Thermal Model

Thermal and circuit model of a 

wall with window

Energy balance for a wall node:

Energy balance for a room node:

19

Radiation
Conduction &

convection

Conduction &

convection
Radiation Heat 

generation

HVAC heat

flow

STD of error: 0.1 ºC

Mean of error: 0.1 ºC

Maasoumi, Shahbakhti, et. al, 

2013 ASME DSC Conf.
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Parameter Adaptive Building (PAB) Model
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STD of error: 0.1 ºC

Mean of error: 0.1 ºC

M. Maasoumy, M. Shahbakhti, et. al, " Handling Model Uncertainties in Model 

Predictive Control for Energy Efficient Buildings ", J. of Energy and Buildings, 2014.
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Modeling: 
Photovoltaic Single Diode Modeling
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Photo credit: Michigan Tech’s Keweenaw Research Center



Modeling: 
Photovoltaic Single Diode Modeling
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 The 1st Law of Thermodynamics is related to energy conservation

 The 2nd Law of Thermodynamics concerns entropy generation  and 

irreversibility which cause deficiency

 Exergy is based on the 1st and 2nd Laws of Thermodynamics and is relevant 

to quality of energy 

 Exergy is defined as the maximum useful work during a process in a specific 

environment

 Exergy is a more precise metric compared to energy to evaluate energy 

systems. (e.g. HVAC systems, IC engines, power-plants, etc.)

23

Exergy vs. Energy
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 The 1st Law of Thermodynamics is related to energy conservation

 The 2nd Law of Thermodynamics concerns entropy generation  and 

irreversibility which cause deficiency

 Exergy is based on the 1st and 2nd Laws of Thermodynamics and is relevant 

to quality of energy 

 Exergy is defined as the maximum useful work during a process in a specific 

environment

 Exergy is a more precise metric compared to energy to evaluate energy 

systems. (e.g. HVAC systems, IC engines, power-plants, etc.)
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Exergy is a more precise metric!

After adding ice
𝐸2 = 𝑚𝑤𝑢𝑤 = 42 𝑘𝐽
𝑋2 = 𝑚𝑤 𝑢𝑤 − 𝑢′0 + 𝑃′0 𝑣𝑤 − 𝑣′0 − 𝑇′0 𝑠𝑤 − 𝑠′0 = 18 kJ

Stirling Engine
𝐸1 = 𝑚𝑤𝑢𝑤 = 42 𝑘𝐽
𝑋1 = 𝑚𝑤 𝑢𝑤 − 𝑢0 + 𝑃0 𝑣𝑤 − 𝑣0 − 𝑇0 𝑠𝑤 − 𝑠0 = 1 kJ

Exergy vs. Energy



Building Exergy Model
25

25



Building Thermal and Exergy Model

Discretized System Dynamics

Nonlinear System Dynamics

(Bilinear due to Inputs multiplication)
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Input: Supply air temperature

States: Room air temperature & neighboring zones temperature

Output: Room air temperature
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Part II: Control of building energy systems

 Modeling of building energy systems

 Predictive control of building HVAC systems

 Building-to-grid optimization
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Existing HVAC Control Logics
28

PID

On-Off

On-Off
On-Off

Lack of Integrated System Dynamics Model
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Model Predictive Control of HVAC Systems
29

Measured 

temperaturePredicted 

Energy/Exergy Consumption

M. Razmara, M. Shahbakhti, et. al., " Optimal Exergy Control of HVAC Systems ", Journal of Applied Energy, 2016.
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MPC formulation

EMPC:

30

Controllers: 
Rule-based controller (RBC)

Energy-based MPC (EMPC)

Exergy-based MPC (XMPC)

XMPC:

30



Results: Rule-Based Control vs. MPC
31

a) RBC

b) MPC

31



Results: Exergy-Based MPC (XMPC)
32

M. Razmara, M. Shahbakhti, et.al., " Optimal Exergy Control of HVAC Systems ", Applied Energy, 2015.

32



Results: Comparison Table

*Saving percentage is calculated by  
(𝑥0− 𝑥)

𝑥
, where 𝑥0 is result of RBC controller.

33

33

M. Razmara, M. Shahbakhti, et.al., " Optimal Exergy Control of HVAC Systems ", Applied Energy, 2015.



Part II: Control of building energy systems

 Modeling of building energy systems

 Predictive control of building HVAC systems

 Building-to-grid optimization

34



Motivation: Rapid renewable penetration and ramp rate 

during peak hours 
35

Source: California ISO, Net Load on 

CASIO system. 

http://www.caiso.com/informed/Pag

es/CleanGrid/TodaysRenewables.as

px. Accessed Feb 28th 2017. 

35



Demand Response via B2G system with PV panels and 

energy storage system (ESS)
36

650

646 645 632 633
630

611 684 671
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652 680

PPV
Ps2b

PPV: PV panel power to ESS

Ps2b: power from ESS to bldg.

Pg2b: power from grid to bldg.

Pg2s: power from grid to ESS

ESS: energy storage system

BEMS:  building enegy 

management system

PVESS

Market 

Operator (MO)

BEMS

Pg2b

Weather

Station

Pg2s

Heat-pumps

Lighting/
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Building load and ramp rate controls
37

M. Razmara, M. Shahbakhti, et.al., " Building-to-grid Predictive Power Flow Control for Demand Response and Demand Flexibility Programs ", Applied Energy, 2017.

• Ramp rate control • Load following
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Probability of providing benefits from proposed bidirectional 

B2G controls based on Monte-Carlo simulations
38

38

M. Razmara, M. Shahbakhti, et.al., " 

Building-to-grid Predictive Power 

Flow Control for Demand Response 

and Demand Flexibility Programs ", 

Applied Energy, 2017.



Summary (I)
39

 Model-based predictive control for buildings

 requires an accurate dynamic model of buildings and 

renewable sources  Parameter Adaptive Building Model;

 can optimize HVAC system performance by integrating 

system dynamics; 

 can achieve 36% reduction in energy consumption in 

building HVAC systems, using exergy-wise MPC. 
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Summary (II)
40

 Bi-directional building-to-grid (B2G) optimization

 can help the power grid to employ the flexibility of 

buildings HVAC system to prevent problems such as duck-

curve, over generation, and intermittent production;

 can reduce monthly electricity costs 5-42%, compared to the 

unoptimized rule-based control;

 can help to reduce load ramp-rate by 30-70% in buildings



Part III: 

Control of Powertrain 

and Hybrid Electric 

Vehicles



Part III: Control of automotive energy systems

 Model-based control of advanced IC engines

 Predictive control of hybrid electric vehicles

 Control of connected and automated vehicles
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Introduction

43

SI

Spark Ignition (SI) vs. Reactivity Controlled 

Compression Ignition (RCCI) 

Ignition

point

Air & fuel

Mixture

RCCI

RCCI offers peak 

indicated thermal 

efficiency of 53%, 

with ultra low 

NOx and PM 

emissions!
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Engine Experimental Setup
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* K. Sadabadi, M. Shahbakhti, A. Bharath, and R. Reitz. “Modelling of Combustion 
Phasing of an RCCI Engine for Control Applications.” Int. J. of Engine Research, 2016.

න
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* K. Sadabadi, M. Shahbakhti, " Dynamic Modeling and Controller Design of Combustion Phasing of an RCCI 
Engine ", ASME Dynamic Systems Control Conference, 2016.

• Phenomenological Model • Dynamic Model 

DI

http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?articleid=2604453&resultClick=3


47Natural gas-diesel RCCI Engine Controller 
State-Space Representation

 States

𝑋 = 𝐶𝐴50 𝑇𝑠𝑜𝑐 𝑃𝑠𝑜𝑐 𝑇𝑟𝑔 𝑚𝑒𝑣𝑐

 Control inputs
𝑢 = 𝑃𝑅, 𝑆𝑂𝐼, 𝐹𝑄

 Disturbance
𝑑 = [𝑇𝑚𝑎𝑛]

𝑋𝑘+1 = 𝑓(𝑋𝑘, 𝑢𝑘, 𝑑𝑘)

𝑦𝑘+1 = 𝑔(𝑋𝑘, 𝑢𝑘, 𝑑𝑘)



48RCCI Engine Controller 
Block Diagram
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Experimental Control Results

Source: Arora & 

Shahbakhti, SAE 

2017 World 

Congress.



III. Control Dynamic ModelI. Optical Engine Data/ 
Detailed Combustion Model

V. Combustion ControlIV. Model-based Controller 
Design

II. Phenomenological 
Combustion Model
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Part III: Control of automotive energy systems

 Model-based control of IC engines

 Predictive control of hybrid electric vehicles

 Control of connected and automated vehicles

51



Motivation
Electrified multi-mode powertrain for best fuel conversion efficiency

HCCI

• SI mode is more efficient 

in the high power region.

• RCCI mode is more efficient 

in the medium power region.

• HCCI mode is more efficient 

in the low power region.

52

Electrification helps to utilize the best engine points and minimize engine transients!



Design of Hybrid Electric Powertrain Testbed

53



Multi-Mode Electrified Experimental Setup
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HEV Models for 
Optimization

55
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Design of Optimal Control for Multi-Mode 
Hybrid Electric Vehicle

Cost Function:

Hard Constraints:

56



Analysis for Parallel Architecture

• In the PHEV, the multi-mode

LTC-SI engine has less

advantage compared to the

mild HEV due to availability of

higher electric power for

locating the engine operating

points in high power SI regions

57

Source: A. Solouk, M. 

Shahbakhti, et. al., SAE Int. J. of 

Alternative Powertrains, 2017.



LTC-HEV Results
58
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• REx (Series) Architecture:

58

• The REx platform provides the higher fuel saving for the multi-mode LTC-SI, compared to the parallel hybrid electric 

platform. SAE Papers 2016-01-2361; 2017-01-1153



Energy Management/Control of a Hybrid electric 
Vehicle by Incorporating Powertrain Dynamics

59

Source: M. Bidarvatan, M. 

Shahbakhti, ASME Dyn Sys Ctrl 

Conf., 2014.
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Combined UDDS+HWFET Drive Cycle Results

8.7% more fuel 
consumption

Source: M. Bidarvatan, M. 

Shahbakhti, ASME Dyn Sys Ctrl 

Conf., 2015.



Part III: Control of automotive energy systems

 Model-based control of IC engines

 Predictive control of hybrid electric vehicles

 Control of connected and automated vehicles
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Motivation: V2X data can tell us about future 

power demand for vehicle controls

By 2021, all the vehicles sold in US will be connected vehicles!

Traffic conditions

Route & 

topography 

Traffic lights
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conditions
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Michigan Tech-

GM NextCar

Project

• Vehicle dynamic and 

powertrain control 

for connected and 

automated vehicles

• Targets: 

• 20% reduction 

in energy 

consumption in 

PHEV/HEV 

operation

• 6% increase in 

EV range
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NextCar: 

Projection of energy consumption reduction

Proposed VD&PT Control Technology
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NextCar: Real-time optimal (i) route selection, (ii) vehicle 5 modes 

selection, (iii) speed trajectory, (iv) ICE/motor torques/speeds

Image of modes: SAE 2015-01-1152



NextCar: Real-time optimal (i) route selection, (ii) vehicle 5 modes 

selection, (iii) speed trajectory, (iv) ICE/motor torques/speeds

Image of modes: SAE 2015-01-1152



NextCar Platform

Mobile Lab traffic center Mode selection and velocity optimization 



Concluding remarks (I)
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Concluding remarks (II)
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Model-based Control of 

Building and Automotive Energy Systems
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THANK YOU!
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