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A B S T R A C T

Condition monitoring data are routinely collected from various nuclear plant systems to ensure they are oper-
ating within an acceptable envelope, and to detect any potential onset of degradation in the system condition.
The condition monitoring includes periodic monitoring of not only physical variables, such as temperature and
vibration, but also chemical properties of lubricants, oils, and other control fluids. The time series of such
monitoring data tend to exhibit non-stationary nature and complex correlation structure, as they consist of
fluctuations of different time scales and noise. Since standard text-book methods of stationary time series
analysis are not applicable to such data sets, the paper presents an advanced method of Empirical Mode
Decomposition (EMD) to filter out the noise and identify the long-term trend, i.e., a likely indicator of de-
gradation, in condition monitoring data. The proposed method is verified by a simulation example and then
applied to a real data set obtained from an operating nuclear plant.

1. Introduction

1.1. Background

There are various kinds of small or large electrical, mechanical,
chemical and structural systems that are employed for safe and reliable
power generation at a nuclear station. In order to maintain the relia-
bility of these systems and the plant as a whole, wide ranging perfor-
mance indicators, such as temperature, pressure, and key chemical or
physical properties, are carefully monitored and maintained within
acceptable limits. In order to control adverse effects of degradation in a
given plant system, it is of interest to examine the condition monitoring
data and detect a trend that is reflective of aging. The detected trend
can be used to assess the effectiveness of ongoing maintenance pro-
gram. Once the onset of a degradation process becomes evident, plan-
ning mitigating actions, e.g., improvement of maintenance program or
overhaul of the system, can be duly initiated. An accurrate method for
detection of the trend function is especially important, since it de-
termines the time of preventive maintenance before system’s perfor-
mance can become unacceptable. Naturally, an overestimation of the
trend will lead to premature maintenance work whereas an under-
estimation of the trend can have adverse safety consequences.

1.2. An illustrative example

An example of such condition monitoring data comes from the
electro–hydraulic control (EHC) system used in the operation of tur-
bines in a nuclear plant. In an EHC system, phosphate esters are com-
monly used as control fluid due to their favourable fire retardant
property. The degradation of control fluid with ongoing usage tends to
produce acids which can lead to many adverse effects, such as corrosion
of components, reduction in resistivity, acceleration of further de-
gradation, and development of other unfavourable chemical reactions
(e.g., formation of soap). The most critical fluid property affected by
degradation is the total acid number (unit: mg KOH/g). In order to
maintain the effectiveness of the control fluid, the total acid number
should be kept below 0.2 mg KOH/g. For this reason, the chemistry of
the control fluid system is closely monitored by collecting and ex-
amining samples taken on a weekly basis from the EHC system.

A sample time series of the total acid number collected from an EHC
system is presented in Fig. 1, which shows the presence of short-term
fluctuations, noise and trends in some segments of the data. While the
short-term fluctuations can be caused by variations in chemical pro-
cesses and the environment, any trends may be reflective of degrada-
tion in the condition of the control fluid that accumulates over time.

Given that the raw data consist of non-stationary trends, short-term
cycles, and noise, a suitable statistical method is required to extract the
long-term trend, which would be indicative of degradation in the
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condition of the control fluid. Based on this long-term trend, main-
tenance actions can be planned on a more informative basis. The or-
dinary least-squares regression method is generally inadequate for this
type of data, since the noise term can have a complex time-dependent
auto-correlation structure.

1.3. Objective and organization

The main objective of this paper is to present a highly flexible and
efficient method to extract the long-term trend from a non-stationary
and noisy time series of condition monitoring data, such as the total
acid number of EHC control fluid. Recognizing a complex interaction of
short-term cycles, correlation, and random noise in the data, the paper
proposes a more advanced method of time series analysis, i.e., the EMD
method. Although this method has been used in climate and geophy-
sical sciences, its engineering applications have been quite limited.
Therefore, the presentation of this method to nuclear engineering
community is expected to promote applications to other problems and
data sets.

The paper is organized as follows. The basic overview of the EMD
method along with an illustrative simulation example are provided in
Section 2. Section 3 presents an elaborate case study based on condition
monitoring data collected from a turbine EHC system, and an example
to further validate the EMD method. Conclusions of this study are
summarized in the last section of the paper.

2. Empirical Mode Decomposition (EMD) method

2.1. Rationale for using the EMD method

Conceptually, a time series, x t( ), of the condition monitoring data
can be represented by a sum of three basic components:

= + +x t r t x t y t( ) ( ) ( ) ( ),S (1)

where r t( ) represents the long-term trend in the data, x t( )S represents
the actual data without any trend or noise, and y t( ) represents the
random noise. The main goal of the data analysis is to separate the noise
and isolate the long-term trend in the actual data.

The classical models of time series data, such as autoregressive (AR)
models, moving average (MA) models, and their various combinations
are applicable to stationary time series without any trend, i.e., zero
mean data. However, these models are not directly applicable to data
with non-stationary and nonlinear nature, such as the acid number data
in the turbine EHC system.

A common approach for identifying a long-term trend is the statis-
tical regression method. However, the problem with this approach is
that the form of the trend, e.g., linear, has to be pre-specified to the
original data. This makes the approach inadequate, as it imposes a re-
strictive form on the data without considering the nonlinear and non-
stationary nature of the data generating mechanisms. The trend is ex-
trinsic and predetermined, and hence subject to specification errors.
The least-squares regression method is also not applicable to correlated
time series data. Similar to the regression method, the moving average
method requires a predetermined time window to carry out the

averaging, which may be difficult to identify for non-stationary data. In
summary, these methods are collectively referred to as extrinsic
methods, as they need to specify a priori functional form to the trend in
terms of a fixed number of parameters.

Noise is an inevitable part of a real data set. It usually masks the
overall trend and limits the ability to extract true information from the
data. In case of linear and stationary time series, standard filtering
methods, such as Fourier transforms, are effective in removing noise
terms of different frequencies. However, these filtering methods are
invalid for data generated by processes that are either nonlinear or non-
stationary. In particular, the mixing of harmonics of real signals with
the harmonics of noise, makes the filtering methods ineffective for noise
separation.

The statistical process control (SPC) methods are also used to detect
a change in the trend and any excursion of a statistical descriptor of the
data, such as mean, beyond some control limits (Stoumbos et al., 2000;
Oakland, 2007). However, the SPC suffers from all those limitations
that are stated in previous paragraphs because of the following reasons:
(1) data are assumed to be samples of a stationary process, (2) data are
assumed to follow the normal distribution, (3) the level of noise in data
is assumed to be fairly small, (4) a regression model is utilized in the
analysis, (5) statistical measures of the data, e.g., mean, variance and
various capability indices, are calculated for an assumed size of the
window of the data. Naturally, the SPC will not be applicable to non-
stationary data with noise masking the trend.

Since the introduction of the Hilbert-Huang Transform (Huang
et al., 1998), the EMD method has emerged as an effective method for
decomposing a time series into a set of basic constituent functions,
known as intrinsic mode functions (IMFs). The IMFs are derived from
the raw data without relying on any extrinsic basis functions (i.e., tri-
gonometric series) or simplifying assumptions about the linear and/or
stationary nature of the time series. For example, Wu et al. (2007)
analyzed the time series of annual global surface air temperature and
extracted the overall adaptive trend using the EMD method. The overall
adaptive trend is the residual component of the data, which spans over
the whole length of the time series. The EMD method has been suc-
cessfully used in many other studies to detect trends (Boudraa et al.,
2004; Capparelli et al., 2013; Liang et al., 2005; Qian et al., 2011) and
other critical information in the time series (Loh et al., 2001; Li et al.,
2016).

The EMD method is a data driven approach for time series analysis,
which can be applied to non-stationary time series with minimal as-
sumptions. Because it overcomes various limitations associated with the
standard methods of time series analysis, it is adopted in this paper to
analyze general types of condition monitoring data.

2.2. Basic approach

The EMD method is based on the premise that a time series is a
superposition of different, simple, and oscillatory modes, referred to as
IMFs, and a residual term or the trend, given as Huang et al. (1998):

∑= +
=

x t c t r t( ) ( ) ( ).
k

n

k
1 (2)

Here, …c t c t c t( ), ( ), , ( )n1 2 denote n IMFs, and r t( ) denotes the final
residual that can be either the mean trend or a constant. An IMF sa-
tisfies the following two conditions:

1. Over the entire time series, the number of extremes and the number
of zero-crossings must be equal or differ at most by one;

2. At any point, the mean value of the envelope defined by the local
maxima and the envelope defined by the local minima is zero.

In essence, an IMF represents a simple oscillatory mode similar to a
harmonic function in Fourier analysis, but possesses more general
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Fig. 1. A sample time series of total acid number data from a turbine EHC system.
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characteristics in frequencies and amplitudes of the modes. IMFs can be
extracted from the raw data by a sifting process proposed in Huang’s
study (Huang et al., 1998), which is summarized in Appendix A. Pre-
vious studies (Huang et al., 1998; Zhang et al., 2003) have shown that
IMFs may be correlated to meaningful, observable, and physical in-
formation inherent to the original data.

Since a recorded time series contains noise, some of the IMFs ex-
tracted from the raw data are likely to represent random noise. Such
noisy IMFs need to be identified and separated. Thus, a time series is
finally decomposed as

∑ ∑= + + + =
= =

x t c t c t r t i j n( ) ( ) ( ) ( ), (note ),
k

i

T k
k

j

N k
1

,
1

,
(3)

where c t( )T k, and c t( )N k, denote a kth IMF of true data and noise, re-
spectively.

Comparing Eq. (1) and Eq. (3), it can be concluded that by filtering
out the trend, r t( ), and the noise term, = ∑ =y t c t( ) ( )k

j
N k1 , , the true

oscillatory signal with zero mean, = ∑ =x t c t( ) ( )S k
i

T k1 , , is identified.
From the details of the sifting process (presented in Appendix A), it

is clearly seen that the IMFs are purely intrinsic, i.e., data based,
functions without any prescribed form of basis functions or assump-
tions.

Traditionally, the noise is idealized as a Gaussian white noise pro-
cess with zero mean and standard deviation, σg. Wu and Huang (2004)
studied the statistical properties of IMFs extracted from a large number
of simulated samples of Gaussian white noise and identified several
interesting relations, which provided a basis for a statistical significance
test that can identify noisy IMFs extracted from any given time series.
The details of the statistical significance test are summarized in Ap-
pendix B.

This statistical significance test has been used in the EMD literature
to remove noise and derive trends in nonlinear and non-stationary time
series of global surface temperature (Wu et al., 2007) and the annual
mean temperature (Capparelli et al., 2013).

2.3. Simulation-based illustrative example

To illustrate capability of the EMD method and the statistical sig-
nificance test, this section analyzes a simulated data set with the pur-
pose of removing the embedded noise, isolating the trend, and re-
constructing the true signal of the time series. The simulated time
series, as shown in Fig. 2, is generated using the following functions:

= + +

=

= +

( )
x t x t r t y t

x t t

r t t

( ) ( ) ( ) ( ),

where true signal, ( ) 0.5sin ,

and trend, ( ) 253.5 .

S

S
π2

20
0.3
365 (4)

Note that y t( ) is the white noise or independent and identically
distributed Gaussian random variable with zero mean and a standard
deviation of 0.3.

After applying the EMD method to the simulated time series, eight
IMFs extracted by the sifting process are shown in Fig. 3, and the ex-
tracted trend is shown Fig. 4, in comparison with the original trend
function given by Eq. (4). As shown in Fig. 4, the EMD method suc-
ceeded in extracting the trend function embedded in the simulated time
series.

Application of the statistical significance test is illustrated in Fig. 5,
which shows the upper and lower bounds that constitute the acceptance
region of the Null Hypothesis. Results of the statistical significance test
indicate that, except for the third and sixth IMFs, c t( )3 and c t( )6 , all
other IMFs can be characterized as noisy components of the simulated
time series. Therefore, the true signal without the trend is,

= +x t c t c t( ) ( ) ( )S 3 6 , and the noise is the sum of the remaining six IMFs.
A comparison of the noise separated signal and the true signal is

shown in Fig. 6. A comparison between mean and standard deviation of

the noise separated signal and the true signal is shown in Table 1. It is
seen that, the noise separated signal and the true signal have almost the
same mean and standard deviation.

Euclidean metric is used to evaluate the similarity of the noise se-
parated signal and the true signal. If S i

n and S i
t respectively represents

values of the noise separated signal and the true signal at the ith point,
the normalized Euclidean metric is defined as

∑ ⎜ ⎟= ⎛
⎝

−
−

− ⎞
⎠=

d
N

S μ
σ

S μ
σ

1
i

N i i

1
n n

n

t t

t

2

(5)

where μn and μt represent mean of noise separated signal and true
signal, respectively, σn and σt represent standard deviation of noise
separated signal and true signal, respectively, and N represents total
number of discrete data points (noise separated signal and true signal
have the same discrete points).

For the noise separated signal and true signal in this example, the
value of d is equal to 0.96%, which means that the difference between
the noise separated signal and true signal is equal to 0.96%, a very small
value. Comparison of the noise separated signal and the true signal
again confirms the ability of the EMD method to filter out the noise
from the data in a highly accurate manner.

In summary, this example confirms that the EMD method is able to
fulfill their intended functions of removing the noise, isolating the
trend, and reconstructing the true signal of the simulated time series.

3. Application: Time series of total acid number data

3.1. Time series analysis using the EMD method

Fig. 7 shows the condition monitoring data collected from the
electro–hydraulic control (EHC) system of a turbine in a nuclear plant
in Canada. This data set consists of the total acid number measured by
chemical analysis of control fluid samples collected on a weekly basis
from an EHC system.

Using the EMD method, a time series of the total acid number was
decomposed into 7 IMFs and a single trend function, as shown in Fig. 8.
The energy density and mean period of these IMFs, as defined in

252.5

253.5

254.5

255.5

1

0.5

0

0.5

1

1

0.5

0

0.5

1

0 200 400 00 00 1000Time
252

253

254

255

256

x(t)

y(t)

r(t)

xS (t)

(a)

(b)

(c)

(d)
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Gaussian noise, and (d) trend function.
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Appendix B, are given in Table 2. Based on energy density and mean
period of these IMFs, the statistical significance test was applied, which
identified the first two IMFs, c1 and c2, as noisy IMFs (see Fig. 9).
Therefore, the remaining 5 IMFs, −c c3 7, were identified as those re-
presenting information of the actual data. As shown by Fig. 8, IMFs c3 to

Fig. 3. Eight IMFs of the simulated time series.
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Table 1
Comparison between mean and standard deviation.

Signal Mean Standard deviation

Noise separated signal 0.0061 0.3418
True signal 0 0.3537
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Fig. 7. The acid number data collected from a turbine EHC system.
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c5 are highly non-stationary, whereas IMFs c6 and c7 appear to be more
periodic in nature. The trend function, r t( ), shows that the total acid
number increases initially in the first 100 weeks and then follows a
declining trend.

The total noise in the data estimated by the EMD method is shown
in Fig. 10. The standard deviation of the noise is estimated as 0.023 (mg
KOH/g). It is also seen that, amplitudes of the noise almost uniformly
fluctuate between −0.05 (mg KOH/g) and 0.05 (mg KOH/g), which are
relatively large in comparison with amplitudes of the raw acid number
data; the noise thus masks the overall trend and limits the ability to
extract true information from the observed acid number data.

After removing the noisy IMFs, the remaining IMFs and the trend
are combined to estimate the noise separated acid number, as shown in
Fig. 11. Using the clean noise separated acid number as shown in
Fig. 11, the operator could judge whether or not the acid number ex-
ceeded a safe threshold value. It is quite clear that the total acid number
did not exceed the threshold value of 0.2 (mg KOH/g) in the sampling
duration, whereas raw recorded acid number shown in Fig. 11, suggests
that the total acid number did exceed the threshold value. Thus, the
embedded noise indeed masks the true characteristics of the data, and
the proposed EMD method provides the operator information about the
real underlying condition.

In addition, Fig. 11 demonstrates that, the noise separated acid

Fig. 8. IMFs and the trend function of the total acid number time series.

Table 2
Energy density (or variance) and mean period of IMFs for the acid number data.

kth IMF Ek(× −10 4)[(mg KOH/g)2] Tk(week)

1 3.235 2.943
2 1.434 6.317
3 2.559 14.389
4 2.317 34.037
5 2.982 105.516
6 0.950 144.962
7 0.001 257.395

Fig. 9. Statistical significance test applied to the acid number data.
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Fig. 10. Noise separated from the acid number data.
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number also presents relevant aging information, but not as clear as the
trend function. Thus, it is necessary to combine the trend function and
noise separated acid number together to assess performance of EHC
system reflected by the acid number data: the trend function presents
aging information of EHC system, and the noise separated acid number
presents true oscillation amplitudes of the time series, which reflect the
actual acid number (i.e., almost noise free) varying with time.

3.2. Validate the EMD method

To validate that the EMD method is also able to separate noise of
real recorded data, another example is presented in this section. The
acid number data set collected from another EHC system of the same
nuclear plant, shown in Fig. 1, is analyzed by the EMD method; the
noise separated acid number and embedded noise are obtained, as
shown in Fig. 12.

The noise in Fig. 12(b) is added to the noise separated acid number
in Fig. 11 to construct a new acid number time series, as shown in
Fig. 13(a). The new acid number time series will be used to validate the
ability of EMD method to separate noise of real recorded data. In the
validation, the noise separated acid number in Fig. 11 is used as the
benchmark acid number, and the noise in Fig. 12(b) is used as the
benchmark noise. This example is different from the simulated-based
illustrative example in Section 2.3 because components of the new acid
number time series come from real recorded data.

Applying the EMD method to the new acid number time series, the
noise separated acid number and noise are obtained, as shown in
Fig. 13(b) and (c), respectively. Fig. 13(b) shows that the noise

separated acid number by the EMD method well matches the bench-
mark acid number, although some minor difference exists. Fig. 13(c)
shows that the noise separated by the EMD method also well matches
the benchmark noise.

The example in this section demonstrates that the EMD method is
also able to separate embedded noise from real recorded data, and
obtain noise separated signal. Thus, the noise and noise separated acid
number obtained in Section 3.1 are trustable.

4. Conclusions

This paper presented an innovative approach to statistical analysis
of condition monitoring data that can be collected from any engineering
systems operating in a nuclear power plant. The condition monitoring
data are typically in the form of non-stationary and correlated time
series with complex nonlinear trends, which cannot be analyzed by
standard methods, such as statistical regression analysis or stationary
time series analysis. The paper presented the EMD method to analyze
such complex data sets.

The EMD method decomposes a time series into its underlying IMFs
and a long-term trend function. The IMFs can be further separated into
noisy modes and actual modes of the data. The trend function facilitates
the detection of the onset of aging.

Ability of the EMD method in separating the noise and the trend
from a time series was confirmed using a simulation-based example.
The paper also presented a practical case study in which the time series
of total acid number, a condition indicator of the control fluid used in a
turbine electro–hydraulic system, was analyzed using the proposed
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method. The analysis results were also validated by a subsequent ex-
ample.

The utility of the proposed method is in assessing the effectiveness
of an ongoing maintenance program by analyzing the past performance
data. The EMD method allows to confirm whether or not degradation is
taking place in the system, and thus provides a basis to modify the
maintenance program or replacement interval.

Results of this study demonstrate that the EMD method is a highly
versatile and efficient method to analyze the condition monitoring data
collected from operating nuclear plants and it is also applicable to other

engineering systems.
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Appendix A. Sifting process to separate intrinsic mode functions

This section describes the sifting process proposed by Huang et al. (1998) to decompose a time series into a series of intrinsic mode functions
(IMFs) and the residual known as the long-term trend function. Steps of this process are discussed as follows. Flow chart for the sifting process, i.e.,
EMD, is presented in Fig. 14.

First, identify all the local extrema of the time series. Then, connect all the local maxima by a cubic spline to produce the upper envelope of the
data. Next, repeat the procedure for the local minima to produce the lower envelope of the data. The upper and lower envelopes should encompass
all the data between them. After that, calculate the mean of these two envelopes that is designated as m t( )1 . Finally, calculate the difference between
the time series X t( ) and m t( )1 , which forms the first component h t( )1 , i.e.,

= −h t X t m t( ) ( ) ( ).1 1 (A.1)

In the subsequent process, h t( )1 is treated as the new time series, and the aforementioned process is repeated to calculate the mean of the upper
and lower envelopes of h t( )1 , which is designated as m t( )11 . The difference between the new time series h t( )1 and the mean of two envelopes m t( )11 is:

= −h t h t m t( ) ( ) ( ).11 1 11 (A.2)

This process is repeated until all the conditions in the definition of an IMF are achieved. After repeated sifting, h t( )i1 is given by

= −−h t h t m t( ) ( ) ( ),i i i1 1( 1) 1 (A.3)

where m t( )i1 is the mean of the upper and lower envelopes of −h t( )i1( 1) . h t( )i1 is designated as the first IMF c t( )1 from the time series X t( ), i.e.,

=c t h t( ) ( ).i1 1 (A.4)

The standard deviation SD, which is calculated from two consecutive sifting results, is used as the criterion to terminate the sifting process for
each IMF. The SD is defined as

0

0.1

0.2

0.3

0

0.05

0.1

0.15

0.2

-0.15
-0.1

-0.05
0

0.05
0.1

0.15

0 50 100 150 200 250 300
Week

A
ci

d 
nu

m
be

r (
m

g 
K

O
H

/g
) (a)

(b)

(c)

Noise separated acid number
Benchmark acid number without noise

Separated noise
Benchmark noise

Fig. 13. Validated data: (a) new acid number; (b) noise separated acid
number; (c) noise.

B. Li, M.D. Pandey Nuclear Engineering and Design 323 (2017) 133–141

139



∑=
−

=

−

−

h t h t
h t

SD
[ ( ) ( )]

( )
,

t

T
i i

i0

1( 1) 1
2

1( 1)
2

(A.5)

where T is the total time length of the discrete time series X t( ). When ⩽SD 0.2, the sifting process for each IMF is terminated (Huang et al., 1998).
Typically, c t( )1 contains the shortest-period component of the original time series X t( ). The residue is obtained by removing c t( )1 from X t( ):

= −r t X t c t( ) ( ) ( ).1 1 (A.6)

The residue r t( )1 , which contains longer-period components, is treated as a new time series and subjected to the same sifting process afore-
mentioned. This procedure is repeated to obtain all the subsequent rk functions as follows:

= − = …−r t r t c t k n( ) ( ) ( ), 2,3, , .k k k1 (A.7)

The sifting process is terminated by either of the following predetermined criteria:

• Either the component c t( )n or the residue r t( )n becomes so small that it is less than a predetermined value;

• The residue r t( )n becomes a monotonic function.

Appendix B. Statistical significance test to identify noisy IMFs

This section describes basic concepts underlying a statistical significance test to identify noisy IMFs, as proposed by Wu and Huang (2004).
Traditionally, the noise is idealized as a Gaussian white noise process with zero mean and some standard deviation, σg. Wu and Huang (2004)

studied the statistical properties of IMFs extracted from a large number of simulated samples of Gaussian white noise, and discovered several
interesting properties.

Consider that a white noise time series consisting of m data points is decomposed into n IMFs, … = …c j c j j m( ), , ( ), 1, ,n1 . Define the mean period, Tk,
and the energy density, Ek of the kth IMF as

=T m
cNumber of peaks in

,k
k (B.1)

and

∑=
=

E
m

c j1 | ( )| .k
j

m

k
1

2

(B.2)

The energy density defined by Eq. (B.2) is equivalent to the variance of the kth IMF, denoted as σk. For n IMFs of a sample of white noise, the
following salient observations were made (Wu and Huang, 2004):
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Fig. 14. Flow chart for the sifting process.
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1. A set of m data points contained in any kth IMF, = …c j j m( ), 1, ,k , follow the Gaussian distribution.
2. The Fourier amplitude spectra of all the IMFs of white noise are almost identical; they cover the same constant area on a semi-logarithmic scale of

the period.
3. The product of the energy density (or the variance) and the mean period of each IMF is a constant, i.e.,

= ⇔ + = =E T α E T α k n(const. ) ln ln ln (const. ), ( 1, ).k k k k (B.3)

4. The first IMF has the smallest mean period or the highest order of fluctuations. It is almost always a noisy IMF. Also, the energy density (E1) and
mean period (T1) of the first IMF are not much affected by the sampling uncertainty, so that they can be considered as true estimates of the noise
process.

Based on the last property, a hypothesis test for any kth IMF, ck, was proposed by Wu et al. (2007) as follows. The Null Hypothesis is that an IMF,
= …c k n, 2, ,k , is a noisy IMF. The test statistic is ( +E Tln lnk k). The rejection region of this hypothesis was empirically defined as

+ < +

+ > +
( )E T E T

E T E T

ln ln ln ln , or

ln ln ln (3 ) ln .
k k

k k

1
3 1 1

1 1 (B.4)

In summary, those IMFs for which the Null Hypothesis is rejected are treated as true signals, whereas those IMFs for which the Null Hypothesis is
accepted are treated as noise.

This statistical significance test has been used in EMD literature to remove noise and derive multidecadal trends of nonlinear and non-stationary
time series of the global surface temperature (Wu et al., 2007) and the annual mean temperature (Capparelli et al., 2013).
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