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Abstract: Recently, renewable energy resources (RESs) and electric vehicles (EVs), in addition to
other distributed energy resources (DERs), have gained high popularity in power systems applica-
tions. These resources bring quite a few advantages for power systems—reducing carbon emission,
increasing efficiency, and reducing power loss. However, they also bring some disadvantages for
the network because of their intermittent behavior and their high number in the grid which makes
the optimal management of the system a tough task. Virtual power plants (VPPs) are introduced
as a promising solution to make the most out of these resources by aggregating them as a single en-
tity. On the other hand, VPP’s optimal management depends on its accuracy in modeling stochastic
parameters in the VPP body. In this regard, an efficient approach for a VPP is a method that can
overcome these intermittent resources. In this paper, a comprehensive study has been investigated
for the optimal management of a VPP by modeling different resources—RESs, energy storages, EVs,
and distributed generations. In addition, a method based on bi-directional long short-term memory
networks is investigated for forecasting various stochastic parameters, wind speed, electricity price,
load demand, and EVs’ behavior. The results of this study show the superiority of BLSTM methods
for modeling these parameters with an error of 1.47% in comparison with real data. Furthermore, to
show the performance of BLSTM, its results are compared with other benchmark methods such as
shallow neural networks, support vector machines, and long short-term memory networks.

Keywords: virtual power plant; deep learning; BLSTM networks; uncertainty modeling; electric ve-
hicles

1. Introduction
1.1. Background and Motivation

Global warming and the energy crisis are the most important problems all around the
world; in this regard, the penetration of distributed energy resources (DERs), especially re-
newable energy sources (RESs) has increased dramatically in the power systems. These
resources, on the one hand, bring quite a few advantages such as decreasing pollution and
reducing dependency on fossil fuels, but on the other hand, create some challenges for sys-
tem operators such as increasing uncertainty due to their intermittent behavior [1]. In ad-
dition, some methods and technologies are introduced to increase the efficiency of power
systems, for instance, using electric vehicles (EVs) and deploying demand response (DR).
The most important sources of DR are heating, ventilation, and air conditioning (HVAC)
systems, washing machines, and personal computers (PCs), which are expected to have
a high portion of usage in the near future (more than 160 TWh of the world’s electricity
consumption [2]).
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Combining all these aforementioned methods and technologies in the power systems
leads to a problem for centralized management in smart grids. Virtual power plants (VPPs),
by providing the possibility of decentralized management, are proposed to surmount these
challenges [3]. In fact, VPPs aggregate all these small technologies as a single entity to
get the most out of DERs. Furthermore, VPPs enable small-scale resources to participate
in the wholesale electricity markets [4]. Nowadays, VPPs are faced with a big challenge
in participating in the electricity market—forecasting different uncertainties in the VPP’s
body with good accuracy. Therefore, it is vital to use reliable methods for modeling these
uncertainties.

1.2. Literature Survey

Conquering the above-mentioned challenges with papers in the literature can be di-
vided into two groups. The first group of papers has addressed how to solve the VPP
energy management problem which benefits from different resources. Study [5] uses an
imperialist competitive algorithm for the energy management of a VPP; however, load
flow constraints and emission costs are not taken into account without modeling load flow
and the constraints of the network. Moreover, the results of the study are not realistic and
the advantages of RESs are not visible properly because the emission cost is not modeled
in this work. A solution for the management of a VPP by involving risk is implemented
in [2] to minimize costs by considering correlated DR; EVs are not modeled in this study.
By considering the current trend of power systems, EVs are the inseparable part of the
future networks. In study [6], the optimal scheduling of a VPP includes DERs and DR
without modeling energy storages (ESs) using meta-heuristic algorithms. Meta-heuristic
algorithms have a high computational cost in addition to the possibility of stocking in lo-
cal optimal points. Sadeghi et al. [3] have presented an optimal bidding strategy for VPPs
in the day-ahead energy and frequency regulation markets. In study [7], the problem is
solved to reduce the carbon emission to maximize profit, but EVs are not investigated and
load flow constraints are not taken into account. Study [8] conducted the planning of a
technical VPP for contingency conditions such as single-line outages and seasonal load
change but ESs, EVs, and emission costs are not studied. The alternating direction method
of multipliers is developed in [9] for optimal dispatch of a VPP consisting of conventional
distributed generations (DGs), i.e., fossil fuel-based units, RESs, ESs, and interruptible load.
Optimal participation of a VPP in energy and spinning reserve markets has been conducted
in [10] without modeling the impact of uncertainty modeling on the VPP’s optimal bidding
in the day-ahead (DA) market. In addition, this work is not utilized in the DR program.
DR can effectively reduce the total cost and peak demand in the VPP. In study [11] the
conditional value at risk (CVaR) is utilized for modeling the risk of a VPP but the impact of
EVs is not investigated. Daily and weekly scheduling of a VPP is conducted in [12] by the
robust optimization method; however, this work has not investigated most of the main re-
sources in VPPs such as ESs and EVs. A game theory-based approach based on the supply
function Nash equilibrium and shapely value is conducted in [13] for optimal participa-
tion of a VPP as a price maker unit in the market. Optimal bidding of a VPP including
EVs, RESs, TSs, and ESs in the day-ahead and the balancing market has been conducted
in [14]; however, the DR program is not utilized. In study [4], the impact of a DR program
for participating a VPP in the electricity market is studied but this method is based on a
MINLP formulation and does not consider EVs. In study [15], the planning and operation
of VPPs in the market are modeled by considering uncertainties but the proposed method
is not investigated regarding EVs, load flow, emission cost, and DG constraints. A VPP, as
a case study in India for the integration of RESs, is presented in [16]; however, this paper,
as shown in Table 1, does not model some important sources and constraints. Further re-
sources are explained in Table 1. A comparison among existing papers from an optimal
management strategy’s point of view is presented in Table 1.
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Table 1. A survey for VPPs’ energy management in the existing literature.

VPP Resources Objective Load Emission  Optimization
Ref. RES DG ES EV DR Function Flow Cost Problem
[2] vl X vl X vl Min. Cost vl X MILP
[3] lua} v} o} o} o} Max. Profit o} Joa} MILP
[4] v v vl X vl Min. Cost v X MINLP
[5] vl vl vl X X Min. Cost X X MINLP
[6] v} v} X o} o} Multi-objective X X MINLP
[7] v v v X v Multi-objective X v MIP
[8] v} Jva} X X Jva} Max. Profit Jua} X MINLP
[9] v} ua} o} X o} Max. Profit o} X MINLP
[10] vl vl v vl X Min. Cost v vl MILP
[11] v} o} o} D o} Max. Profit X X MILP
[12] v vl X X vl Max. Profit X X MILP
[13] vl v vl X v Max. Profit v vl MILP
[14] v} o} o} o} X Max. Profit X X MILP
[15] vl X vl X vl Max. Profit X X MILP
[16] v X v X v Min. Cost X X MILP
[17] o} o} D D D Max. Profit X X MILP
[18] vl vl X vl vl Min. Cost X vl MILP
[19] vl vl X v X Min. Cost X vl MILP
[20] v} X X Jua} ua} Max. Profit X X MILP
[21] vl v X X vl Min. Cost X X MINLP
This paper vl vl vl vl vl Min. Cost vl vl MILP

In the second group of papers, various models are utilized for modeling different
stochastic parameters. In study [18], a solution for the management of a VPP by consid-
ering EVs is proposed. This work has not modeled both the EVs’ stochastic behavior and
RES uncertainty. The EVs’ behavior and electricity price uncertainties have not been taken
into account in [19] although a Markov model is used for RES uncertainty. A scenario-
based method is investigated in [8]; these scenarios were created by using Normal and
Weibull distribution functions. In scenario-based methods to reach a high accuracy, a mul-
titude of scenarios is required which increases the computational cost of the problem. In
studies [5,15,20], the 2-point estimate method (PEM) has been used to model uncertain-
ties. PEM cannot bring a high accuracy in datasets with large fluctuations in wind speed
and electricity price [22]. In study [20], autoregressive moving average series (ARMA) is
utilized in addition to the adaptive neuro-fuzzy inference system for modeling price and
wind uncertainties, respectively. Study [6] has used Weibull, Beta, and Normal distribu-
tion functions for modeling uncertainty in WT, photovoltaics, and EVs, respectively. The
same method is employed in [7] and [11]. In study [10], long short-term memory (LSTM)
networks are applied for modeling different stochastic parameters; however, a rough arti-
ficial neural network (RANN) is considered for modeling EVs’ behaviors without consid-
ering the relationship among different features such as arrival time, departure time, and
travel distance which increases the number of infeasible samples. In study [23], the authors
the authors proposed optimal bidding for EVs and ES aggregators in the day-ahead market
(DAM) for the frequency regulation market where the uncertainty in price is modeled by
the seasonal autoregressive moving average (SARIMA) model, and load uncertainty is not
considered. Study [24] does not model the uncertainty in the electricity price. Based on
the information which is presented in Section 1.2 and Tables 1 and 2, the knowledge gap
for this subject can be summarized as follows:

e Based on the current trends in the power systems and disadvantages of fossil fuel-
based units, considering DR programs and EVs are necessary. In addition, the emis-
sion cost is a vital factor for increasing the penetration of RESs that should be inves-
tigated in the studies for optimal management of VPPs. Therefore, modeling a com-
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prehensive study by considering all the components indicated in Table 1 is essential
and has not been completely considered by any of the reviewed papers.

e  Modeling uncertainties, especially EVs’ behavior owing to the fact that VPPs have a
high percentage of stochastic resources can completely change the bids of VPPs in
the market. In this regard, using methods with high accuracy based on data-driven
approaches plays a decisive role to decrease the penalty cost of VPPs in the electricity
market.

Table 2. A survey of methods for modeling stochastic parameters in VPPs.

Uncertainty Modeling
Ref. Price RES Load EV Method
[8] Jva} Jval X X Normal, Weibull distribution functions
[17,25] v} vl v} X Point estimate method
[5] v} Joa} v} X 2-point estimate method
[2,4,21] vl vl v| X Scenario-based method
[18] X X X X -
[19] X Joa} X X Historical data and Markov
[20] vl vl X X ARMA and adaptive neuro-fuzzy inference system
[6] vl vl vl vl Weibull, Beta, and Normal distribution function
[7,11,15] X vdl vl X Weibull, Beta, and Normal distribution function
[26,27] vl vl vl X Weibull, Beta, and Normal distribution function
[9] X vl X X Weibull function
[28] vl Jval X X Scenario generation
[23] vl X X vl SARIMA and Copula methods
[24] X X X vl Empirical probability density function
[29] v} Joa} vl D Monte Carlo simulation
[12] o} Joa} v} X Robust optimization
[14] v} v v} X Scenario-based method
[3,10,13] v ol v v RANN and LSTM
[16] X X X X -
This paper vl vl vl vl BLSTM

1.3. Paper Contribution

Based on the comparison in Tables 1 and 2, the main goal of this paper is to provide
a comprehensive study for a technical VPP —containing different resources including DG,
WT, ES, EVs, and DR—with the aim of minimizing total cost by taking into account the
network and unit constraints. The overall structure of the proposed method is depicted
in Figure 1, considering different resources in the VPP body can increase the efficiency of
VPPs and strengthen their coalition. In addition, WTs can reduce carbon emissions, and
ESs are used to cover uncertainty in RESs and peak shaving. Furthermore, ES’s degra-
dation cost is modeled in this paper to increase the practicality of the proposed method.
The emission cost of fossil fuel-based units is investigated to reduce the global warming
effects and pave the way to increase the penetration of RESs. In addition, a method based
on BLSTM networks is applied to model all the uncertainties associated with the optimal
management of a VPP. For implementing the effect of this method for modeling stochas-
tic parameters, the participation of a VPP in DAM is investigated. In summary, the main
contributions of this paper are as follows:

e  Forecasting all uncertainties involved in the planning of a VPP by bi-directional long
short-term memory (BLSTM) networks—load, price, RES, and EV uncertainties. Fur-
thermore, in this paper, EV samples are generated based on three features (arrival
time, departure time, and travel distance) by considering dependency among these
features. However, other works considered them separately or used the Monte Carlo
method which cannot effectively model EVs” behavior and increased the number of
infeasible samples.
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e  Proposing a comprehensive mixed-integer linear programming (MILP) model for tech-
nical VPPs’ energy management, by emission cost, network and unit constraints, DR,
and degradation cost of ES.

e  Considering the VPP participation in DAM.

| Upstream Network ﬁ |

L= = = — — — - — — — — — — -
Exchanged power | | E Electricity price

| e —— I

VPP | Modeling uncertainties |

operator §

Tsp;ch_ E)agh o D 1sp_atc; o Hispatch
signals signals signals signals
EVS DGS

Ss Q RESs T

'—a

Figure 1. Structure of the proposed method.

1.4. Paper Organization

The rest of the paper is organized as follows. Section 2 describes the formulation of
participating a VPP in both DA and RT markets. In Section 3, the results of this study
are compared with other benchmark methods in this area. Section 4 concludes with the
findings of the paper.

2. Problem Formulation

The objective function of the VPP in this paper is to minimize the total cost as pre-
sented in Equation (1). In this paper, it is supposed that VPP is a price-taking unit in the
market.

Minimizing Cost = ZPODIS « PrpM 4 YY" CobC + )Y " Cogt + ZZCOW 1)
t t s

’POtDIS‘ < PDIS,MAX (2)

The VPP cost function includes the cost of active exchanged power with the upstream
distribution network, DG, ES, and WT costs, respectively. PotD IS indicates the amount of
active power exchange with the upstream network at hour t—positive values indicate the
active power is purchased from the network and the negative values indicate the active
power is sold to the network. Equation (2) shows the maximum allowable active power

which can be exchanged with the upstream network.

i = (P4 PP o) P + St (1 =) + 5D

(ui,t—l — ufrt) + Cffl ®
Py = Pty + D P @)
= Lae* EFe+ Py )

P sy < Pip < PO sy, (6)

QY iy < Qi < QP @)
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P~ Py < [1 — i+ u;’t} UR; + (ui,t - u;,t) pyin 8)
P_1)— Py < [1 —Uj 1)+ ”f,t] DR; + (ui,(t—l) - “f,t)szi" )
X+ i — (1= uig) x M < Xp&o < XP0a + uy (10)
Xi,DtG,on < x M (11)

Xpe ) = TP (i1 — i) (12)

Xoo o 1wy — (i)« M < X0 < XD 41—y, (13)
Xi/DtG’Off <(A—up)*xM (14)

Xﬁffl”) > TiDG'fo(Mi,t —Ujt1) (15)

uf, <y g (16)

Mg,t < ujy 17)

wy > g+ up—1 (18)

DG constraints are presented in Equations (3)-(18) [10,30]. Equation (3) shows the
DG cost function which includes the fuel, emission, startup, and shutdown costs. The
fuel cost function is a quadratic function in the general formula which, in this paper, is
linearized based on a piecewise linear method [30]. Equation (4) indicates the amount of
generated power by each DG. Equation (5) shows the emission cost [10]. Equations (6)
and (7) relate to the minimum and maximum limit of active and reactive generated power
by DGs; Equations (8) and (9) demonstrate ramping up and down limits. Equations (10)-
(15) indicate the minimum up and minimum downtime limits; these equations indicate
how much time a DG should remain off or on when it turns off or turns on. In addition,
Equations (16)—(18) are used for linearization.

The following equations describe ES’s operation [31]:

CST = o (PEECH 4 e ) - g (19)
S,DC C,.C

P,y = PLYPCH — pEecH (20)
EC,CH : EC,CH

0 < P < RECHug (21)

ES,DCH , ES,DCH
0 < PP < REPHaug (22)
S | (23)
PES,DCH

SOCEy = socEy | + (ps’fffCH « S — jﬁm) * At (24)
S

SOCE; = socEs M (25)

SOCMIN < s0Ck? < socMAX (26)

Equation (19) indicates ES cost at time t which is calculated based on the amount of
ES charging and discharging. In Equation (20), the amount of injected or received power
by ES is indicated; Equations (21) and (22) show upper and lower limits of charging and
discharging per hour. Equation (23) indicates the state of charging or discharging in each
hour because the ES can only have one charging or discharging state. Equations (24) and
(25) represent the level of SOC per hour, and Equation (26) refers to the maximum and
minimum SOC per hour.
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Equations (27)-(31) are used to model EVs [23]. EVs are divided into unidirectional
and bi-directional vehicles. Since bi-directional V2G requires complex protection and power
electronic hardware, and is not economically feasible for implementation in the residential
grids with the current technology [23], in this paper, we consider unidirectional EVs.

PEY <CR, (27)

SOCHY = SOCEY_; + (PEY «y5™) « At (28)
SOC, 5 = soc, N (29)

SOchY < BC, (30)

SOCEY > 0.9+ BC, (31)

where, Equation (27) shows the amount of power consumed for charging EV batteries,
which depends on the rated charger capacity; Equations (28) and (29) are used to calculate
the SOC of EVs, and Equation (30) shows the maximum SOC of EVs. Finally, Equation (31)
is applied to ensure EVs” SOC is more than 90% in the departure time.

WT cost is indicated in Equation (32); the power output of WTs depends on the wind
speed as explained in [32].

ClT = Py Coly T (32)
0 19 P < lgcutznl 19 P> lgcutout
Pwt max 19 l9cut1n
Pt = W O < By < OGO (33)
Pwt nax l9zrllizted < l9w,t < lgzc;ttout

For modeling load flow, we used linear load flow formulation as in study [33]:

(PG — PDy— Y P]EY) / Sbase

peb&tex, (34)

= 2Vt — 1) x Gpp + 1§b G (Vit +Vip —1) + By (0p — 014)

QG —QDys— L PE/« tan(gogv) /Sbase = —(2Vy,; — 1)+
peb&tex, ' (35)
By + ng —Bp (Vo + Vip — 1) + Gy (0p — 011)
PGyy =Pop(if b=1)+ Y Pus+Y P+ Y Py (36)
web icb seb
QGy = QPB(if b=1)+ Y Qus+ Y Qi (37)
web i€b

PLyjt = Gpi (Vi — Vi) + By (0p — 014) (
QLp1t = —Bp1(Vor — Vip) + Gpi(0pr — O14) (
SLpjt = PLp1t 4 Cppt % QLp 1t (40)
VMIN < | < pMAX 1)
(

|SLy¢| < SLpT** 42)

Equations (34) and (35) apply active and reactive power balance in each bus; Equa-
tions (36) and (37) express the amount of active and reactive power generation at each bus.
Equations (38)—(40) demonstrate active, reactive, and apparent power flow of lines, cor-
respondingly. Equations (41) and (42) enforce bus voltages and apparent power of line
in the desired range. Equations (43)—(46) are investigated for modeling the DR program.
Equations (43) and (44) show the amount of increase or decrease in the load demand in
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bus b and time t. The sum of the total increase in load in each bus in 24 h should be equal
to some of the decrease which is controlled by Equation (45). Finally, Equation (46) shows
the load after implementing the DR program.

3. Numerical Results
3.1. Input Data

0 < DR© < LC PDy,

0 < DRPFC < LC PDy,

Y DRiffC =Y DRQEC
t t

PDy,; = PDy; — DRPFC + DRINC

(43)

(44)

(45)

(46)

To investigate the efficiency of the proposed method, a VPP as shown in Figure 2 is
considered as the case study. Network information is presented in study [34]. The VPP
consists of four DGs, two ESs, and two WTs which are located at various buses in accor-
dance with Figure 2. The VPP is connected to the upstream distribution network at bus
1. In this study, 200 EVs are connected to different load buses. The data from ESs, DGs,
emission, and WTs are presented in Tables 3—6. Emission data were selected based on [35].

DG3 _ DG2
T 8 WT1 - 119
=h =
- ES2
+
2 | |11 I |16 I I i
— —
1 s ls 17 1ol 2] L) 120
= l4
WT2
DG1 =
ES1
4 S
Figure 2. Overall structure of the case study.
Table 3. ESs’ data.
Bus No. Type SOCSES’MAX SOCES,MIN SOCES,INI X ﬁs RES,CH RES’DCH ”CH ”DCH
(kWh) (kWh) (kWh) ($/kW) (&) (kW) (kW) s s
14 ES1 70 5 25 0.01 1/5 30 30 0.95 0.95
20 ES2 90 10 40 0.012 1/7 40 40 0.95 0.95
Table 4. DGs’ data.
DG,MIN DG,MAX DG,MIN DG,MAX
Bus No. Type 3 ) bg Cq Pg P Qg Qy

($/kW?) ($/kW) (6] (kW) (kW) (kVar) (kVar)
4 DG1 9 x 1070 0.019 0.055 50 600 —180 400
18 DG2 8.8 x107° 0.0197 0.048 30 500 —150 350
5 DG3 9.76 x 107> 0.0055 0.0184 20 300 —160 200
15 DG4 8.6 x107° 0.0048 0.0151 10 250 —100 100
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INPUT

Historical
load
price

wind speed
EVs
data

Table 5. Emission data.

$ 1b
e EFge () e (s
NOy 42 44 %1074
S0, 0.99 0.8 x 107
CO, 0.014 159 x 1073
Table 6. WTs’ data.
C OWT Pwt,max 191:141?1‘11 geutout 1gmteal
B . T w w w w w
us No ype ($/KW) (kW) (m) (m/s) (m/s)
10, 21 WT1, WT2 0.03 500 3 25 9

3.2. Uncertainty Modeling

For modeling the different stochastic data, the BLSTM method is utilized. BLSTMs
have been known as a promising tool for time series forecasting. The formulation of BLSTMs
is explained in [22]. The overall structure of the BLSTM method for forecasting these un-
certainties is shown in Figure 3. For the dataset, we used data from Ontario, a province
in Canada [36]. The data for three years (2019-2021) were selected as the database. The
dataset was divided by 80%, 10%, and 10% as the training, validation, and test sets. In
addition, for EVs’ data, the data from the National Household Travel Survey (NHTS) were
used and for forecasting each sample, three features: arrival, departure, and travel distance
were taken into account. In this way, the connection among features is considered which
decreases the number of infeasible samples.

OUTPUT
e LSTM LSTM LSTM
A
Forecasted
load
{eonafe—{ronfe—fsm fo—
7y 7y price
wind speed
—| s rsru—>{rs] EVs

Figure 3. Overall structure of the BLSTM method.

As it is depicted in Figure 4, the BLSTM method is close to the real data in compari-
son with other methods for forecasting different parameters. To better clarify this in the
next section, the numerical results and costs are presented for various methods. To pro-
vide a quantitative comparison and more perceptible results, the accuracy of the BLSTM
network is compared with other methods by calculating two well-known error criteria,
including the mean absolute error (MAE), and the root mean square error (RMSE) [36]
which is presented in Table 7. The results of this table beside the graphs in Figure 4 clearly
show the superiority of the BLSTM method in comparison to other benchmark methods.
In the time series forecasting task, the deviations between real data and forecasted values
depend on the accuracy of the forecasting method. For example, for load demand, which
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has a smoother trend, the deviations are low among real data and all forecasting methods.
However, for data with high fluctuations, such as wind speed deviations, are high com-
pared to real data for different methods. For instance, BLSTM has the lowest deviations
with real data and LSVM has the highest. To better clarify this issue, all this information

is added to the paper.
0.06
=0.05
=
=
2 0.04
8
£ 0.03
2
2 0.02
8
& 0.01
0
1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24
Time (hour)
Real LSVM = == SANN
GSVM ceeees LSTM BLSTM
(@
1
2095
R
g 0.9
5 0.5
o
=
g 08
—
0.75
0.7
1 2 3 4 5 6 7 8 9 1011 1213 14 15 16 17 18 19 20 21 22 23 24
Time (hour)
Real eesees LSVM =«ee+== SANN GSVM = == LSTM BLSTM
(b)
8
7
=6 —§ &
EF
3
E 3 _— e o
=)
1
0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time (hour)
Real eesees LSVM == == SANN GSVM  emm= «LSTM BLSTM
(0)

Figure 4. Forecasted values and their comparison with the real data: (a) electricity price; (b) load
demand; (c) wind speed.
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Table 7. Forecasting error criteria for different methods.

Method Error Load Demand Electricity Price Wind Speed
Criterion p.u $/kWh m/s

L5 RMISE 00122 00134 Liet

GsvM RV 0017y 00105 1001

SANN RMISE 00 oon7 Lot

LT RMISE ooi2 00053 05700

BLSTM RV 0002 o003 02592

3.3. Case Study Results

The optimization problem is implemented for the case study. In order to show the
advantage of BLSTMs for modeling different stochastic parameters and their effect on the
total cost of the VPP, the results of BLSTM are compared with real data, and several bench-
mark methods such as LSTM, shallow artificial neural networks (SANN), linear support
vector machine (LSVM), and Gaussian support vector machine (GSVM).

Figure 5 shows the exchange power between the VPP and the upstream network. As
can be seen, the most similarity exists between the real data and the BLSTM method, which
makes the cost of the VPP more closely related to the actual cost and optimal utilization
of resources, while other methods, due to their lesser ability in modeling uncertainties,
cause a large difference in actual and scheduled amounts. The reason why the VPP buys
electricity from the upstream network all over the hours is that the capacity of the resources
in the VPP is less than its load. Additionally, as shown in Figure 5, the VPP in the early
hours of the day when the electricity price is low received more power from the network
and, with increasing electricity prices, the amount of power received from the upstream
network decreased; especially, at hours 9-10 and 18-23 where the electricity price is too
high, the VPP has received the lowest power from the network.

6000
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Exchanged power (kW)
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12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Time (hour)
Real BLSTM LSTM
shortANN = = = GussianSVM ====- LinearSVM

Figure 5. Amount of exchanged power between VPP and upstream network.

ESs’ SOC is shown in Figure 6. As it is evident from this figure, ESs start to discharge
in the early hours of the day when the load is low to charge EVs, and continues to charge in
the next hours, so that it can reduce the peak load in hours 9-11 and 19-22 by discharging.
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i
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Time (hour)
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Real ES2 ——BLSTM ESI ——BLSTM ES2

Figure 6. SOC of ESs with real data and BLSTM method.

The amount of generated power by each DG in 24 h for real data are compared with
those of the BLSTM method given in Figure 7. As illustrated in this figure, in hours 1-7,
the amount of load and also the electricity prices are low, therefore, the VPP will keep the
DGs in their minimum capacity due to the high cost of DGs (because the emission cost is
taken into the problem) and buy more power from the network. With rising prices as well
as rising loads at hours 9-10 and 16-23, DGs work at their maximum production capacity
to reduce the purchasing power from the network due to high electricity prices.
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Figure 7. Generated power (kW) by DGs in 24 h for real data and BLSTM methods: (a) DG1; (b) DG2;
(c) DG3; (d) DGA4.

Figure 8 shows the amount of EVs which are charging for real data and the BLSTM
method, which are very close together. Additionally, to investigate the effect of coordi-
nated and uncoordinated EV charging —EVs start charging after entering the parking lot—
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on the network, the proposed algorithm was implemented once for coordinated charging
(Figure 9) and again for uncoordinated charging (Figure 10) on real data.

== Ra] ==8=BLSTM
2500
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EVs demand (kW)
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Figure 8. EVs charging in the coordinate charging procedure for real data and BLSTM method.
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Figure 9. Impact of coordinated charging on the network load.
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Figure 10. Impact of uncoordinated charging on the network load.
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As illustrated in Figures 9 and 10, in the case of coordinate charging, the VPP adjusts
the EV charging to the early hours of the day when the load is low, thereby it prevents the
synchronization of the residential pick load and charging of EVs, which reduces the ten-
sions on the network. It is also economical for the owners of the EVs because EV charging is
conducted at low electricity prices which reduces the charging cost for EVs” owners. How-
ever, in uncoordinated charging mode due to the synchronization of EVs’ charging and the
residential peak load, the tension entered into the network increases and may even cause
network instability.

In Table 8, details of the cost of the VPP for real data as well as the forecasted data
by five other methods are presented. As stated in this table, the BLSTM method has the
lowest error in comparison with other methods (1/47% error), which demonstrates the
effectiveness of this method to forecast various uncertainties. In other methods, the cost is
different from the actual cost and is much lower than the actual cost, which makes the VPP
unable to properly estimate its costs. Therefore, it must pay a heavier penalty, and cannot
bid optimally on the DAM.

Table 8. VPP costs in different methods.

Method Network Cost DG Cost ES Cost WT Cost Total Cost Error
Real data 12479 491.2 83.3 23.1 1802.80 -
BLSTM 1248.9 465.1 83.3 20.9 1776.2 1.47
LSTM 1120.8 436.3 83.4 12.9 1619.5 10.16
Short ANN 12214 3184 80.2 25.6 1611.1 10.63
Gaussian SVM 1138.0 382 80.7 29.8 1595.8 11.47
Linear SVM 1155.6 2435 79.2 34.2 1484.5 17.65

4, Conclusions

In this paper, a complete model is presented for the optimal management of a VPP
in day-ahead markets with modeling uncertainties. This method is based on a mixed-
integer linear programming which is suitable for large-scale problems. The characteris-
tics of the proposed method are considering renewable energy resources, electric vehicles,
distributed generations, and energy storages in the VPP body. Considering these compo-
nents plays a decisive role for VPPs because the concept of a VPP is proposed to aggregate
these small energy resources to overcome the challenges of future power systems. In addi-
tion, owing to the fact that modeling stochastic parameters play a crucial role in the optimal
management of VPPs, a method based on deep bi-directional long short-term memory net-
works is investigated for forecasting these parameters. The results of this study are com-
pared to other benchmark methods—shallow neural networks, support vector machines,
and long short-term memory networks—to show the dominance of the proposed method
against other methods. The results of the study show BLSTMs can closely forecast the pa-
rameters by causing only a 1.47% error compared to real data whereas other methods have
an error of more than 10%.
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