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A B S T R A C T

Underground hydrogen storage (UHS) critically relies on cushion gas to maintain pressure balance during in-
jection and withdrawal cycles, prevent excessive water inflow, and expand storage capacity. Interfacial tension 
(IFT) between brine and hydrogen/cushion gas mixtures is a key factor affecting fluid dynamics in porous media. 
This study develops four machine learning models— Decision Trees (DT), Random Forests (RF), Support Vector 
Machines (SVM), and Multi-Layer Perceptrons (MLP)—to predict IFT under geo-storage conditions. These models 
incorporate variables such as pressure, temperature, molality, overall gas density, and gas composition to 
evaluate the impact of different cushion gases. A group-based data splitting method enhances the realism of our 
tests by preventing information leakage between training and testing datasets. Shapley Additive Explanations 
(SHAP) reveal that while the MLP model prioritizes gas composition, the RF model focuses more on operational 
parameters like pressure and temperature, showing distinct predictive dynamics. The MLP model excels, 
achieving coefficients of determination (R2) of 0.96, root mean square error (RMSE) of 2.10 mN/m, and average 
absolute relative deviation (AARD) of 3.25%. This robustness positions the MLP model as a reliable tool for 
predicting IFT values between brine and hydrogen/cushion gas (es) mixtures beyond the confines of the studied 
dataset. The findings of this study present a promising approach to optimizing hydrogen geo-storage through 
accurate predictions of IFTs, offering significant implications for the advancement of energy storage 
technologies.

Parameters

AARD Average Absolute Relative Deviation
ARD Absolute relative deviation
m Salt concentration, mol/kg
max_depth Maximum depth of a tree
max_features Maximum number of features
Mean Mean value
n_estimator Number of trees in an ensemble method
P Pressure, MPa
R Pearson correlation coefficient
R2 Coefficient of determination
Resi Residual
RMSE Root mean squared error
T Temperature, K
t Target value
x Mole fraction
y Model’s output
γ Interfacial tension, mN/m
ρ Density, g/cm3

Abbreviations

ANN Artificial Neural Network
IFT Interfacial tension
CH4 Methane
CO2 Carbon dioxide
CV Cross-validation
DT Decision tree
H2 Hydrogen
ML Machine learning
MLP Multilayer perceptron
N2 Nitrogen
RF Random forest

* Corresponding author.
E-mail address: leonenko@uwaterloo.ca (Y. Leonenko). 

Contents lists available at ScienceDirect

International Journal of Hydrogen Energy

journal homepage: www.elsevier.com/locate/he

https://doi.org/10.1016/j.ijhydene.2024.10.254
Received 30 August 2024; Received in revised form 16 October 2024; Accepted 18 October 2024  

International Journal of Hydrogen Energy 91 (2024) 1394–1406 

Available online 23 October 2024 
0360-3199/© 2024 The Authors. Published by Elsevier Ltd on behalf of Hydrogen Energy Publications LLC. This is an open access article under the CC BY-NC-ND 
license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ). 

mailto:leonenko@uwaterloo.ca
www.sciencedirect.com/science/journal/03603199
https://www.elsevier.com/locate/he
https://doi.org/10.1016/j.ijhydene.2024.10.254
https://doi.org/10.1016/j.ijhydene.2024.10.254
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijhydene.2024.10.254&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


1. Introduction

In the past few decades, humans have significantly depleted natural 
resources in their pursuit of a better quality of life [1]. This is particu-
larly crucial as the use and consumption of fossil fuels have led to the 
release of substantial amounts of greenhouse gases into the atmosphere, 
contributing to global warming [2–4]. In response, there has been a 
growing interest in the potential of renewable resources with low 
emissions to address the issue of (carbon dioxide) CO2 emissions [5,6]. 
Hydrogen (H2) is a key player in sustainable energy, important for 
developing a more eco-friendly future. Its production, involving elec-
trical, thermal, hybrid, and biological methods from diverse feedstocks, 
offers adaptable opportunities for clean energy. Using hydrogen tech-
nology effectively, adapted to the available regional resources, can 
greatly reduce emissions and support sustainable development goals, 
which aim to ensure everyone has access to sustainable energy and help 
address climate change [7,8]. However, using H2 as an energy carrier 
presents challenges related to storage and transportation due to its low 
density and high flammability, necessitating careful and efficient 
handling to ensure safe storage and transport [9].

Numerous H2 storage techniques have been explored, including 
compressed gas, liquefaction, and solid-state storage, each presenting 
unique advantages and disadvantages. Compressed gas is stored in high- 
pressure tanks, which can hold significant amounts of H2 but are costly 
and pose safety risks due to the high pressures involved. Liquefaction 
involves storing H2 in liquid form, which offers a high energy density but 
requires extremely low temperatures, thus adding to operational chal-
lenges and costs. Solid-state storage, such as metal hydrides, provides 
safer options but at lower energy densities and higher costs due to the 
materials used [9,10]. Most critically, these methods are currently un-
able to provide the large-scale storage needed to meet long-term energy 
requirements [11].

To overcome this limitation, Underground Hydrogen Storage (UHS) 
is considered a potential solution [12]. UHS offers a viable option for 
medium to long-term storage, depending on specific energy needs [13]. 
Large volumes of H2 gas can be effectively stored in depleted hydro-
carbon reservoirs [14], empty salt caverns [15], deep aquifers [16], 
underground coal seams [17], or basaltic formations [18].

The fluid dynamics of hydrogen and other gases are key to deter-
mining hydrogen recovery efficiency, influenced by operational factors 
like temperature, pressure, and reservoir characteristics. Key properties 
such as interfacial tension (IFT), viscosity, density, solubility, and 
diffusivity significantly impact fluid movement within storage forma-
tions [19]. Brine-H₂ IFT decreases with increasing temperature and 
pressure, with temperature having a greater effect. The reduction in IFT 
due to pressure is linked to hydrogen’s higher density, while the tem-
perature effect stems from a decreased density difference between water 
and hydrogen [20]. Lower IFT reduces capillary forces, particularly in 
small pores, making viscous forces more dominant as the capillary 
number increases [21]. Higher temperatures also increase hydrogen 
diffusion rates, which can complicate gas separation during withdrawal, 
especially in high-temperature reservoirs [22].

CO₂ storage projects primarily aim at the long-term or permanent 
containment of CO₂ within geological formations [23]. In contrast, UHS 
projects, although capable of storing large amounts of H₂, are centered 
around an injection and withdrawal cycle. In these systems, the H₂ 
injected during the storage phase must be retrieved when needed [24]. 
While using cushion gas can introduce challenges, such as the need for 
gas separation [25], it is generally added before H₂ injection to maintain 
pressure throughout the injection and withdrawal cycles [26], ensure 
consistent extraction of the working gas [27], and prevent water intru-
sion during H₂ production [28]. Cushion gas also enhances storage ca-
pacity by allowing the gas phase to occupy larger pore spaces alongside 
water [26].

Cushion gas plays a critical role in both hydrogen injection and 
withdrawal, directly influencing storage capacity. The required ratio of 

cushion gas to working gas depends on various geological factors, 
including reservoir depth, trap shape, and permeability [28]. Cushion 
gas represents a significant cost in underground hydrogen storage op-
erations, and accurately determining the necessary volume is vital for a 
reliable estimation of UHS costs [29].

The type of cushion gas greatly affects both recovery efficiency and 
hydrogen purity. CO₂ is preferred for its favorable physical properties in 
reservoir conditions [30] and its capacity to reduce greenhouse gas 
emissions when sequestered [31]. While CO₂ offers the highest storage 
capacity, lighter gases such as N₂ and CH₄ improve recovery by mini-
mizing gravity override and viscous fingering, with CH₄ achieving up to 
80% recovery efficiency [32]. CH₄ also shows high hydrogen recovery 
rates due to its superior wettability compared to hydrogen, which limits 
hydrogen penetration into the reservoir’s pore spaces and allows for 
easier separation during production [27].

N₂ and CH₄ are often chosen for their cost-effectiveness [31]. How-
ever, CH₄‘s lower compressibility may lead to increased reservoir pres-
sure, potentially compromising the system’s integrity [33]. 
Additionally, the type of cushion gas influences the interfacial tension 
(IFT) between gas and brine, affecting fluid flow and geochemical re-
actions. For instance, CO₂ can dissolve in brine, lowering pH and pro-
moting mineral dissolution, which may alter the reservoir’s porosity and 
permeability [34]. N₂ is also highly effective for hydrogen recovery due 
to its ability to boost reservoir pressure more than other gases, 
improving recovery efficiency [35], and its higher wettability simplifies 
gas separation during production [30].

Regardless of type, cushion gas can increase recovery by up to 7%, 
improving UHS efficiency [32]. Another critical aspect is the chemical 
stability of the cushion gas. If it reacts with the working gas or reservoir 
matrix, it could produce unwanted by-products or damage the reser-
voir’s integrity [32].

Understanding fluid-fluid and fluid-rock interactions is crucial for 
effectively evaluating subsurface formations for UHS. These interactions 
play a key role in determining the sealing capabilities of the caprock, the 
distribution and saturation of H2 within pore spaces, and the displace-
ment of existing fluids. The presence of cushion gas alongside H2 in 
geological formations alters reservoir hydrodynamics due to inevitable 
gas mixing and molecular diffusion. Consequently, it is essential to un-
derstand how cushion gas impacts fluid-fluid interactions with H2 [36], 
as this influences phase distribution and gas trapping within the porous 
medium [37]. Capillary pressure significantly affects pore throat dis-
tribution and gas trapping and is influenced by factors such as pore size 
distribution, wettability, and interfacial tension (IFT) between existing 
phases [37]. Therefore, the IFT between gas and water affects capillary 
pressure, which in turn influences pore throat distribution and gas 
trapping within the porous medium. Thus, the IFT between H2, or the 
H2-cushion gas mixture, and brine could greatly affect the overall 
effectiveness of the UHS process.

So far, many experimental studies have been conducted to measure 
the IFT between gas and brine in both H2 and H2+cushion gas (es) 
systems [38,39]. Although these experimental measurements provide 
accurate data, they require significant time and are not cost-efficient. 
Chow et al. [40,41] employed the pendant-drop method to experimen-
tally determine the IFT in both water-H2 and water- H2–CO2 systems. 
Their experiment covered a wide range of pressures from 0.5 to 45 MPa 
and temperatures between 298.15 and 448.15 K. Additionally, Hosseini 
et al. [38] measured the IFT of H2-water/brine systems using the same 
technique. Their experiments covered pressures ranging from 2.76 MPa 
to 34.47 MPa, temperatures from 298.15 K to 423.15 K, and brine mo-
lalities between 0 and 4.95 mol/kg for a solution consisting of 0.864 
NaCl and 0.136 KCl (aq). Furthermore, Mirchi et al. [42] evaluated the 
IFT of H2/(methane) CH4 mixtures with brine at three temperatures (22, 
40, and 60) ◦C and a pressure of 1000 psi, using a brine solution with 2 
wt% NaCl salinity. Their findings indicated that the IFT values decreased 
as the proportion of H2 in the mixtures decreased, resulting in a higher 
CH4 content.
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As discussed, understanding H2 storage in subsurface formations 
requires accurate measurements of the IFT between fluids, as well as 
between fluids and rocks, to accurately model fluid behavior within 
geological formations. While experimental methods have provided 
valuable insights, numerical approaches have emerged as an efficient 
and precise way to investigate these systems. It is essential to precisely 
predict parameters such as IFT, which are crucial for developing 
comprehensive simulation models that can help optimize UHS strategies 
and minimize related uncertainties, particularly in the presence of 
cushion gas. Consequently, the development of computational mod-
els—including empirical correlations, molecular dynamics (MD) simu-
lations, and machine learning (ML) models—has become essential.

Many efforts have been made to develop correlations for predicting 
IFT [43], and these correlations generally achieve a reasonably good 
level of accuracy. For instance, building on experimental data, Hosseini 
et al. [38] developed an empirical correlation where the IFT of water +
H2 or H2 + brine is a function of temperature, pressure, and brine 
molality. This correlation is applicable to temperatures between 298.15 
and 423.15 K, pressures ranging from 2.76 to 34.47 MPa, and brine 
molalities from 0 to 4.95 mol/kg. Doan et al. [44] employed MD sim-
ulations to predict the IFT in different ternary systems consisting of H2, 
cushion gases (CO2, N2, or CH4), and water. The research focused on 
how different conditions—such as varying pressures, temperatures, and 
proportions of cushion gases—affect the IFT between these phases. Their 
simulations showed that IFT decreases as pressure and temperature in-
crease, but it rises with a higher proportion of H2 in the mixture. Simi-
larly, Yang et al. [45] investigated the interfacial properties of hydrogen 
and water mixtures in contact with silica and kerogen, crucial for UHS. 
Through MD simulations, they explored how temperature (298–523 K) 
and pressure (1–160 MPa) affect IFT, wettability, and contact angles. 
Their results demonstrated that IFT generally decreases with increasing 
temperature and pressure, although an increase in IFT was observed at 
higher pressures. Contact angles in both H₂+H₂O + silica and H₂+H₂O +
kerogen systems were found to increase with pressure and decrease with 
temperature, with smaller effects in the silica system at lower temper-
atures. Additionally, they employed density gradient theory DGT and 
the PC-SAFT equation of state to complement their MD simulations, 
providing more accurate predictions of the interfacial behaviors. These 
findings enhance the understanding of gas-fluid interactions in geolog-
ical formations, contributing to the optimization of hydrogen storage 
systems.

The development of ML-based models has attracted significant 
attention from researchers in various fields as they offer cost-effective, 
easy-to-use, and accurate predictive models. Nguyen et al. [46] 
discuss the integration of explainable artificial intelligence into renew-
able energy systems, emphasizing its potential to enhance transparency 
and effectiveness. They highlight the benefits of explainable artificial 
intelligence in optimizing energy efficiency and address the ethical 
challenges it presents. The authors advocate for continued research to 
develop reliable evaluation methods and standardized datasets to 
advance explainable artificial intelligence applications in renewable 
energy, promoting sustainable practices. Furthermore, Le et al. [47] 
integrated advanced ML algorithms with SHapley Additive exPlanations 
(SHAP) to improve biochar yield predictions and analysis. They utilized 
linear regression, AdaBoost, and boosted regression trees to model 
biochar properties accurately. SHAP analysis enhanced the transparency 
and interpretability of these models, revealing how factors like tem-
perature and biomass type affect biochar characteristics. This approach 
provided key insights for optimizing biochar production, important for 
its environmental applications.

More importantly, ML methods can learn from existing data to 
identify patterns and make predictions based on input features [48]. 
Unlike traditional methods, they can integrate all relevant input features 
for a more thorough analysis [49]. Consequently, these capabilities 
enhance our understanding of the UHS process. These methods have 
been widely applied in studies related to CO2 geo-storage [50,51], 

demonstrating strong predictive performance. Recently, researchers 
have focused on employing ML-based models to improve our under-
standing of H2 storage [52], specifically in optimizing H2 geo-storage.

Thanh et al. [53] explored the use of machine learning (ML) models 
to predict the wettability of rocks/minerals in H2 storage systems 
involving brine and H2. Researchers utilized four ML algorithms— 
Extreme Gradient Boosting (XGBoost), Random Forest (RF), Light 
Gradient Boosting (LGRB), and Adaptive Boosting Decision Tree 
(Adaboost_DT)—to analyze data from 513 experimental samples. 
XGBoost emerged as the most accurate model, with the highest R2 value 
and lowest error rates. The study highlights the importance of substrate 
types in influencing wettability, as shown by the SHAP analysis. The 
findings suggest that ML models, particularly XGBoost, offer a promising 
tool for efficiently predicting wettability and H2 column height in 
geological storage, thereby reducing the need for costly and 
time-consuming experiments. However, the study also notes limitations 
related to the dependence on existing data and the models’ ability to 
capture complex interactions.

Ng et al. [54] focused on the modeling of IFT in H2-brine systems 
using machine learning (ML) techniques. They employed various ML 
models, including Gradient Boosting Regressor (GBR), Multilayer Per-
ceptron (MLP) optimized with Levenberg-Marquardt (LMA) and Adap-
tive Moment Estimation (Adam) algorithms, and Genetic Programming 
(GP). These models were trained on experimental data from previous 
studies [38,40,41] to accurately predict IFT. Among the models, 
MLP-LMA showed the best performance, offering high predictive accu-
racy with an R2 value of 0.9997. The study identified temperature as the 
most significant parameter affecting IFT, with the largest impact, fol-
lowed by molality and pressure. The findings suggest that these 
ML-based models can be effectively integrated into UHS simulations, 
potentially reducing reliance on costly and time-consuming experi-
mental procedures. They [54] compared the performance of their 
ML-based models with the empirical correlation developed by Hosseini 
et al. [38]. The comparison showed that the MLP-LMA model and the 
GP-based correlation provided slightly better predictions in terms of R2, 
but with significantly improved accuracy when looking at Average Ab-
solute Percentage Relative Error (AAPRE) and RMSE values, especially 
for the MLP-LMA model.

Behnamnia et al. [55] developed several intelligent models to predict 
IFT using experimental data for water and various gases, including H2 +

cushion gas, CH4, CO2, and N2. The models considered IFT as a function 
of temperature, pressure, specific gravity, and brine salinity. Among the 
models, the Grey Wolf Optimizer-based Least Squares Boosting 
(GWO-LSBOOST) showed the highest accuracy, with an R2 of 0.9960 
and the lowest average absolute relative error of 0.8060%. Sensitivity 
analysis revealed that temperature had the greatest impact on IFT, fol-
lowed by specific gravity and pressure, while salinity had a positive 
effect.

In our previous study [48], we developed machine learning (ML) 
methods to predict the IFT between H2 and brine, a crucial parameter for 
UHS. Four different models—Decision Trees (DT), Random Forest (RF), 
Support Vector Machines (SVM), and Multi-Layer Perceptron (MLP)— 
were developed using experimental data on pressure, temperature, and 
brine molality. Among these, the Random Forest (RF) model appeared as 
the best performer, with the lowest RMSE (1.50) and superior prediction 
accuracy (R2 = 0.96). Sensitivity analysis revealed that temperature had 
the greatest impact on IFT, with molality and pressure being the next 
most influential factors. The robustness of the models was tested 
through external validation using data not included in the initial 
training and testing phases, further confirming the practicality of the 
models in predicting IFT under different conditions.

This study aims to develop a comprehensive machine learning (ML) 
model to predict the IFT between brine and gas mixtures. It focuses on 
systems with varying salinities and gas compositions, particularly those 
with a non-zero molar fraction of H2, under different subsurface con-
ditions. Initially, we will compile and refine an extensive dataset from 
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the existing literature. This dataset will undergo a thorough quality 
check to ensure its accuracy and reliability.

A key innovation in our approach is the implementation of a rigorous 
model testing procedure. While past studies employed random data 
splitting, our study introduces a new strategy for data splitting. By 
focusing on the variety of gas compositions rather than the quantity of 
data samples, we aim to make sure that the predictive model is flexible 
and applicable to gas compositions not seen during the training phase.

Table 1 
Data summary from 16 sources, detailing gas compositions, pressure and tem-
perature ranges, salinities, and sample counts.

Study H2/ 
CO2/ 
CH4/ 
N2

P (MPa) T (K) Salinity n

Muhammed 
et al. [57]

0.8/ 
0.05/ 
0.1/ 
0.05 
0.7/ 
0.05/ 
0.2/ 
0.05 
0.6/ 
0.05/ 
0.3/ 
0.05 
0.5/ 
0.05/ 
0.4/ 
0.05 
0.4/ 
0.05/ 
0.5/ 
0.05 
0.3/ 
0.05/ 
0.6/ 
0.05 
0.2/ 
0.05/ 
0.7/ 
0.05

3.45–20.68 303.15–343.15 2, 5, 10, 15, 
and 20 wt% 
NaCl brines

1050

Muhammed 
et al. [30]

0.8/ 
0.05/ 
0.05/ 
0.1 
0.6/ 
0.05/ 
0.05/ 
0.3 
0.4/ 
0.05/ 
0.05/ 
0.5 
0.2/ 
0.05/ 
0.05/ 
0.7

3.45–20.68 303.15–343.15 2, 5, 10, 15, 
and 20 wt% 
NaCl brines

600

Muhammed 
et al. [26]

0.8/ 
0.1/ 
0.05/ 
0.05 
0.7/ 
0.2/ 
0.05/ 
0.05 
0.6/ 
0.3/ 
0.05/ 
0.05 
0.5/ 
0.4/ 
0.05/ 
0.05

3.45–20.68 303.15–343.15 2, 5, 10, 15, 
and 20 wt% 
NaCl brines

600

Yekta et al. 
[58]

1.0/ 
0/0/ 
0

5.50–10.00 293.15–318.15 Pure water 2

Chow et al. 
[40,41]

1.0/ 
0/0/ 
0 
0.7/ 
0.3/ 
0/0

0.50–45.20 298.03–448.87 Pure water 79

Table 1 (continued )

Study H2/ 
CO2/ 
CH4/ 
N2 

P (MPa) T (K) Salinity n

Higgs et al. 
[59]

1.0/ 
0/0/ 
0

0.69–20.68 298.00–298.00 Distilled 
water as well 
as 1000, 
2000, 5000 
ppm NaCl 
brines

36

Hosseini 
et al. [38]

1.0/ 
0/0/ 
0

2.76–34.47 298.15–423.15 Deionized 
water as well 
as 0.864 NaCl 
+ 0.136 KCl 
brines at total 
salt molalities 
of 1.05, 3.15, 
and 4.95 mol/ 
kg.

64

Esfandyari 
et al. 
[60–62]

1.0/ 
0/0/ 
0

1.00–10.00 293.15–353.15 Distilled 
water and 
formation 
brine 
containing 
NaCl, KCl, 
CaCl2, and 
MgCl2

32

Mirchi et al. 
[42]

1.0/ 
0/0/ 
0 
0.8/ 
0/ 
0.2/0 
0.5/ 
0/ 
0.5/0 
0.4/ 
0/ 
0.6/0 
0.2/ 
0/ 
0.8/0

6.89–6.89 295.15–333.15 20,000 ppm 
NaCl brine

15

Al-mukainah 
et al. [63]

1.0/ 
0/0/ 
0

0.07–6.89 323.15–323.15 10 wt% NaCl 
brine

6

Isfehani [25] 0.3/ 
0.7/ 
0/0 
0.5/ 
0.5/ 
0/0 
0.7/ 
0.3/ 
0/0

3.45–20.68 323.15–353.15 0/1.05/3.15 
mol/kg 
[0.864 NaCl 
+ 0.136 KCl]

72

Alanazi et al. 
[39]

1.0/ 
0/0/ 
0 
0.5/ 
0/ 
0.5/0

0.34–11.03 323.00–323.00 10 wt% NaCl 
brine

10

Al-yaseri 
et al. [64]

1.0/ 
0/0/ 
0

3.45–10.34 348.15–348.15 10 wt% NaCl 3
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2. Methods

The objective of this research is to precisely predict the IFT between 
brine and hydrogen/cushion gas (es) mixtures under geo-storage con-
ditions using input variables such as pressure, temperature, molality, 
overall gas density, and gas composition. This study explores several 
predictive models: Decision Trees (DT), Random Forests (RF), Support 
Vector Machines (SVM), and Multi-layer Perceptrons (MLP). Utilizing 
the robust Scikit-Learn library in Python [56], each model offers distinct 
benefits: DT is non-parametric; RF enhances predictive accuracy by 
averaging multiple DTs and reducing overfitting; SVM is effective in 
regression tasks by optimally separating data points, but functions as a 
“black-box”; similarly, MLP, which consists of multiple neural network 
layers, also acts as a “black-box.” Detailed descriptions of these models 
are not included here but are extensively discussed in our previous work 
[48], which provides comprehensive insights into their operational 
mechanisms.

3. Database development

3.1. Literature survey

The compiled database includes 2569 data samples collected from 16 
different sources. Table 1 details the data from each source, including 
gas compositions, pressure and temperature ranges, salinities, and the 
number of samples. This table demonstrates that IFT data have been 
collected across a wide range of operational parameters. Additionally, 
23 different gas compositions were identified. As previously mentioned, 
the focus of the study is on H2 storage, and thus, the H2 mole fraction is 
not zero in any of the compositions. Consequently, H2 is the only pure 
gas present in the database.

3.2. Data splitting

Proper data splitting is essential for developing an effective ML 
model, as it significantly impacts the model’s accuracy and ability to 
generalize. A well-thought-out data splitting strategy provides sufficient 
training data to prevent underfitting while ensuring that the test data 
can accurately assess the model’s generalization capabilities, thereby 
avoiding overfitting.

We employed a group-based data splitting method as opposed to the 
conventional sample-based approach. This choice is crucial for ensuring 
the robustness and validity of the model’s predictive performance, 
especially when dealing with data that exhibits patterns across specific 
groups, such as different gas compositions or experimental conditions. 
In traditional sample-based splitting, data is randomly divided into 
training and testing sets without accounting for the inherent grouping of 
related samples. This can lead to information leakage, where informa-
tion from similar samples in the training set affects the test set, unin-
tentionally boosting the model’s performance.

Conversely, the group-based splitting approach identifies unique 
groups within the dataset and assigns all samples from each group solely 
to either the training or testing set. This strategy ensures that related 
samples from the same group are not divided between the sets, thus 
preventing the leakage of trend information. For instance, in our study, 
where IFT is influenced by factors such as salinity, pressure, and tem-
perature, it is crucial that the model does not encounter parts of a group 
(e.g., data related to a specific gas composition under certain conditions) 
in both the training and testing stages. If it were to do so, the testing 
phase would become less realistic, giving the model an unfair advantage 
by having previously recognized part of the pattern during training.

The advantage of group-based splitting becomes even more apparent 
when considering the goal of this study: to predict not just individual IFT 
values but also the trends and patterns across various gas compositions 
and operational conditions. By employing group-based splitting, the 
model is required to identify patterns in the training set that can be 

generalized to different groups in the test set, better reflecting real-world 
application scenarios. This approach creates a more realistic operational 
environment, where the model faces entirely new groups of data, such as 
unfamiliar combinations of gases and conditions, which it has not seen 
during training.

As previously mentioned, 23 different gas compositions were iden-
tified in the database. Of these, 5 were randomly allocated to the testing 
set, and the remaining 18 to the training set, achieving an approximate 
20:80 ratio for testing and training. The specific compositions assigned 
to the training and testing sets are detailed in Table 2.

The data for each composition underwent a quality check. It was 
found that the data reported by Higgs et al. [59] and Esfandyari et al. 
[60–62] were inconsistent with the common trends observed in the 
other samples. Consequently, the data from these authors were assigned 
to the extra set to prevent the model from being fed with doubtful in-
formation and to evaluate how the trained model performs on them. 
Based on these considerations, 603 data samples were allocated for 
testing and 68 data samples for extra set, resulting in a sample-wise 
training/testing/extra ratio of 74:23:3.

3.3. Feature engineering and selection

Typically, in studies available in the literature on IFT modeling of gas 
and brine [55], researchers have considered parameters such as pres-
sure, temperature, salinity, and gas-specific gravity as inputs, with the 
IFT between brine and the gas mixture (and/or gas) as the output. It is 
important to note that including gas-specific gravity may introduce 
limitations to the models and correlations. This is because it is possible 
to have two different gas mixtures with the same specific gravity. For 
example, different combinations of gases like H2, methane, and carbon 
dioxide (CO2) can result in the same specific gravities. Consequently, 
under the same conditions of temperature and pressure, models or 
correlations might inaccurately predict identical IFTs for these different 
mixtures. As highlighted in the study by Muhammed et al. [30], the 
specific composition of gases within the mixtures significantly in-
fluences IFT values. To address this concern, we have included the mole 
fraction composition of the gas as an input variable to observe the effect 
of different gas compositions. Furthermore, the overall density (ρ), as 
introduced below, as another input in our models: 

Table 2 
Allocation of gas compositions to training and testing sets, listing the specific 
compositions used for model training and testing.

Index H2 CO2 CH4 N2 n Set

1 1 0 0 0 126/68 Train/Extra
2 0.7 0.3 0 0 60 Train
3 0.8 0 0.2 0 3 Train
4 0.5 0 0.5 0 8 Train
5 0.2 0 0.8 0 3 Train
6 0.3 0.7 0 0 24 Train
7 0.5 0.5 0 0 24 Train
8 0.8 0.05 0.1 0.05 150 Train
9 0.6 0.05 0.3 0.05 150 Train
10 0.5 0.05 0.4 0.05 150 Train
11 0.2 0.05 0.7 0.05 150 Train
12 0.8 0.05 0.05 0.1 150 Train
13 0.6 0.05 0.05 0.3 150 Train
14 0.4 0.05 0.05 0.5 150 Train
15 0.2 0.05 0.05 0.7 150 Train
16 0.8 0.1 0.05 0.05 150 Train
17 0.7 0.2 0.05 0.05 150 Train
18 0.6 0.3 0.05 0.05 150 Train
19 0.4 0 0.6 0 3 Test
20 0.7 0.05 0.2 0.05 150 Test
21 0.4 0.05 0.5 0.05 150 Test
22 0.3 0.05 0.6 0.05 150 Test
23 0.5 0.4 0.05 0.05 150 Test
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ρ=
∑

i
xi × ρi (1) 

The pairwise Pearson correlation coefficient (R) for the input fea-
tures is shown in Fig. 1. This coefficient measures the linear correlation 
between pairs of features, with values ranging from − 1 (indicating 
perfect negative correlation) to 1 (indicating perfect positive correla-
tion). As shown in Fig. 1, none of the features exhibit a high correlation 
with one another, indicating that the features are independent. This 
independence suggests that each feature provides unique information to 
the model, thereby enhancing its ability to learn and make accurate 
predictions.

3.4. Scaling

ML studies, feature scaling is a crucial preprocessing step, particu-
larly for algorithms that are sensitive to the scale of input data, such as 
MLP and SVM. Without scaling, features with larger ranges could 
disproportionately influence the model, leading to skewed results. 
Standard scaling, which is used in this study, transforms each feature to 
have a mean of zero and a standard deviation of one. This normalization 
ensures that all features are on a similar scale, allowing distance- 
dependent algorithms to function effectively and thereby enhancing 
the model’s accuracy and efficiency.

Standard scaling, the technique selected for this study, solves this 
problem by transforming the data to ensure each feature possesses a 
mean (μ) of 0 and a standard deviation (σ) of 1 This process involves 
subtracting the mean from each feature and then dividing by the stan-
dard deviation: 

z=
(x − μ)

σ (2) 

Where z is the standardized value, x stands for the original value, μ 
denotes the mean of the feature, and σ represents the standard deviation 
of the feature.

It is essential to perform scaling based on the training data and then 
apply the same scaling parameters to the testing data. This practice 
ensures consistent exposure of the model to the data distribution. By 
computing the scaling parameters (mean and standard deviation) 
exclusively from the training set, we prevent data leakage from the 
testing set into the training process. This approach maintains the 
integrity of the model evaluation, offering a realistic assessment of the 
model’s performance on unseen data. Applying the training-derived 

scaling parameters to the testing data ensures that both sets are on the 
same scale, which is crucial for accurate and fair model evaluation.

3.5. SHapley additive exPlanations (SHAP) method

The SHapley Additive exPlanations (SHAP) method is used to mea-
sure feature importance and examine how input features influence the 
system’s output. Unlike conventional approaches, SHAP values are 
based on input features and the outputs from the ML model, not on the 
model’s internal structure. This is especially beneficial in ensemble 
models, which lack specific prediction equations. Originating from 
coalitional game theory, SHAP offers a structured way to interpret ML 
model predictions, making it versatile for use with various ML models 
[65,66].

4. Result and discussion

4.1. Model development

In this section, we explore the creation of ML models using the Scikit- 
Learn library [1], focusing on four different predictive models: DT, RF, 
SVM, and MLP.

The initial step is configuring the hyperparameters. Hyper-
parameters are crucial settings that control the learning process of each 
model. By carefully adjusting these hyperparameters through tech-
niques such as randomized search, we aim to precisely tailor each model 
to the unique characteristics and complexities of our dataset. This fine- 
tuning process is essential for optimizing the models’ predictive abili-
ties, ensuring they can accurately capture and generalize the underlying 
patterns within the data. Table 3 presents the optimized hyperparameter 
values for each model, determined through a randomized search of 100 
trials. A 5-fold cross-validated RMSE was used as the cost function, and 
the search space for each hyperparameter is also provided. Among these, 
SVM demonstrated the best performance.

After determining the optimal structure for each model, we trained 
the models 100 times using different random states. The 5-fold cross- 
validated RMSE was utilized to evaluate the performance of the 
trained models and identify the best representative for each type. Fig. 2
presents violin plots illustrating (a) the 5-fold cross-validated RMSE and 
(b) the processing time. The height of the violin plot indicates the 
model’s stability. As shown, the RF model has the smallest height, 
indicating consistent results across different random initializations. For 
the SVM, the violin plot reduces to a line, demonstrating that SVM is 
deterministic and yields consistent results every time.

4.2. Accuracy assessment

Now that the optimized structures of each model have been trained 
and the best predictive model based on cross-validation has been 
selected, it is time to apply these models to the testing data to assess their 
actual performance on unseen compositions. Various statistical param-

Fig. 1. Correlation matrix of features.

Table 3 
Optimized hyperparameters for each model from a randomized search with 5- 
fold cross-validated RMSE after 100 trials.

Hyperparameter Search Interval DT RF SVM MLP

max_depth 3–50 27 46 – –
max_features 0.01–1 0.95 0.66 – –
n_estimators 4–300 – 67 – –
C 0.1–1000 – – 65.71 –
Gamma 0.1–1000 – – 0.13 –
hidden_layer_sizes 3–30 – – – 25
Alpha 1e-05—1.0 – – – 0.009
learning_rate_init 1e-05—0.1 – – – 0.004
Best CV RMSE – 0.203 0.158 0.147 0.196
Elapsed time (s) – 8.37 80.69 65.55 77.34
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eters are used to measure prediction accuracy. In this study, we employ 
Residual (Resi), Coefficient of Determination (R2), Root Mean Squared 
Error (RMSE), Average Relative Deviation (ARD), and Average Absolute 
Relative Deviation (AARD) to evaluate prediction performance. The 
formulas for these parameters are provided below: 

Resi = ti − yi (3) 

R2 =1 −

∑n

i=1
(Resi)

2

∑n

i=1
(t − ti)2

(4) 

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(Resi)

2

√

(5) 

ARD=
100
n

×
∑n

i=1

Resi

ti
(6) 

AARD=
100
n

×
∑n

i=1

|Resi|

ti
(7) 

Where y and t represent the model’s output and target value, 

Fig. 2. Violin plots depicting (a) the 5-fold cross-validated RMSE and (b) the processing time for each model.
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respectively.
Table 4 presents an analysis of the statistical metrics used to assess 

the accuracy of the models developed in this study. These metrics are 
calculated based on the original values, not the scaled data used during 
the training phase, with the best values for the testing data highlighted 
in bold for clarity. The evaluation reveals that the MLP model excels 
with the lowest RMSE of 2.10 mN/m. The RF model also demonstrates a 
high level of accuracy, comparable to that of the MLP. These models are 
effective in handling the complex interactions of the features and are less 
prone to the influence of outliers in the data.

In contrast, the DT model shows significant overfitting. While it 
achieves perfect predictions on the training data, it fails to perform 
similarly on the testing data. This overfitting suggests that the DT model 
might be too sensitive to the noise in the training dataset, making it less 
effective on new, unseen data. The SVM model, despite having the best 
results based on the cross-validated RMSE, the SVM performs poorly on 
unseen testing data, with an RMSE of 6.80 mN/m. This discrepancy 
arises because the cross-validation randomly split the data into 5 folds, 
leading to information leakage from the validation data into the training 

Table 4 
Statistical metrics used to evaluate the accuracy of the developed models. 
Metrics are calculated based on original values, with the best results for the 
testing data highlighted in bold.

Model Set AARD (%) ARD (%) RMSE R2 N

DT Training 0.00 0.00 0.00 1.00 1898
Testing 4.29 − 1.27 3.64 0.89 603
Extra 9.90 3.04 7.42 − 1.45 68

RF Training 0.49 0.03 0.56 1.00 1898
Testing 4.05 − 0.74 3.06 0.93 603
Extra 6.55 4.27 5.09 ¡0.15 68

SVM Training 1.18 0.08 1.14 0.99 1898
Testing 13.89 − 3.69 8.45 0.43 603
Extra 8.42 7.37 6.80 − 1.06 68

MLP Training 1.86 − 0.71 1.61 0.97 1898
Testing 3.25 ¡0.24 2.10 0.96 603
Extra 7.12 3.83 5.48 − 0.34 68

Fig. 3. SHAP beeswarm plots for (a) MLP and (b) RF models.
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data. Consequently, the model’s cross-validation accuracy was falsely 
exaggerated, failing to generalize to new compositions. This emphasizes 
the importance and superiority of the group-based data splitting 
approach used in this study, which prevents information leakage and 
ensures a more realistic evaluation of model performance.

The model metrics for the extra data indicate that none of the trained 
models are capable of making reasonable predictions. While the pre-
dictions for the testing data are acceptable, this finding suggests that the 
experimental samples in the extra set may not conform to the patterns 
learned from the training data, indicating potential anomalies or vari-
ations within these samples.

While the MLP model exhibits impressive performance with the 
lowest RMSE of 2.10 mN/m, it is crucial to recognize its inherent black- 
box nature, which limits interpretability. This lack of transparency may 
hinder understanding of how specific features influence the model’s 
predictions, particularly in areas like fluid dynamics where insights into 
the underlying physical mechanisms are critical. However, the use of 
SHAP helps to overcome this limitation by enabling the interpretation of 
individual feature contributions to the model’s predictions. SHAP values 
provide a clearer view of how operational parameters affect the pre-
dicted IFT, thus improving the MLP model’s interpretability and making 
it more applicable for practical use in this context.

It is valuable to compare the performance of the MLP and RF models 
in greater detail. Fig. 3 presents the SHAP beeswarm plots for the (a) 
MLP and (b) RF models. As shown, each model assigns different weights 
to the features when making predictions, highlighting varying feature 
importances. For the MLP model, the top three important features are 
related to the gas type. In contrast, for the RF model, the operational 
parameters of pressure (P) and temperature (T) are among the top three 
important features. Despite these differences, both models exhibit 
similar trends for the operational parameters. Both models indicate that 
increasing pressure and temperature decreases the IFT, while increasing 
salinity raises the IFT.

Table 5 shows the impacts of each parameter on IFT. It indicates that 
density (ρ) and temperature (T) significantly decrease IFT when their 
values increase. Similarly, pressure (P) also lowers IFT, though its 
impact is less noticeable than ρ and T. CO₂ moderately reduces IFT at 
higher concentrations. CO₂ moderately reduces IFT at higher concen-
trations. Conversely, molality (m) and N₂ positively affect IFT, with in-
creases in their values leading to higher IFT. H₂ generally raises IFT, 
while CH₄ slightly lowers it.

As mentioned in Section 3.2, ‘Data Splitting,’ the samples reported 
by Higgs et al. [59] and Esfandyari et al. [60–62] did not show a 
consistent trend with the other data. Fig. 4 displays the model pre-
dictions for data collected by Higgs et al. [59], which involved 100% H2 
and deionized water at 298 K. The markers represent the experimental 
data, while the lines depict the model predictions. The left panel shows 
predictions from the MLP model, and the right panel shows predictions 
from the RF model. The legend in each row provides information about 
the gas and brine compositions as well as the temperature. The figure 
reveals instances where different IFT values are reported under the same 
conditions, exhibiting a non-uniform trend. Both models failed to pro-
vide acceptable predictions, particularly in the case where m = 0.03, as 
evidenced by very high RMSE values.

Fig. 5 presents the model predictions for data reported by Esfandyari 
et al. [60–62]. For deionized water (m = 0), an increasing trend in IFT 
with temperature is reported, whereas for brine, the IFT decreases with 
T. Additionally, the SHAP values shown in Fig. 3 indicate that IFT de-
creases with increasing T. For deionized water, both models predict a 
trend opposite to the reported data but consistent with SHAP recom-
mendations. Even for the brine, where the trend aligns with other data 
and thus, SHAP recommendations, there is a significant discrepancy 
between the predicted and experimental values.

The modeling results from this study highlight significant potential 
for improvement in prediction accuracy. A key factor in achieving better 
predictions is the availability of new experimental data. With increasing 
focus on H2 storage in recent years, the volume of experiments has 
grown, as evidenced by the data gathered, most of which were reported 
after 2020. However, ML models require even more data to effectively 
understand the underlying patterns.

This study also emphasizes the critical importance of conducting 
data quality checks before inputting data into the model. Incorrect or 
inconsistent data can severely disrupt the model’s learning process and 
hinder accurate predictions.

Another crucial point highlighted by this study is the necessity of 
proper data splitting in ML studies. It was demonstrated that informa-
tion leakage from testing or validation data into the training data can 
lead to overly optimistic and misleading results. Ensuring a rigorous and 
appropriate data split is essential for obtaining reliable and valid as-
sessments of model performance.

5. Conclusion

This study developed and evaluated several ML models to predict the 
IFT between brine and gas mixtures, focusing on systems with varying 
salinities and gas compositions, particularly those with a non-zero molar 
fraction of H2. The models explored include DT, RF, SVM, and MLP.

Key findings of this research are as follows: 

• The MLP and RF models demonstrated the best predictive perfor-
mance, with the MLP achieving the lowest RMSE of 2.10 mN/m. 
However, the DT model showed significant overfitting, and the SVM 
model, despite having the lowest cross-validated RMSE, failed to 
generalize effectively to unseen data due to information leakage 
during cross-validation.

• The study revealed that different models assign varying levels of 
importance to features. The MLP model prioritized gas composition, 
while the RF model focused more on operational parameters such as 
pressure (P) and temperature (T). Both models consistently indicated 
that increasing P and T decreases IFT, whereas increasing salinity 
leads to an increase in IFT.

• The research emphasized the necessity of rigorous data quality 
checks. Inconsistent data significantly impacted model performance, 
highlighting the importance of verifying data integrity before model 
training.

• The study highlighted the importance of proper data splitting to 
prevent information leakage. Group-based data splitting, as utilized 

Table 5 
Summary of the effects of key parameters on the predicted IFT, based on SHAP 
analysis for the MLP model.

Parameter Impact on IFT

N₂ Higher values of N₂ (shown in red) increase IFT, as indicated by the 
positive SHAP values. 
Conversely, lower values of N₂ (blue) slightly decrease the IFT.

ρ (g/cm3) Higher ρ values (red) decrease IFT, as shown by the negative SHAP 
values. Conversely, lower ρ values (blue) have the opposite effect, 
slightly increasing IFT.

CO₂ Higher CO₂ values (shown in red) strongly decrease IFT, as indicated 
by negative SHAP values. Lower CO₂ values (shown in blue) are 
associated with a slight increase in IFT.

P (MPa) Higher P values (shown in red) consistently decrease IFT, as indicated 
by strong negative SHAP values. Lower P values (shown in blue) 
slightly increase IFT.

T (K) Higher T values (shown in red) decrease IFT, similar to P, with strong 
negative SHAP values. Conversely, lower T values (shown in blue) 
have a weaker positive effect on increasing IFT.

CH₄ Higher CH₄ values (shown in red) slightly decrease IFT, while lower 
CH₄ values (shown in blue) slightly increase IFT.

m (mol.kg- 
1)

Higher m values (shown in red) increase IFT, as indicated by positive 
SHAP values. Conversely, lower m values (shown in blue) slightly 
decrease IFT.

H₂ Higher H₂ values (shown in red) increase IFT, as indicated by positive 
SHAP values. Conversely, lower H₂ values (shown in blue) slightly 
decrease IFT.
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in this study, was shown to offer a more realistic evaluation of model 
performance compared to traditional random splitting methods.

• To scale these models for large-scale UHS, extensive and high-quality 
data from different geological settings are necessary. Current models 
rely on datasets from controlled experiments, which may not fully 

capture the complexity of real-world reservoirs. As more operational 
data from pilot and commercial UHS projects become available, 
model performance and generalizability can be improved by updat-
ing them with diverse datasets.

Fig. 4. Comparison of model predictions with experimental data from Higgs et al. [59], for systems containing 100% H₂ and deionized water at 298 K.
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• These ML models can be integrated into existing reservoir simulation 
software to provide enhanced predictive capabilities, allowing op-
erators to optimize gas injection and withdrawal cycles. However, 
the integration must be adapted to site-specific factors, such as 
reservoir heterogeneity, which may require further model tuning to 
account for local geological variations.

• To use these models in real-world projects, they need to be able to 
handle large amounts of data from monitoring systems in under-
ground hydrogen storage. Using cloud computing and advanced 
machine learning methods can help manage and process this data 
quickly, making sure the models stay efficient even as the amount of 
data grows.

• The success of real-world use depends on more than just accuracy; it 
also requires managing costs, regulations, and long-term gas 
behavior. Using model predictions can help operators reduce risks 
like gas leaks and ensure safer hydrogen storage.
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