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a b s t r a c t

The design and optimization of the battery pack in an electric vehicle (EV) is essential for continued
integration of EVs into the global market. Reconfigurable battery packs are of significant interest lately as
they allow for damaged cells to be removed from the circuit, limiting their impact on the entire pack. This
paper provides a simulation framework that models a battery pack and examines the effect of replacing
damaged cells with new ones. The cells within the battery pack vary stochastically and the performance
of the entire pack is evaluated under different conditions. The results show that by changing out cells in
the battery pack, the state of health of the pack can be consistently maintained above a certain threshold
value selected by the user. In situations where the cells are checked for replacement at discrete intervals,
referred to as maintenance event intervals, it is found that the length of the interval is dependent on the
mean time to failure of the individual cells. The simulation framework as well as the results from this
paper can be utilized to better optimize lithium ion battery pack design in EVs and make long term
deployment of EVs more economically feasible.

© 2017 Elsevier B.V. All rights reserved.
1. Introduction

The use of lithium-ion batteries (LIB) in vehicles is becoming
increasingly prevalent and their market share is only projected to
grow. Lithium-ion (Li-ion) batteries are considered to be the best
battery choice for most applications at this time due to their high
energy-density and high power-density. However, over time, the
battery pack in an electric vehicle (EV) will age, decreasing its ca-
pacity to store energy (i.e. capacity fade) and losing its ability to
deliver maximum power (i.e. power fade), until it is eventually not
suitable for use in a vehicle [1].

It is generally accepted that the end of life (EOL) of a vehicle
).
battery pack can be defined as the time when its maximum ca-
pacity fades to 80% of its nominal maximum capacity [2]. As it
stands, a vehicle battery pack is either disposed off or repurposed
for stationary applications at EOL [3]. However, due to cell-to-cell
variations or position within the pack, not all the cells will
degrade at the same rate. This can be due to variation in cell
resistance, uneven thermal management of the pack, differences in
active material and several other factors that are characteristic of
the manufacturing process and pack configuration [4]. Therefore,
this implies that in a battery pack that has reached its EOL, one can
find cells that have lost more or less than 20% of their nominal
capacity. Using a routine preventative maintenance strategy,
degraded cells may be identified so that they can be replaced to
prolong the service life of the pack as a whole. Also, any cell that
may have failed for any other reason could also be replaced. This
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Table 1
Manufacturer specifications for the batteries tested.

Parameter Value

Cathode Chemistry Lithium Iron
Phosphate (LFP)

Lithium Nickel Magnesium
Cobalt Oxide (NMC)/Lithium
Magnesium Oxide (LMO)

Type of Cell Pouch Pouch
Nominal Capacity (Ah) 20 15
Rated Voltage Range (V) 2.00e3.65 2.80e4.15
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will require consideration in the design phase of the battery pack,
pack configuration or assembly, as well as consideration within the
batterymanagement system (BMS). In order to prolong the primary
in-service lifetime of the battery pack, damaged cell or modules can
be replaced with new ones.

This concept of routine maintenance and refurbishment is an
established practice in the automotive industry in which a system,
such as an engine, is not replaced entirely upon failure, but has
certain parts replaced with regular maintenance. For some systems,
the replacement of every component on a certain interval can
extend the system's life indefinitely [5e7]. The American automo-
tive remanufacturing industry is a multi-billion dollar industry for
fossil fuel vehicles, and the economic, environmental and legisla-
tive benefits of remanufacturing are well-documented [5]. There-
fore, it is of interest to investigate this model as it pertains to future
technologies such as LIB's in vehicles by changing out degraded
cells in the battery pack as they fail without replacing the entire
pack. The goal of this is to maintain the capacity and available
power of the battery pack above a defined EOL criterion.

Significant efforts have been made in going from single-cell
battery models to pack-level models, taking into account cell to
cell variability [8e10]. With respect to state-of-charge SOC esti-
mation, many new considerations and challenges arise at the bat-
tery pack level [11e17]. For example, Sun et al. [17] employed an
average pack model and model bias correction, taking into account
model and parameter uncertainty in order to estimate state of
charge. The shift in focus towards the battery pack from the cell is
important, because it is the battery pack that is implemented in
electric vehicles (EVs), and it is the battery pack that must be
accurately monitored and modelled. A battery pack configuration
that is rigid is not advantageous to EV manufacturers since the
performance of cells in series is limited by the weakest cell.
Therefore, the idea of reconfigurable and/or maintainable battery
packs have gained attention in recent years, where if certain cells or
modules fail, they can be replaced or removed from the battery
pack circuit.

Although a few studies in literature have explored the idea of
reconfigurable battery packs, little research currently exists on
simulating a battery pack with the concept of cell change out, and
none on a vehicle scale. Adany et al. [18] have conducted pre-
liminary work in switchable configurations, where the battery
management system (BMS) removes a cell that is deemed to
negatively impact the rest of the battery pack. Ugle et al. [19]
proposed a metric called worthiness of replacement, a quantita-
tive measure of whether a battery module that has degraded needs
to be replaced with a new one. Although not specifically addressed
by Ugle, nor examined in detail in this work, the concept of battery
change-out could be applied to a single cell, a group or ‘gang’ cells, a
‘string’ of cells, or a ‘module’. Ganesan et al. [20] investigated the
idea experimentally in the context of state-of charge (SOC) esti-
mation, and showed that the concept can extend the useful life of a
battery pack. However, the investigation by Ganesan et al. lacked
the scope that the current work will attain in terms of battery pack
size and lifetime. Similarly, although there have been numerous
articles that have proposed a comprehensive battery simulator that
take into account degradation [21e23], none of these studies have
examined the effects of replacing a damaged cell with a new one.
The goal of this paper is to provide a simulation framework for cell
replacement in a battery pack for electric vehicles. The simulation
results will then be used to examine how quickly the cells need to
be replaced in order to maintain the state of health of the battery
pack above a certain threshold. If the model simulations show that
cell change-out extends pack life indefinitely while maintaining
pack performance at steady-state, the concept would be of interest
to EV and battery manufacturers for its economic benefits. The
change-out concept would hopefully lead to a reduced load of
batteries on the recycling and disposal infrastructure as a ‘good’ or
long lasting cell would remain in service for an extended period of
time. This environmental benefit could also be legislatively ad-
vantageous if LIB disposal policy becomes strict [24].

The paper is divided as follows: Section 2 will describe the
experimental set-up used to obtain data for building the battery
pack model. Section 3 will discuss how the battery pack simulation
framework was established. It will explore the development of the
voltage response model at the cell and pack level as well as an
empirical degradation model. It will then explain how these
different components can be integrated to develop a cell change out
simulator. Section 4 will look at the simulation results as well as
discussion and conclusions will be provided in Section 5.

2. Experimental

The two different battery chemistries used in this study were
Lithium Iron Phosphate (LFP) and a mixed cathode chemistry of
lithium nickel magnesium cobalt oxide (NMC) and lithium mag-
nesium oxide (LMO). Both were automotive patterned cells with a
pouch configuration. Experimental data was collected in order to
develop a robust battery pack model, where each battery in the
pack has a slightly different voltage profile and degradation rate.
This was accomplished by testing four different LFP cells and four
different NMC/LMO cells. The variation in the parameters obtained
from these cells were then used to develop a distribution that was
applied to stochastically generate the parameters for each indi-
vidual cell in the battery pack simulation. The manufacturer spec-
ifications for each battery are given in Table 1.

2.1. Experimental set-up and procedure

All tests were carried out using a BioLogic EC-Lab VSP multi-
channel potentiostat/galvanostat. The equipment is equipped
with 4 channels, where each channel can provide a maximum of
400 mA. In order to test the pouch cells, a 100Amp booster was
attached, allowing a maximum current of 100 Amps and a voltage
range of 0 Ve5 V.

In order to determine the parameters of the equivalent circuit
model, the following procedure was applied: The cell was initially
charged at 1C constant current to its upper voltage limit followed
by constant voltage charge until the current was below C/25. The
hybrid pulse power characterization test (HPPC), proposed by the
Department of Energy (DOE), was then carried out at 10% intervals
from 100% to 0% SOC. The HPPC test consists of a 1C discharge for
10 s, a 40 s rest period and a¾ C charge for 10 s. Constant current 1C
discharge was applied to move to different SOC levels and a 1 h rest
was conducted in between HPPC tests in order to ensure that the
battery reached equilibrium.

The open circuit voltage (OCV) curve was determined by sub-
jecting the cells to a C/25 discharge current for 25 h followed by an
hour of rest and a C/25 charge current for another 25 h. The OCV
curve was then calculated by taking the average of the charge and
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discharge curves.

3. Model development/simulation framework

The cell-level voltage response model and pack-level simulation
framework were the exact same for each battery chemistry. The
only difference between battery chemistries were the circuit
parameter values in the model and the degradation model chosen
for the simulation. The decision to test the simulationwith different
battery chemistries was made to determine the robustness of the
change-out concept.

3.1. Cell-level voltage response model development

The cell-level model was built on the concept of an equivalent
circuit model (ECM) due to constraints in computation time. The
Thevenin equivalent circuit model was used to represent cell
voltage response since the model provided a good balance of ac-
curacy and computational efficiency. This ECM was also chosen
based on its merits in representing fundamental characteristics of
LFP and NMC/LMO batteries [25,26]. The equivalent circuit model
consists of the Ro parameter, which represents the internal resis-
tance of the cell and RC parameters RTh and CTh, which model the
transient voltage response to changing current. The voltage source
of the ECM represents the open-circuit voltage (OCV) of the cell and
is varied with SOC. The ECM is shown in Fig. 1.

The equivalent circuit model can be written in the form of a
differential equation as shown below.

dðUThÞ
dt

¼ � UTh

RThCTh
þ IL
CTh

(1)

UL ¼ Uoc � UTh � ILRo (2)

The parameters Ro, RTh and CTh can be determined using the
procedure outlined in Section 2.1. For a given current and state of
charge, solution of Equations (1) and (2) can yield the terminal
voltage.

3.2. Degradation model development

The voltage response model needs to be coupled with a degra-
dation model in order to adequately predict the degradation profile
of a battery pack. During the simulation of the battery pack, the
degree of degradation of the particular cell will continuously be
evaluated based on its charge history. Several cycling aging models
have been proposed in the literature, including both empirical and
fundamental approaches. Generally, cycling aging models consider
the effects of charge throughput, depth of discharge (DoD), current
rate and average cell SOC [2,27,28] on capacity and power fade.
Fig. 1. Thevenin equivalent circuit model used for voltage response in the cell change
out simulator.
The empirical degradation model based on concepts originally
proposed by Schmalstieg et al. [27] was used in this work to model
degradation in the LFP cells. The model considers the effects of the
depth of discharge of the cell as well as the average voltage of the
cell throughout the current profile. The model was simplified
slightly to depend only on cycling aging factors and neglect cal-
endar aging.

Equations (3)e(5) show the degradation equations modeling
capacity fade and resistance increase. The terms bcap and bres
represent fitting parameters and were calculated in the same form,
shown in Equation (5), but with different values of a, b, c and d [27].

CAPcyc ¼ 1� bcap

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qprocessed

q
(3)

Rescyc ¼ 1þ bresQprocessed (4)

bcap=res ¼ a
�
Vavg � b

�2 þ cþ d*DoD (5)

The term CAPcyc represents the ratio of current cell capacity to
the initial cell capacity. A ratio of one occurs when there is zero
amp-hours processed, which indicates a new cell. This value de-
creases over time due to degradation of the cell. In a similar way,
Rescyc represents the ratio of the current cell resistance to the initial
cell resistance. As the resistance increases over time, the ratio in-
creases. The equivalent circuit model, shown in Equations (1) and
(2) can be solved for a given current profile in order to determine
the average voltage used in Equation (5). The depth of discharge
(DoD) can be estimated from the coulomb counting block in Fig. 2.

The degradation model proposed by Cordoba-Arenas et al. [29]
formed the basis of the degradation model applied to the NMC/
LMO chemistry. It also considered average SOC and charge
throughput, but neglected depth of discharge (DoD). It additionally
considers C-rate and temperature, although the temperature was
taken to be constant 298 K in the simulation. This degradation
model is governed by Equations (6)e(9), where
R ¼ 8.314 J K�1 mol�1.

CAPloss ¼ ac*exp
��Eac
RgT

�
*Qz

processed (6)

Resinc ¼ ar*exp
��Ear
RgT

�
*Qprocessed (7)

ac ¼ ac þ bc*Ratio
e þ gcðSOCmin � SOC0cÞf (8)

ar ¼ ar þ brðSOCmin � SOC0rÞq þ gr*exp½gðCR0 � CRÞ
þ hðSOCmin � SOC0rÞ� (9)

The terms ac and ar represent the capacity and resistance
severity factors that depend on C-rate (CR), the minimum SOC
(SOCmin), and the ratio between the time spent depleting and
regenerating charge (Ratio). The terms e, f, z, ac, bc, gc, SOCoc ar , br ,
gr , SOCor, CRo, g, h, and q represent constants in the fitting equation,
while Eac and Ear are the cell activation energy for the capacity fade
and resistance increase processes respectively. The output from the
models Caploss and Resinc, represent the percent capacity loss [%]
and resistance increase [%] respectively.

The above models, developed by Schmalstieg et al. [27] and
Cordoba-Arenas et al. [29] were used for two main reasons. First,
using an empirical model instead of a theoretical one is essential for
reducing computational time, which can become a significant issue
when simulating a large number of cells, especially with stochastic
considerations. Secondly, both models contain fitting parameters



Fig. 2. Framework of the cell change-out simulator for a battery pack.

M. Mathew et al. / Journal of Power Sources 349 (2017) 94e104 97
that can be varied stochastically allowing one to develop a more
realistic battery pack, where certain cells degraded more quickly
than others. Note that in this work variation in the degradation
associated with location of the cell within a pack was not consid-
ered, but left to future works (e.g. different cells will experience
different thermal histories). The variability of the cells is a factor
that will be considered in the simulation, and the effects of having
cells that have a high degree of variability will be discussed with
respect to cell change out.

3.3. Pack level voltage model

The pack-level model acts to aggregate results from an array of
single cell models and to summarize the overall performance of the
pack. It assumes a series orientation for all of the cells contained in
an array of cells and simplifies a series of n Thevenin-based ECM to
a single Thevenin-based ECM with n RC circuits. The pack-level
model also outputs pack-level voltage, OCV, and SOC information
with respect to the current profile, which is then used to evaluate
the performance of the overall pack as it degrades.

The other role of the pack-level model is to consistently update
cell-level circuit parameters in the pack. This ensures that the
overall pack model reflects realistic series pack performance, in
which all cells are subjected to the same current profile. It should be
noted, however, that variation in degradation rate of each cell will
result in variance in cycling characteristics for each cell such as DoD
and SOC.

3.4. Simulation framework

The simulation framework proposed in this paper combines the
cell level voltage response model, the cell level degradation model
and the pack level model. The simulation procedure was conducted
in MATLAB using object-oriented programming. Working in an
object-oriented environment allows one to emulate individual cells
that have unique characteristics. In this study, the pack used for the
simulation was made up of 40 randomly generated cells in series.
Therefore, the scale of the simulation was more one of a ‘module’
than a full EV ‘pack’. The cells in the pack would vary in their
equivalent circuit resistances and capacitance values as well as in
how quickly they degrade. By stochastically varying these param-
eters, the simulation provides a more realistic prediction on how
the pack would degrade over time. The battery pack was subjected
to a charge/discharge cycle of 1C, between 20 and 80% average SOC.
As the cells varied in capacity, the current profile was generated
based on the average capacity of all the cells in the pack, in order to
scale the 1C duty. Note that one cycle refers to one complete charge
and discharge from 20% to 80% SOC. Therefore, if the cell was dis-
charged from 80% SOC to 50% SOC and charged back up to 80% SOC,
this would only be considered as half a cycle. The framework used
for the simulation is illustrated in Fig. 2.

At the beginning of the simulation, 40 new cells were created,
each with its own unique parameters for the voltage response and
degradation. Each cell has a meantime to failure (MTTF), which is
defined as the amount of time it takes for the product, in this case a
particular lithium ion battery cell, to reach its end of life. Stochastic
variation was introduced by generating a distribution from the
experimental data collected on the four LFP cells and four NMC/
LMO cells and drawing the equivalent circuit model parameters
from the distribution. Degradation rate was varied by stochastically
varying the parameters in the degradation model equations for
both LFP and NMC/LMO (i.e. Equations (3)e(9)). Variations in ca-
pacity, cell parameters and degradation are well-documented in
the literature [4,10].

For a given current and array of cells in the battery pack, the first
step is to calculate the state-of-charge (SOC) of each cell. One of the
simplest SOC estimation methods is based on the notion that one
can count the coulombs entering and leaving the battery. The
equation for calculating the SOC is:

SOC ¼ SOC0 þ
1
Cn

Z
I

3600
dt (10)

Where I is the current measured in coulombs/second, and Cn is
the maximum battery capacity. The simulation starts from an SOC
value of 80% for each cell and by integrating the amount of current,
the current SOC value can be determined.

Using the ECM model described in Equation (2), the voltage for
each of the cells in the pack is determined. Note that each battery in
the simulator will produce a slightly different voltage response due
to variations in the individual cells. The degradation model then
takes the voltage and state-of-charge for the cell as an input in
order to calculate the capacity fade.

The capacity of each of the cells in the entire pack will be
checked at discrete intervals to ensure that all the cells are above
the cell failure limit. The interval at which cell degradation was
checked and cells were replaced will be referred to as maintenance
event interval and cells that have capacity below a critical valuewill
be removed and replaced with new ones. The number of cells
replaced during a maintenance event will be referred to as



Fig. 3. (aec) Equivalent circuit model parameters estimated (Ro, RTh and CTh) estimated for four LFP cells; (d) current profile of the UDDS cycle used for model validation (e)
comparison of ECM voltage with the measured voltage for a UDDS drive cycle.
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replacement rate. This concept is widely used in remanufacturing
models, where a “perfectly maintained system” is one where the
replacement check is done continuously and “discretely main-
tained system” refers to a system that is checked at discrete in-
tervals. Note that the maintenance event interval is an important
parameter in this discussion since in electric vehicle applications,
the replacement of cells or modules in a battery pack utilized in an
electric vehicle can only be carried out at discrete intervals. For
example, in a typical vehicle, the cells or modules might be
inspected for degradation during the car's regular seasonal main-
tenance check.

One of the consequences of discretely maintained systems like
EV battery pack is that irregular checks could theoretically miss the
exact moment at which a cell exceeds its EOL capacity fade, and the
cell would not be replaced until the next scheduled check for
replacement took place. Therefore, the state-of-health (SOH) of the
battery pack could fall below 80% since an individual cell could fall
below 80% in between checking intervals. Therefore, the individual
cells need to be replaced when their capacity fade is above 80% in
order to ensure that the entire pack does not degrade past 80%.
Although not specifically examined in detail, the concept of battery
change-out could be applied to a single cell, a group or ‘gang’ of
3e5 cells, or a ‘string’ of 5e10 cells, or a ‘module’ of 20e40 cells,
depending on the design of the pack.
The capacity of each of the cells is recorded throughout the
simulation procedure and a pack capacity is determined based on
the capacity of the weakest cell. The ratio of the degraded cell ca-
pacity of the weakest cell with the nominal cell capacity allows for
the estimation of state of health for the pack as shown in Equation
(11).

SOHpack ¼
minðCapcell1;Capcell2;…;CapcellNÞ

NominalCellCapacity
�100 (11)

The nominal cell capacity is the initial capacity of the specific
battery. Although power fade is another metric that is often used to
model state of health, previous works [29,30] have shown that, for
LFP and NMC/LMO batteries, the effect of resistance rise (via power
fade) on cell performance is not significant compared to that of
capacity fade.
4. Results and discussion

4.1. Cell level voltage model validation

Following the HPPC procedure taken by Scott [31], the ECM
parameters were determined at various SOC's for 4 LFP cells. The
results are plotted in Fig. 3(aec). It was concluded that the pa-
rameters were constant enough in the range of SOC that would be



Fig. 4. Parameterized degradation curve used in the model compared with the
objective degradation function.
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simulated so the parameters were not varied with SOC. This
simplification improved computational time and the stability of the
model. The C/25 charge-discharge cycles allowed for the calcula-
tion of nominal cell capacities as well as helped in developing the
OCV curve.

Examining Fig. 3(aec), it can be seen that for all four LFP cells,
the same trend is observed for the parameters R0, RTh and CTh. In
terms of the internal resistance R0, it can be seen that the value
decreases as the SOC increases. The resistance in the RC pair, rep-
resented by RTh was found to be constant while the capacitance in
the RC pair, represented by CTh, was found to increase as the SOC
increased. The variation in the parameters for the four LFP cells was
used to generate the varying ECM parameters for the cell change
out simulator.

Urban Dynamometer Driving Schedule (UDDS), is a drive cycle
that is used to represent driving conditions in the city. Since the
change out concept will be used for an electric vehicle battery pack,
it is important to validate the voltage response model using a drive
cycle. Fig. 3 (d), shows the current from a UDDS drive cycle that was
applied to a new lithium iron phosphate battery. The experimental
values obtained were compared to the values obtained from the
ECM model. From Fig. 3(e), it can be seen that there is a good
agreement between the model and experiment for the drive cycles.
The maximum model error was calculated to be 1.56%. Although
adding additional RC pairs would lower the model error, for the
purpose of simulating cell change-out, these values were deemed
to be adequate.
4.2. Cell level degradation

Having selected the degradation model proposed by Schmal-
stieg et al. [27], the model was parameterized to degradation rates
found in the literature for LFP cells. Degradation rates were found to
be highly varied, because the cycling conditions used by different
sources were very different. Degradation rates found in the sur-
veyed literature for cycling conditions similar to the simulation (1C
current, 60% DOD) are summarized in Table 2.

For the purpose of this simulation, the approximate meantime
to failure of the LFP cells was taken to be 4000 cycles. Given the
rated capacity of the LFP cells (20 Ah) and the DoD of the simulation
cycles, this corresponded to 96000 Ah of charge throughput.
Ahmadi et al. [1] proposed an empirical capacity fade model based
on charge throughput for constant cycling conditions. Collection of
long-term degradation data was not in the scope of this work,
which focuses on introducing the cell change-out concept and
showing its feasibility.

The predictive model proposed by Ahmadi et al. [1] was suffi-
cient for the purposes of this paper as it adequately describes ca-
pacity fade in an electric vehicle until the capacity fade reaches 20%.
Therefore parameters in the degradation model for capacity fade
were determined by fitting the degradation equation shown in
Equations (3) and (5) to the curve obtained by Ahmadi et al. [1]
using least-squares regression. The results are shown in Fig. 4.

Although the model is not able to fully capture the initial
exponential growth of the capacity prediction model, the two
curves do align once the charge throughput is greater than
Table 2
Summary of relevant degradation rates for LFP batteries.

Cycling Conditions Cell Life (# of Cycles) Source

Current unspecified, 60% DOD 4000e5000 [32]
0.7C, 100% DOD 4000 [33]
2C, 50% DOD 3000e4000 [34]
40,000 Ah, which is important as cell change out will normally
occur towards the end of the cycle. In a similar way, the parameters
for resistance increase can be identified according to LFP data from
Zhang et al. [28]. The estimated empirical parameters for capacity
fade and resistance increase are described in Table 3 for lithium iron
phosphate.

The same approach can be applied for NMC/LMO cells, where
the mean time to failure is 4000 cycles. The parameter values for
the capacity fade and resistance increasemodels are summarized in
Table 4.

It should be noted that although it is possible to use the
degradation model from Ref. [1] directly, the degradation model of
[27] was used in this paper for three reasons.

1. One of the main goals of this paper is to provide a simulation
framework for cell replacement that can be used by other re-
searchers for understanding the feasibility of this concept for
different battery chemistries. Part of this framework is selecting
a degradation model that is computationally efficient and to
illustrate how this model can be coupled with the voltage
response model in order to simulate cell change out.

2. The degradation model that was selected has inputs of average
voltage (or SOC) and depth of discharge, in addition to charge
throughput. When degradation data is available, this model can
be used to determine capacity fade under different operating
conditions.

3. The chosen degradation model has fitted parameters a, b, c and
d, which can be varied stochastically in order to generate vari-
ability among different batteries and these models can be
coupled to power fade models.
4.3. Simulation results e variability in degradation

One of the first simulations that will be discussed in this paper is
the effect of variability in degradation rate on the cell change-out
Table 3
Parameters for the LFP cell degradation model.

Parameter Capacity Fade Resistance Rise Units

a 0.00142 2.780*10�5 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ah � V

p �1

b 3.274 3.199 V
c 0.00119 �2.237*10�5 ffiffiffiffiffiffiffi

Ah
p �1

d �9.219*10�4 7.361*10�5 ffiffiffiffiffiffiffi
Ah

p �1



Table 4
Parameters for the NMC/LMO cell degradation model.

Parameter Value

Eac 2.16*104 [J mol�1]
Ear 4.76*104 [J mol�1]
z 0.516
ac 144.5 [Ah�z]
bc 420.1 [Ah�z]
gc 9.39*103 [Ah�z]
e 0.343
f 3
ar 3.46*105 [Ah�z]
bc 1.29*109 [Ah�z]
gr 3.96*103 [Ah�z]
q 6
g 1.02
h 1.75
SOC0c 0.24
SOC0r 0.23
CR0 4.43

Fig. 5. (a) The effect of variability in the degradation parameters on the state of health
of the battery pack during cell change out simulation; (b) The number of batteries
replaced during the cell change out simulation when degradation parameters are
varied.
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results. Depending on the type of battery and the battery pack
manufacturer, there can be a significant difference in how quickly
one cell degrades when compared to another. Therefore, the effect
of varying degradation on the feasibility of cell change-out is a topic
that needs to be addressed. This was investigated by changing the
standard deviation of the distributions fromwhich the degradation
model parameters came from. Standard deviation of 10%, 5% and 2%
of the mean value were tested.

As previously mentioned, the simulation of the battery packwas
carried out for 40 cells for a total of 15,000 charge-discharge cycles
between 20% and 80% state of charge. The simulation protocol
illustrated in Fig. 2 was utilized in order to generate the simulation
results. In this particular simulation, it was assumed that the bat-
tery pack is a “perfectly maintained system”, which means that the
battery pack was checked continuously (or at a very small main-
tenance event interval) in order to determine whether one or more
of the cells had degraded. The minimum capacity for which a cell
will be replaced was taken to be 85% of its nominal capacity for this
particular simulation.

The capacities of each individual cell, the pack capacity, the end-
of-charge and end-of-discharge voltages, and the voltage profiles
were recorded throughout the simulation. The charge throughput
history of each cell was updated at the end of each cycle, as it is
required for updating the degradation status of the cells.

The simulation results are summarized in Fig. 5 below. Fig. 5 a
shows the state of health of the battery pack as a function of
number of cycles with three different simulations carried out with
different variability in the degradation parameters. The meantime
to failure of the cell was taken to be 4000 cycles for this simulation
presented in this section. In addition, the plot of the number of
batteries replaced as a function of number of cycles is shown in
Fig. 5b, for different degradation parameter variability.

Examining Fig. 5a, it can be seen that regardless of the variability
in the cell degradation, the state of health of the battery pack
reaches steady state after 15,000 cycles. These findings have been
shown to hold true by Refs. [6,7], who developed reliability models
for the remanufacturing of a systemwith parts that can be replaced
after failure. The results from this group showed that the average
age of parts in a system can be maintained below their failure age
indefinitely by remanufacturing. However, the findings by
Refs. [6,7] cannot necessarily be applied to the battery pack since
the capacity (analogous to age) of a serial battery pack is limited
entirely by its weakest cell; the average age of the cells is not a
consideration. Therefore, the findings from this study are important
to EV manufacturers as it shows that by employing a cell
replacement strategy, the state of health of the battery pack can be
maintained indefinitely.

The results from this simulation also show that regardless of the
variability in the cell degradation parameters, by using the cell
change out concept, the state of health of the battery pack does not
fall below 80%. A lower degree of variability results in larger os-
cillations in state of health as shown in Fig. 5. This is due to the fact
that a lower degree of variability means most of the cells will reach
the maximum state of health value required for cell replacement at
the same time, resulting in the large oscillations seen in Fig. 5. The
effect of variability is also reflected in Fig. 5b, where it can be seen
that when the degree of variability is low, a large number of bat-
teries need to be replaced at once. However, a higher variability in
the degradation parameters is found to require constant replace-
ment of batteries. This is not possible in an EV since servicing of the
battery pack can only be carried out at discrete intervals. The sec-
tion below will examine how quickly the cells needs to be checked
in order to ensure the battery pack is maintained above the critical
capacity fade level.
4.4. Simulation results - degradation rate and maintenance event
interval

As previously mentioned, it is not possible to conduct cell
change-out continuously as soon as one cell reaches its minimum
capacity. Rather, the cell change out concept can only realistically
be done at discrete intervals. The following section examines the
relationship between the rate at which the cells degrade and how



Fig. 6. (a) The simulated state of health for a battery pack that has a meantime to
failure of 4000 cycles, where the cells are replaced at discrete intervals of 100, 1000
and 2000 cycles; (b) The pack voltage at the end of discharge for a lithium ion battery
pack with a meantime to failure of 4000 cycles and maintenance event interval of 2000
cycles; (c) The replacement rate (or number of cells replaced) during each maintenance
event for a lithium ion battery pack with a meantime to failure of 4000 cycles and
maintenance event interval of 2000 cycles.
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quickly the cells need to be replaced in order to ensure that the
pack capacity does not drop below 80%. This is an important factor
to considered for EV manufactures as this allows them to develop
guidelines on how quickly the car needs to be taken in for service
and what degree of degradation in the individual cell is acceptable.

Once again, the simulation of the battery pack was carried out
by developing a battery pack of 40 cells in series and carried out at
1C charge/discharge for a total of 30,000 cycles. The first simulation
was carried out for cells with a meantime to failure of 4000 cycles.
As noted previously, since the goal of cell change out concept is to
ensure that the pack capacity does not fall below a minimal
threshold value, it is important to change out the individual cells
that are at a capacity higher than this value in order to ensure the
pack SOH always remains above the threshold value. This higher
threshold for the individual cells will be referred to as minimal cell
capacity and a value of 15% capacity fade will be used in this
simulation. The results are shown in Fig. 6 below.

Fig. 6 (a) shows simulation results for cell change out for three
different scenarios: when there is perfect replacement (replace-
ment every 100 cycles), replacement every 1000 cycles and
replacement every 2000 cycles. The dashed line represents 80%
state of health for the pack, where the battery pack normally has to
be replaced.

The results show that when the maintenance event interval is
1000 cycles, the battery pack is maintained at a state of health that
is above the 80% mark. However, at 2000 cycles, the state of health
value dips below the required threshold. Therefore, this means that
for this particular battery chemistry and battery life, the degraded
cells must be replaced at least at a discrete interval of 2000 cycles in
order to ensure the capacity fade of the battery pack does not
exceed 20%. These results are important since they illustrate that by
using simulation, car manufacturers will be able to determine how
quickly the battery pack in an electric vehicle needs to be serviced
in order to prolong the pack life.

In addition to capacity fade, the voltage of the battery pack will
also decrease (power fade) as the battery is cycled. Fig. 6(b) shows
the pack voltage at the end of discharge, recorded every 500 cycles.
The initial decrease in voltage is due to an increase in resistance as
the battery pack is cycled. The voltage of the battery pack increases
when a maintenance event occurs where damaged batteries are
replaced. Similar to the state of health of the battery, the pack
voltage is found to reach a steady state value as the number of
cycles increases.

It is also important to consider the number of cells that need to
be replaced during a maintenance event. Fig. 6(c) shows 30
consecutive maintenance events and the number of cells that have
been replaced during each event. The results in Fig. 6(c) show that
as the number of maintenance events increase, the number of cell
that are replaced during these events appears to reach a steady
state value.

The same simulationwas carried out only this time the assumed
meantime to failure of the cell was decreased to 2000 and 1000
cycles. The degradation data for an EV battery pack obtained by
Ref. [1] was still utilized, only the data was scaled to match the
lower MTTF of the cell. The results are shown in the two figures
below.

When the meantime to failure of the cell is taken to be 2000
cycles, the minimum maintenance event interval also decreased to
1000 cycles. The trend holds when the MTTF is decreased even
further to 1000 cycles, as shown in Fig. 7, where at a maintenance
event interval of 500 cycles the state of health dips below 80%. For
this particular chemistry, it appears that a ratio of meantime to
failure to maintenance interval of 2 is required in order to ensure
the pack is able to meet its capacity demands.

These results from Figs. 6 and 7 show that in order to decrease
the number of maintenance events (or the number of replaced
batteries), the meantime to failure needs to be increased. The
meantime to failure for a particular battery depends on the battery
chemistry as well as the operating conditions under which the
battery pack is used. Therefore, the simulator presented in this
paper can be utilized to assess the feasibility of a particular battery
for cell change out. Also, discrete change-out of the individual cell
at lower minimum capacity threshold is viable, where the EOL
chosen should be tuned to the meantime to failure of the cell and
how often the cell can be checked for replacement. If a longer
monitoring interval is selected, an earlier cell EOL will be required.



Fig. 7. The simulated state of health for a battery pack that has a meantime to failure of (a) 2000 cycles, where the cells are replaced at discrete intervals of 50 and 1000 cycles; (b)
1000 cycles, where the cells are replaced at discrete interval of 25 and 500 cycles.

Fig. 8. The simulated state of health for a battery pack that has battery cells with a
chemistry of LFP and NMC/LMO for the (a) perfect replacement and (b) discrete
replacement cycles.
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4.5. Simulation results e comparison of LMC/NMC chemistry

The simulation results described above were obtained for a
battery pack primary composed of lithium iron phosphate (LFP)
battery cells. In order to test the robustness of the cell change out
application for electric vehicles, the change out concept was
implemented on a different chemistry; this time a mixed cathode
chemistry of NMC/LMO. It is important to understand whether the
trends obtained in the above section for LFP is observed for other
battery chemistries such as NMC/LMO. The meantime to failure for
NMC/LMO cells was deliberately chosen to be the same as that of
LFP cells and the standard deviation used in generating the sto-
chastic degradation parameters was also chosen to be 5% of the
mean for both cases. New parameters for the ECM were developed
based on HPPC tests carried out for NMC/LMO cells and the
degradation model shown in Equations (6)e(9) was applied. It
should be noted that the same degradation curve used for LFP is
used for NMC/LMO cells to fit the degradation model. The results
fromRef. [29] shows a similar trend to that observed in Fig. 4 for LFP
and therefore the assumption is deemed to be sufficient for the
purposes of this paper.

The simulation was once again carried out for 30,000 cycles for
the perfect replacement case as well as discrete replacement case.
For the discrete replacement example, a maintenance event inter-
val of 2000 cycle was used for checking to determine whether the
individual cell needs to be replaced. The results are summarized
below.

The findings from Fig. 8 show that regardless of the chemistry of
the battery, the state of health of the battery pack does reach steady
state if the pack undergoes regular maintenance events where
degraded cells are replaced. How quickly the state of health reaches
steady state differs between the two chemistries, and on the mean
time to failure assumed for the cells. As Fig. 8 shows, NMC/LMO
chemistry has a greater degree of oscillation and takes longer to
reach its steady state value using cell change out. This is an
important consideration since a larger degree of oscillations in the
state of health of the battery pack can have implications on how
quickly the cells need to be checked for replacement i.e. how
frequent pack maintenance events should be. Finally, the results
illustrate that the cell change out concept is able to maintain bat-
tery SOH indefinitely with regular maintenance events where
degraded cells are changed out regardless of the battery chemistry.

Besides the somewhat common LFP and NMC/LMO battery
chemistries, novel chemistries have been proposed in Refs. [35,36].
While these LithiumeVanadium and Sodium-based chemistries
were not considered in this work, the fact that the ultimate result of
the simulation was consistent between different degradation
models and cathode chemistries suggests that the change-out
concept would hold for any battery chemistry. The frequency of
maintenance events and the SOH threshold for thesewould need to
be adjusted for new battery types, an adjustment that would be
based on eventual experimental data. Future work could be carried
out by considering these new battery chemistries as well as other
battery configurations such as prismatic and spiral wound cells.

It should be noted that the battery pack used in this study is
composed of cells connected in series. Therefore, the overall
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performance of the battery pack was limited by the most degraded
battery. The old batteries act as a limit on how much of the new
batteries' capacity is used during cycling. Future work will be car-
ried out in developing a battery pack composed of multiple battery
strings in parallel. When using such a battery pack, the interaction
effect between a new and old battery would be greatest since the
resistance rise in one string would lead to more current being
diverted to other strings. Applying the cell change out concept for
this particular battery pack would be something that will be
considered in future works.

Finally, this work recognizes the limitations of this degradation
model, as large sets of degradation data is difficult and time
consuming to collect. However, the overall change-out concept
presented in this work can be modelled with any degradation
model including models that are specific to certain chemistries or
cell configurations. Naturally the more specific and validated the
degradation model is, the better the prediction of the overall pack
life. Thus, another research group with their own degradation
model can use this approach for simulating cell change out.

5. Conclusions

Various studies in literature have carried out simulations of
battery packs, while few have discussed the concept of cell change-
out. This paper attempts to combine the two concepts by creating a
battery pack model and utilizing the model to understand the
concept of cell change-out. The battery pack model is developed by
modeling each individual cell using a Thevenin equivalent circuit
and an empirical degradation model. The individual cell parame-
ters in the voltage response model as well as the parameters in the
degradation model can vary stochastically in the simulation. The
individual cells that have degraded below 80% capacity in the
simulation are changed out during maintenance events resulting in
an overall cell replacement rate that appears to reach steady state
as the number of maintenance events increase. The overall pack
performance also reaches steady state with the replacement of
individual degraded cells during maintenance events. The paper
provides a simulation framework for conducting cell change out
and from the simulation results, the following conclusions can be
observed:

� By changing out individual cells that have dropped below their
minimum capacity, the overall state of health of the battery pack
can be maintained indefinitely above a target specification of
80% pack capacity;

� The maintenance event rate at which the cells are replaced is
directly related to the average mean time to failure assumed for
the individual cells which is simulated using stochastic param-
eters. As expected a higher mean time to failure results in a
longer period between maintenance events required to main-
tain the state of health. Therefore, by using the simulation
protocol outlined in this paper, the optimal maintenance period
for a particular pack can be established;

� The results show that regardless of the chemistry, the cell
change out concept will result in a battery pack that reaches
steady state performance with regular maintenance.

The contributions from this paper illustrates that if at some
point the concept of cell change-out does become economically
feasible, applying this approach would ensure that the battery pack
operates for a much longer period of time in service.
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Abbreviations

CC/CV Constant current/constant voltage
DoD Depth of discharge
ECM Equivalent circuit model
EOL End of life
EV Electric vehicle
HPPC Hybrid pulse power characterization
LMO Lithium magnesium oxide
LFP Lithium iron phosphate
LIB Lithium ion battery
Li-ion Lithium ion
MTTF Meantime to failure
NMC lithium nickel magnesium cobalt oxide
OCV Open circuit voltage
SOC State of charge
SOH State of health
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