ROLE OF HYDRO IN MODERN SUSTAINABLE POWER GRIDS

BY: P.C. HELWIG, M.Sc., P.ENG JULY 12, 2013 W.I.S.E.

INTRODUCTION

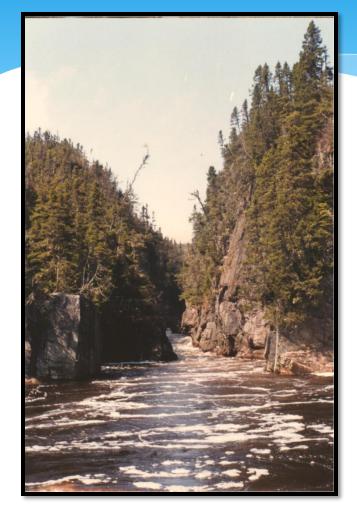
TOPICS:

- Features of hydro developments
- Comparison with other renewables
- Contributions to grid performance
- Challenges to hydro
- ➢Is hydro sustainable?

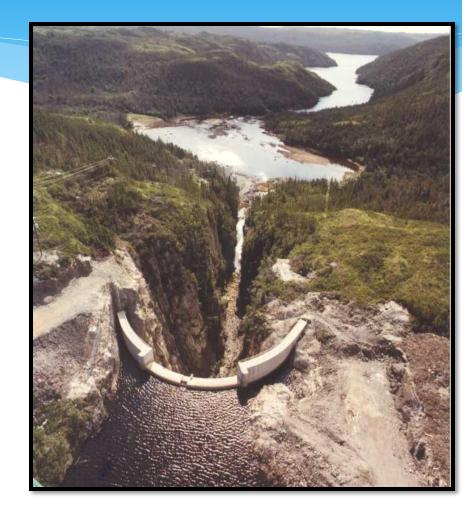
FEATURES OF HYDRO DEVELOPMENTS

- >Hydrologic regime
- Site topography and development concepts
- Multipurpose developments
- Run-of-river versus storage projects

HYDROLOGIC REGIMES

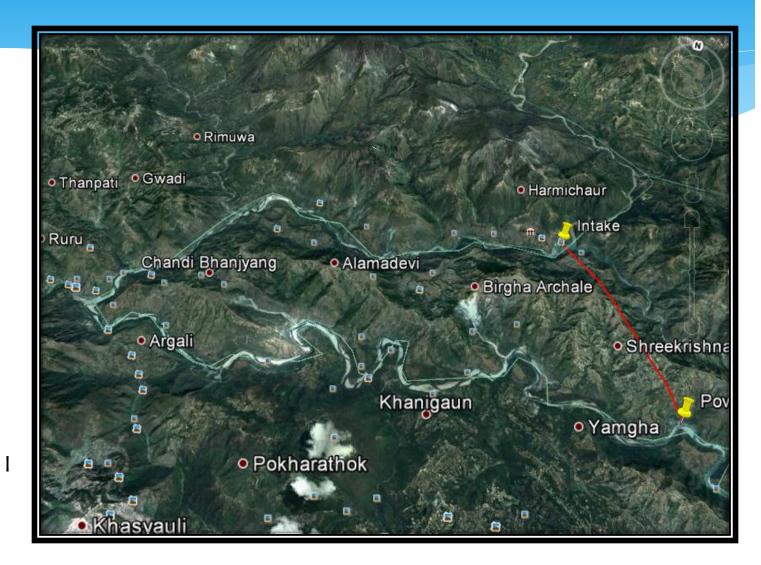

Humid Zone: Rio Sabanilla, Ecuador

HYDROLOGIC REGIMES

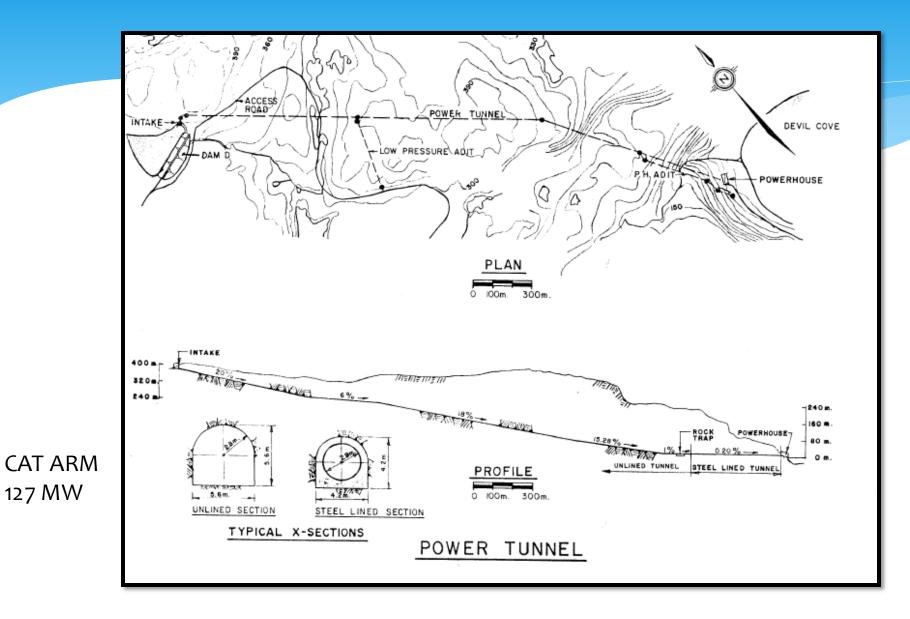


Arid Zone: Snare Lake NWT.

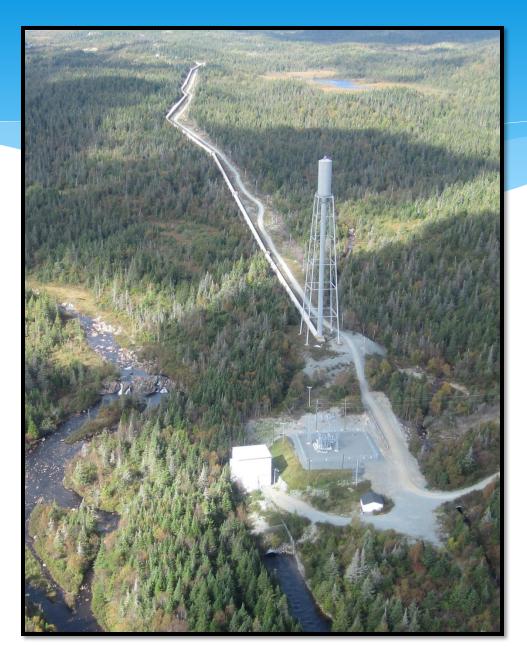
CANYON SITE

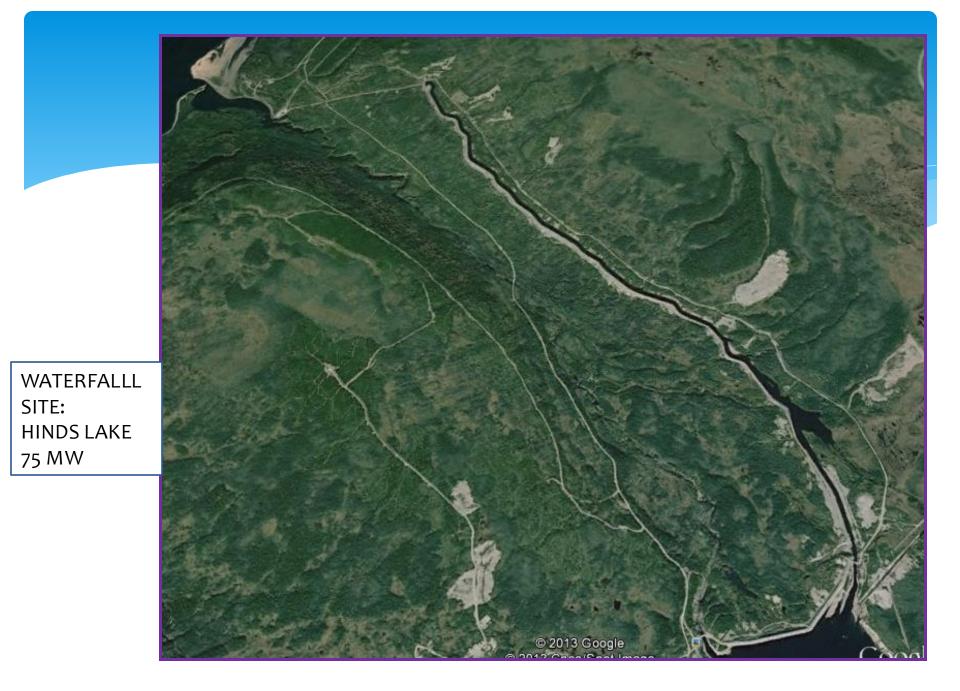


PRE-CONSTRUCTION

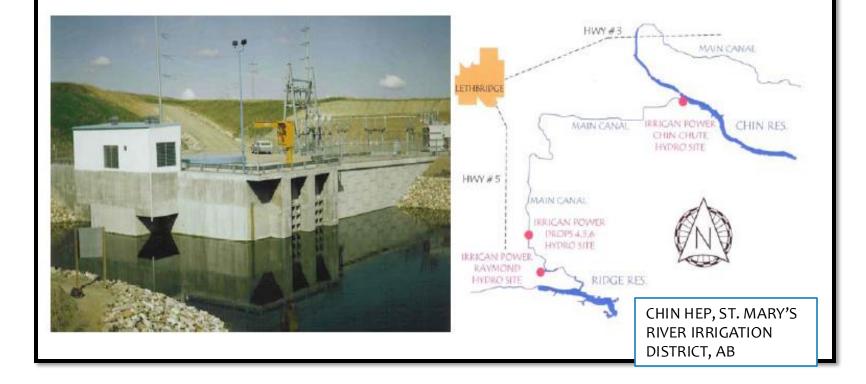

AFTER CONSTRUCTION CA. 1989

RIVER BEND


KALIGANDAKI I 300 MW

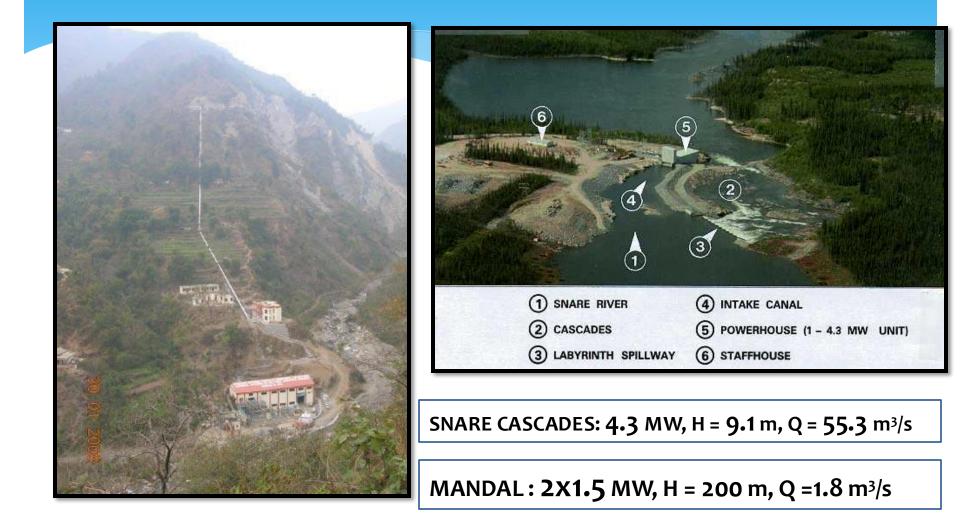

PLATEAU TO OCEAN

RAPIDS SITE


HORSECHOPS HEP: 8.1 MW

MULTIPURPOSE: IRRIGATION & POWER

- A cast-in-place reinforced concrete tailrace structure to control tailwater elevations during low water levels in Chin Reservoir.
- A Synchronous Generator Nameplate Capacity 11.7MW. at 13.8 KV



MULTIPURPOSE: POWER & FLOOD CONTROL

TEMENGOR HEP PERAK RIVER MALAYSIA

HIGH HEAD VERSUS LOW HEAD



LARGE VERSUS SMALL

TEHRI HEP: 1,000 MW

PORT UNION HEP: 400 kW

CLASSIFICATION OF RESERVOIR STORAGE

STORAGE RATIO = <u>LIVE STORAGE VOLUME</u> MEAN ANNUAL FLOW VOL

CLASS	RATIO	EXAMPLE	STORAGE RATIO (%)	REMARKS
DAILY PONDAGE	~ 0.1%	Franquelin HEP	~ 0.1%	For 4 hours peaking, a longer peaking
				period will require more storage.
SMALL RESERVOIR	> 5% < 20%	Portland Creek	14.40%	Short term "temporary storage".
INTERMEDIATE	> 20% < 40%	Tarbela, Pakistan	25%	Seasonal storage
RESERVOIR		Snare Rapids, NWT	30%	Seasonal/annual
		Hinds Lake, NL	39%	Multi-year regulation
LARGE	> 40%	Cat Arm, NL	47%	Multi-year regulation
RESERVOIR		LG 2, Quebec	89%	Multi-year regulation
		Aswan, Egypt	300%	Multi-year regulation

COMPARISON WITH OTHER RENEWABLES

Comparison of characteristicsComparison of technologies

CHARACTERISTICS OF RESOURCES

FEATURE	HYDRO	WIND	SOLAR				
VARIABILITY	All natural energy sources are inherently variable and are dependent on weather, region and site factors.						
	Hydrologic regime	Wind Regime	Solar Regime				
	Produce mainly secondary energy with little or no firm energy,						
PERSISTENCE	For perential rivers $\frac{Q 90\%}{Q mean} = 0.2 - 0.45$	Nil	Nil				
PREDICTABILITY	Days to seasonal	Few days to week	Days to seasonal				

COMPARISON OF TECHNOLOGIES

FEATURE	UNIT	HYDRO	WIND	SOLAR
MATURITY (1)	-	Mature	Mature	Some way to go.
ROBUSTNESS	-	 usually unaffected by weather vulnerable to water borne sediment rotating equipment life: 15 to 30 years dams and structures life: 50 to 100 years 	 cut-in wind speed = 4m/s cut-out wind speed = 25m/s min operating temp: 20 °C nominal rotating equipment life: 20 years with replacement of gear boxes and bearings at 8 to 10 years towers & foundation ~ 40 yrs 	 potentially long life few moving parts durability of materials will control longevity
AVAILABILITY READINESS	% time	95% to 98%	< 98% claimed when wind is available?	~ 100% when sunlight is available
ENERGY CAPTURE (2)	% of capacity	50% run-of-river 80% plus with long term storage	~ 30%	~ 13%
ECONOMICS	-	 water-to-wire equip't designs available civil works unique at each site subject to dis-economies of scale. 	 developments use standardized equip't and tower designs benefit from industry wide economies of scale. unit costs improving 	 developments use standardized equip't designs benefit from industry wide economies of scale. unit costs improving

CONTRIBTIONS TO GRID

Provide "virtual storage"
 Rapid dispatch
 Frequency stabilization
 Dispersion of generation sources (sometimes).

PROVISION OF "VIRTUAL STORAGE"

In systems with large storage reservoirs water can be temporarily stored when production from wind generators is high and this stored water later used for energy production when winds are light.

RAPID DISPATCH

Hydro generators with storage can be dispatched rapidly. Typical loading times from start up are:

- ➢Nuclear power: Days
- ➤Coal fired thermal : 6 to 8 hours
- ➤ Gas turbine: ~ 15 minutes
- Diesel genset: ~ 15 minutes
- Hydro: 5 secs to 1 minute plus

FREQUENCY CONTROL

Hydro generators react rapidly to system load changes to mitigate frequency swings

Hydro generators contribute significant inertia to the grid.

Can be operated as "synchronous condensers" to mitigate system load factor.

FREQUENCY STANDARDS

Remote plant supplying mining load: Frequency limits 60 Hz +/- 3 Hz

German Norms:

Frequency tolerance: 50Hz +/- 0.05Hz

With step load change: 50Hz +/-0.20Hz

DISPERSION OF ENERGY SOURCES

System reliability is enhanced when hydro plants are dispersed across a regions. Diversity in flow patterns also provides benefits for run-of-river hydro.

Similar benefits are obtained from dispersed wind farm developments!

CHALLENGES TO HYDRO

Large project footprint

- Environmental effects both positive and negative
- Socio-economic effects
- ➢ Regulatory regime.

FOOTPRINT

Hydro projects often have large footprints compared to other development projects. Environmental and socio-economic issues are proportionate to size.

- SMALL FOOT PRINTS:
- ≻Run-of-river
- ≻Multi-purpose
- LARGE FOOT PRINTS:
- Projects with large storage reservoirs, long transmission lines and access roads

ENVIRONMENTAL EFFECTS

Inundation of shorelines
 Hydrothermal changes
 Biochemical
 Sedimentation
 Flow regime
 Impact on biota

SCOCIO-ECONOMIC

Resettlement
 Impact on resource users
 Health
 Benefits: power and other uses,

fisheries and recreation.

ENGINEER'S ROLE

Engineering Input:

- Simulation studies to characterize pre and post construction conditions.
- Design of mitigation options.
- Operation: design and implementation of operational plans and strategies.

BIOLOGIST'S ROLE

Biology Input:

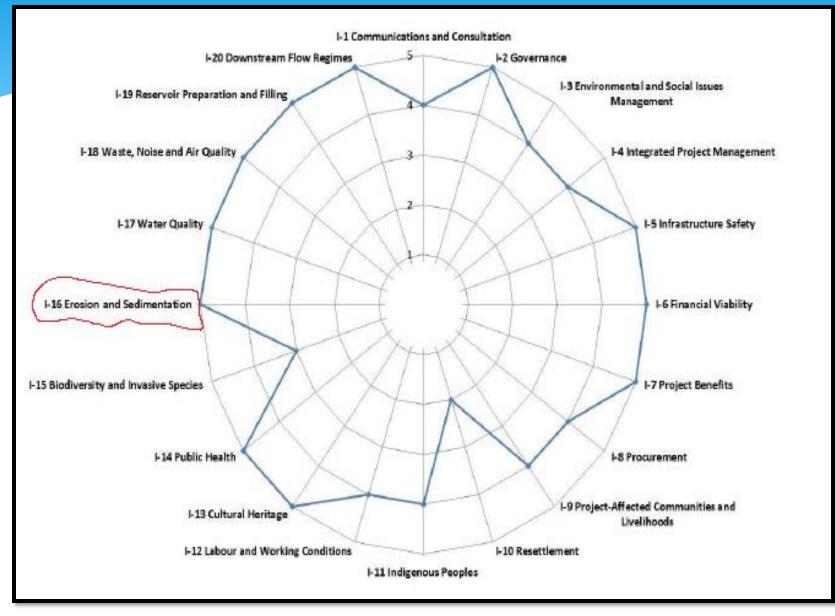
- ➢Assessment of ecological effects.
- Identification of mitigation opportunities and biological requirements / design criteria.

Monitoring to verify "as designed" performance, detect changes and formulate corrective measures.

SOCIAL SCIENTIST'S ROLE

Socio-Economic:

- Assessment of project impacts on local populations both economic opportunities created and opportunities lost.
- Social effects and strategies to minimize adverse impacts.
- ➢Strategies to maximize benefits.
- Evaluation of mitigation or compensation measures.


REGULATORY APPROVAL PROCESS

Convoluted and expensive.

IS HYDRO SUSTAINABLE?

Dictionary definition: A method of harvesting or using a resource so that the resource is not depleted or permanently damaged.

JIRAU SPIDER DIAGRAM

CONCLUSION

- 1. The only factor affecting sustainability for hydro is reservoir sedimentation.
- 2. Most Canadian hydro projects are sustainable, because located on rivers transporting negligible silt loads.
- 3. Logically, hydro projects should be assessed, using two separate kinds of criteria:
 - Sustainability and
 - Acceptability

THE END

THANKS FOR YOUR ATTENTION. ANY QUESTIONS?

Antoine's Comments

approx. 4 m/s usually 25 m/s nominal -20°C; with package -30°C; very special package -40°C

rotating: nominal 20 years but difficult conditions impose early replacement of gearboxes, bearings, after 8 or 10 years foundations: minimal wear components; probably 40 years

Manufacturers usually claim 98% availability factors, below that, they have to pay penalties.

Betz limit dictates that only 59% (16/27) of the energy in the wind can be extracted some turbine manufacturers claim a 50% efficiency, which is 84% of the energy that can be extracted.

A typical efficiency value for a rotor is 45%

WIND

The capacity factor for modern wind farms is about 35%. Some reach as high as 45% others very low at 20%

FREQUENCY STANDARDS

Remote plant supplying mining load:

Frequency limits 60 Hz +/- 3 Hz

German Norms:

- Frequency tolerance: 50Hz +/- 0.05Hz
- Emergency overload:

49.8 Hz, warning and mobilization of reserves.

49.4 Hz, switching off selected customers.

- 48.4 Hz, detaching customers having own supplies.
- 47.6 Hz, disaggregation of grid into regional or local sub grids.