

Synthesis of Coal-based Clean Fuel and Chemicals

Dr. Zhong Li

Key Laboratory of Coal Science and Technology of MOE Taiyuan University of Technology Shanxi, China

> WISE University of Waterloo 2015.06.12

Where We Are

Taiyuan University of Technology

One of the oldest three national University in China

Peiyang University (1895~)

2015/6/12

(1898~)

Basic Information

20 Colleges
67 Undergraduate majors
169 Master's degree programs
49 Doctorate programs

Employees Teaching staff Professors Associate professors Full-time undergraduates Ph.D.& Master's Degree Students

5930

校园黄昏鸟瞰图

Located in Shanxi

包斯坦

富汗

Historical and Cultural Heritage

Coal in Shanxi 2014

- The production of coal 0.9 billion tons
- \checkmark Export sales 0.56 billion tons.
- Coal power electricity 20 million KV
- Coke production 50 million tons
- Synthetic ammonia and urea
 15 million tons
- Methanol and alkene 4 million tons
- ✓ Synthetic oil 2 million tons

Coal Chemical Industry

Product route

Technical route

Coal-based fuels and Chemicals

rour categories, intenty products

Chinese VS. Global

Coal Chemical Industry in China

Draduat	Capacity	Yield	Rate of			
Froduct	(10,000 tons)	(10,000 tons)	operation(%)			
Char	72699	47691	65.6			
Semi coke	3500	2000	57.1			
Synthetic ammonia	4881	4003	82.0			
Calcium carbide	2963.5	2547.9	86.0			
Methanol	6860	3740	54.5			
МТО	326	581.5	86.8			
MTP	465.3	391.8	84.2			
MTD	726	290	39.9			
СТЕ	717.6	440	61.3			
Acetic acid	572	328	57.3			
Anhydride	76	—	—			
Direct liquification oil	108	—				
Indirect liquification oil	50		—			
MTG	170	106.8	62.4			
SNG	30 billion m ³					
СТН	50	—	—			
Hydrogenation of coal tar	400	273	68.3			
Alcohol ether fuel		300 (methanol)	—			
Note: Capacity of coal tar hydrogenation refer to the raw material quantity						

Coal Chemical Projects

Coal Consumption

Water Consumption

CO₂ Emissions

Key Lab of Coal Sci. and Tech.

Research direction

Clean Separation Techniques for Coal

Research direction

C₁ Chemistry and Technology

- ◆ Reaction and mechanism of CO+H₂ to alcohol, ether, ester and etc.
- Conversion of methanol
- Methanol fuel substituted petroleum from coal
- Environmental friendly catalyst

Clean Fuels and Chemicals

Dimethyl Carbonate (DMC) Synthesis

Dr. Zhong Li

Key Laboratory of Coal Science and Technology of MOE Taiyuan University of Technology Shanxi, China

> WISE University of Waterloo 2015.06.12

Dimethyl Carbonate (DMC)

Industry Technology

Industry Technology

DMC production in China (2012)

Manufacturer	Capacity (tons/a)	Technique
Tongling Jintai Chemical industrial CO.,Ltd.	90,000	
Tangshan Chaoyang Chemical Co.,Ltd.	30,000	
Shandong Shida Shenghua Chemical Group	110,000	
Dongying Hi-Tech Spring Chemical Industrial Co.,Ltd.	50,000	Transesterification
Jinxi Huayi Industrail Corparation	10,000	
Hebei Chaoyang Chemical Industrail	30,000	
Shandong Wells Chemicals Co.,Ltd.	55,000	
Liaohe Dali Group	16,000	
Xingshan Xinglihua Chemical Industrial Co.,Ltd	4,000	Oxycarbonylation
Heilong Heihua Group Co.,Ltd	15,000	O'Ay cur bolly lution
Others	102,000	
SUM	512,000	

Oxidative Carbonylation of Methanol

Similar environment around the active center Cu⁺

• Liquid phase

• Enichem Inc. (Italy)

1983, 5500 t/a.

1988, up to 8800 t/a.

1993, up to 12600 t/a.

- Japan Daicel Chem Inc. 1991, 6000 t/a.
- ✓ Catalyst deactivation.
- Equipment corrosion.

– ✓ Environment pollution.

Excess CuCl can be removed due to easy sublimation when heated, thus obtained supported Cu^I catalyst

- Li Z, Xie K, Slade R C T. *Appl Catal A: Gen*, 2001, 205(1-2): 85-92
- Li Z, Xie K, Slade R C T. Appl Catal A: Gen, 2001, 209(1-2): 107-115

Adsorption complex of CuCl with silica-titania support via coordination mechanism

Structural model of Cu-SiO₂-TiO₂ catalyst

• Other solid acids, such as SiO_2/TiO_2 , SiO_2/ZrO_2 , SiO_2/Al_2O_3 , SO_4^{2-}/M_xO_y and $S_2O_8^{2-}/M_xO_y$ can also be used as support to prepared Cu-based catalyst *via* SSIE.

- **Li Z**, Wang R, Zheng H, et al. Fuel, 2010, 89(7): 1339-1343
- > Li Z, Liu S, Ren J, et al. Chin J Catal, 2010, 31(6): 683-688
- > Ren J, Li Z, Liu S, et al. Kinet Catal, 2010, 51(2): 250-254
- > Ren J, Liu S, Li Z, et al. Catal Commun, 2011, 12(5): 357-361
- > Li Z, Meng F, Ren J, et al. Chin J Catal, 2008, 29(7): 643-648
- **Li Z**, Huang H, Xie K. *Chem J Chin U*, 2008, 29(8): 1609-1615
- > Ren J, Li Z, Liu S, et al. Catal Lett, 2008, 124(3-4): 185-194
- > Ren J, Liu S, Li Z, et al. Appl Catal A: Gen, 2009, 366(1): 93-101

✓ Cu⁺/Y zeolite exhibits good catalytic performance.

Fig. 9. Selectivities and production rates as a function of methanol conversion (achieved by varying the feed residence time) on Cu-Y (a, d), Cu-ZSM-5 (b, e), Cu-MOR (c, f) at 403 K under CH₃OH/CO/O₂ (12.12/20.2/2.02 kPa).

◆ Zhang, Y.H., et al., **J. Catal.**, 2007, 251(2): 443-452

- Angew Chem int Ed. 2005, 44: 4774.
 Appl Catal A: Gen. 2010, 382: 303.
- ◆ *Phys Chem Chem Phys.* 2012, 14: 2183.
- ◆ Catal Rev. 2006, 48: 269.

✓ The mechanism of DMC synthesis on Cu-exchanged zeolite Y

Zhang, Y.H., A.T. Bell, J.Catal., 2008, 255(2): 153-161
 Zheng, X.B., A.T. Bell, J.Phys. Chem. C, 2008, 112(13): 5043-5047

Problems:

- CuCl refining process is complicated.
- Pipe blocked and low-efficiency because CuCl is easy to sublimate, solid reaction is insufficient.
- CuCl can not be removed completely, still leading to catalyst deactivation and corrosion of equipment.

Cu-based catalyst prepared with chlorine-free copper salt could solve the problems.

Chlorine-free CuY catalyst

The chlorine-free CuY catalyst is prepared by **solution phase ion exchange** of **copper nitrate** solution with the NaY zeolite.

✓ Introducing high temperature activation to achieve high catalytic activity.

> High temperature activation

Effect of activation temperature on CuY catalytic performance

Catalysts	Calcination Temperature /ºC	$STY_{DMC} / mg \cdot g^{-1} \cdot h^{-1}$	S _{DMC} /%	X _{CH3OH} /%
CuY	-	19.77	46.75	1.38
CuY500	500	98.95	69.67	4.73
CuY600	600	131.44	68.53	6.50
CuY700	700	134.02	68.61	6.65
CuY750	750	89.43	69.40	4.27

CuY Catalyst shows good catalytic performance after activated between 600 ~ 700°C

• Li Z*, Fu T, Wang R, et al. Chem J Chin U, 2011, 32(6): 1366-1372

> High temperature activation

- \succ Cu²⁺ in the supercage would be easily auto-reduced to Cu⁺ in the activation process.
- High activation temperature promote Cu²⁺ migrated into the sodalite cages and hexagonal prisms.
- > Auger kinetic energy of Cu^+ is lower 3eV than pure Cu_2O .
- Li Z*, Fu T, Wang R, et al. Chem J Chin U, 2011, 32(6): 1366-1372

Principle of Cu location Controlling

 \succ Cu²⁺ is auto-reduced to Cu⁺.

➢ Cu migrates into small cage.

How to hinder Cu migrate into the small cage ?

Li Z*, Fu T, Wang R, et al. Chem J Chin U, 2011, 32(6): 1366-1372

Principle of Cu location Controlling

Effect of metal cation on Cu location

		Cu /			
Catalysts	Supercage	Sodalite cavity and hexagonal prism	(C	u _{sod} +Cu _h	ex)
CuY	194(62.0) ^b	286(38.0)		1.63	
CuLaY	187(82.9)	243(17.1)		4.85	
CuCeY	189(83.8)	243(16.2)		5.17	

Quantitative analysis of H₂-TPR profiles

^a Temperature at which the $Cu^{2+} \rightarrow Cu^+$ reduction rate is maximum.

 $^{b}\mbox{The percentage of }\mbox{Cu}^{2+}\mbox{ ions located in the cage is given in brackets.}$

The Cu located in the supercage is promoted by introducing Ce or La into small cage.

Effect of metal cation on CuY catalytic performance

Catalysts	Cu mass ^a /%	Cu mass ^b /%	X _{CH3OH} /%	S _{DMC} /%	STY _{DMC} /mg·g ⁻¹ ·h ⁻¹
CuY	6.77	5.85	6.50	68.53	131.4
CuCeY	6.63	5.05	7.43	65.86	145.1
CuLaY	6.59	4.88	8.62	64.79	166.3

a Cu mass percent of bulk phase measured by AAS.

b Cu mass percent of epiphase measured by XPS.

- Cu content are similar among the catalysts, which implies that introducing Ce or La doesn't influence the exchange degree of Cu cation and Y zeolite.
- The catalytic performance of CuY catalyst are improved by introduction of Ce or La cation.

Effect of metal cation on Cu location

Zheng H, Qi J, Zhang R, Li Z*, Wang B, Ma X. Fuel Process Technol, 2014, 128: 310-318

Effect of metal cation on environment around Cu⁺

		T _M ^a / ^o C		STY _{DMC} /mg •g ⁻¹ •h ⁻¹	
Catalysts	Supercage	Sodalite and hexagonal prism	Cu _{sup} / (Cu _{sod} +Cu _{hex})		
CuY	194(62.0) ^b	286(38.0)	1.63	131.4	
CuCsY	191(54.7)	276(45.3)	1.21	176.5	

Introduction of Cs cation decreases the ratio of Cu located in the supercage. However, CuCsY catalyst shows the best activity.

Effect of metal cation on Cu location

- ✓ Introducing Cs species into the supercage of CuY zeolite significantly improves the adsorption energy of co-adsorbed CO and the stability of transition state configuration for CO insertion reaction.
- Zheng H, Qi J, Zhang R, Li Z*, Wang B, Ma X. Fuel Process Technol, 2014, 128: 310-318

Li J, Zheng H, Li Z*. Chin. J Inorg. Chem., 2015, accepted

NaY zeolite treated with oxalic acid

Mesopore size distribution of NaY zeolites

About 4nm Mesopores are formed by acid treatment.

> Li J, Zheng H, Li Z*. Chin. J Inorg. Chem., 2015, accepted

Textural properties for NaY zeolites

Zeolites	S _{BET} (m²/ g)	$\frac{S_{micro}^{a}}{(m^{2}/g)}$	$\frac{S_{ext}^{a}}{(m^{2}/g)}$	V _{micro} ^b (cm ³ /g)	V_{meso}^{b} (cm ³ /g)
NaY	517	486	30	0.251	0.012
NaY-2-0.2	549	489	59	0.261	0.041
NaY-4-0.2	440	314	125	0.164	0.079
NaY-6-0.2	513	413	99	0.183	0.061
NaY-4-0.1	491	422	68	0.195	0.038
NaY-4-0.3	298	249	49	0.102	0.020

^a :calculated by t-plot method. ^b :volume adsorbed at p/p=0.99

Diagram of the formation of hydroxyl nests and aluminum vacancies

Li J, Zheng H, Li Z*. Chin. J Inorg. Chem., 2015, accepted

NaY zeolite treated with oxalic acid

168°C 240°C	725 °C	CuY-4-0.3					
192°C 260°C 385°C	860°C	CuY-4-0.1	Catalysts	Cu wt%	X _{CH3OH} mol%	STY _{DMC} mg•g ⁻¹ •h ⁻¹	DMC selectivity
174°C 229°C 380°C	753 °C	CuY-6-0.2	CuY	5.6	6.3	103.6	63.1
	752 °C	CuY-4-0.2	CuY-2-0.2	5.4	6.4	127.8	65.9
179 C 240 C 380°C hekag	onal prisms		CuY-4-0.2	5.4	10.2	184.9	61.3
187°C 270°C 390°C	773 °C	CuY-2-0.2	CuY-6-0.2	5.2	7.8	155.3	66.2
supercage 280°C sodalite c	ages	23 C. Cuy	CuY-4-0.1	5.3	6.4	119.5	61.7
200°C		\sim	CuY-4-0.3	2.6	1.6	38.7	76.3
00 200 300 400 50 Tem	0 600 700 80 perature/°C	0 900 100	Reaction conditions: =140°C, t =10h.	26.7% MeOH	, 66.7% CO, 6.7%	00 ₂ , SV=5600 h ⁻¹ , m	n(cat) = 0.45g, T

H₂-TPR profiles and gaussion fitting of the catalysts

- ✓ The sodalite cages are partially broken.
- ✓ Cu species in the smallcage can contact with the reactant, increasing the catalytic activity.

Li J, Zheng H, Li Z*. Chin. J Inorg. Chem., 2015, accepted

Summary

- ✓ Cu⁺-SSIE catalyst provides similar environment around the active center Cu⁺ with CuCl, showing a good catalytic activity.
- ✓ Cu⁺ in the supercage is the active center of oxidative carbonylation reaction.
- ✓ Cu²⁺ in the CuY catalyst is auto-reduced to Cu⁺ during the high temperature activation process.
- ✓ Introducing metal caution, not only adjusts more Cu located in the supercage, but also changes the environment around the active center Cu⁺,
- ✓ Mesopores in Y zeolite make the reactant molecular easily access the active sites, resulting in the improvement of catalytic activity.

✓ The chlorine-free Cu/AC catalyst is prepared by **pyrolysis of Cu(CH₃COO)₂ /AC**.

AIChE J. 2013, 59(10): 3797-3805.
Angew Chem int Ed. 2005, 44: 4774.

- ◆ J Catal. 2010, 276(2): 215-228.
- ◆ Chem Eng J. 2010, 165(1): 78-88.

> Cu/AC catalyst was prepared *via* pyrolysis of Cu(CH₃COO)₂/AC.

965 960 955 950 945 940 935 930 925 Binding energy/eV

Cu _{2p} patterns of Cu(CH₃COO)₂·H₂O/AC heat-treated for 4h a 150 °C, b 200 °C, c 250 °C, d 300 °C, e 350

XRD patterns of Cu(CH ₃ COO) ₂ ·H ₂ O/AC
heat-treated for 4h
a 150 °C, b 200 °C, c 250 °C, d 300 °C,
e 350 °C, f 400 °C, g 450 °C

H₂-TPR patterns of Cu(CH₃COO)₂·H₂O/AC heat-treated for 4h a 200 °C, b 250 °C, c 300 °C, d 350 °C,

Trea tempera	tment ture(°C)	$STY_{\rm DMC}/{\rm mg.g^{-1}.h^{-1}}$	$C_{\rm m}$ /%	$S_{\rm DMC}$ /%	$S_{\rm DME}$ /%	$S_{ m DMM}$ /%	$S_{\rm MF}$ /%
1	50	47.83	2.82	35.11	2.57	4.81	57.51
2	00	76.34	4.15	60.07	0.67	1.68	37.58
2	50	107.28	5.70	62.38	1.56	3.15	32.91
3	00	128.16	6.21	64.26	2.24	3.42	30.08
3	50	123.64	6.29	58.42	4.97	3.73	32.88
4	00	110.85	6.61	57.55	2.53	3.54	36.38
4	50	22.53	2.05	52.09	0.94	3.03	43.94

 \triangleright Cu₂O was main active species.

Li Z*, Wen C, Wang R, Zheng H, Xie K. *Chem J Chin U*, 2009, 30: 2024-2031

Catalytic mechanism over Cu₂O surface

- ✓ O₂ is adsorbed on the surface of Cu₂O(111) with oxygen vacancy defects, and easy to decompose to lattice oxygen, which is conducive to the formation of CH₃O species.
- ✓ CO and CH₃O are co-adsorbed on the surface of Cu₂O(111) to produce monomethyl carbonate species.

Optimized coadsorbed structures and transition states over $Cu_2O(111)$ surface

- > Zhang R, Song L, Wang B, Li Z*. *J Comput Chem*, 2012, 33: 1101-1110
- Zhang R, Ling L, Li Z*, Wang B. Appl Catal A-Gen, 2011, 400: 142

Catalytic mechanism over Cu/AC catalyst

Ren J, Wang W, Wang D, Zuo Z, Lin J, Li Z*. *Appl Catal A: Gen*, 2014, 472: 47-52

AC surface modification

XPS spectra of C1s (A), O1s (B), and N1s (C) of the AC samples

$Carbon_{\mathbb{N}}$ oxygen and nitrogen contents of the AC samples obtained by XPS

AC Samples	Carbon (wt.%)	Oxygen (wt.%)	Nitrogen (wt.%)
AC-0	91.0	8.0	1.0
AC-4	88.4	10.5	1.1
AC-8	87.1	11.8	1.1
AC-12	84.2	14.7	1.1

surface oxygenated groups of the AC samples determined by Boehm titration

AC samples	Carboxylgroup	Lactonic group	Phenol group	Total acidity	
	(mmol/g)	(mmol/g)	(mmol/g)	(mmol/g)	
AC-0	0.22	0.03	0.08	0.33	
AC-2	0.37	0.12	0.25	0.74	
AC-4	0.48	0.14	0.25	0.87	
AC-8	0.71	0.15	0.34	1.20	
AC-10	0.84	0.29	0.38	1.51	
AC-12	1.05	0.32	0.41	1.78	

✓ Acid treatment effectively modify the

surface oxygenated groups on AC.

Zhang G, Li Z*, Zheng H, Fu T, Ju Y, Wang Y. Appl Catal B: environ, 2015, 179: 95-105

AC surface modification

TEM images of catalysts a Cu/AC-0, b Cu/AC-2, C Cu/AC-4, d Cu/AC-8,

✓ The surface oxygenated group is conducive to the dispersion and valence distributions of copper species.

Zhang G, Li Z*, Zheng H, Fu T, Ju Y, Wang Y. Appl Catal B: environ, 2015, 179: 95-105

.

Oxidation state and catalytic activity of Cu/AC catalyst

✓ The optimal catalytic performance is due to the highest dispersion of Cu⁺ and Cu⁰ species.

Zhang G, Li Z*, Zheng H, Fu T, Ju Y, Wang Y. Appl Catal B: environ, 2015, 179: 95-105

Cu/AC catalyst applied in liquid phase reaction

DMC yield of three types of Cu/AC catalysts

Li Z*, Ju Y, Zheng H. *J Catal*, under review.

➢ H₂-TPR patterns of Cu/AC catalyst before and after reaction

✓ After reaction, the oxidation and dispersive states of Cu species are similar.

Li Z*, Ju Y, Zheng H. *J Catal*, under review.

TEM of Cu/AC catalyst before and after reaction

Li Z*, Ju Y, Zheng H. *J Catal*, under review.

Dimethyl Carbonate synthesis

Catalytic activity and stability in 180 day

- Methanol conversion >12%
- DMC selectivity $\approx 95\%$
- Activity better than CuCl catalyst

No equipment corrosion & environment pollution problem

• The project is being conducted in pilot scale.

Summary

Cu₂O was main active species of Cu/AC catalyst for oxidative carbonylation reaction.

> O_2 adsorbed on $Cu_2O(111)$ is easily to promote the formation of CH_3O species. With CO adsorbed on $Cu_2O(111)$, monomethyl carbonate species are formed.

The surface oxygenated group is favor to the reduction of Cu²⁺ to active Cu⁺ species.

Cu/AC catalyst applied in liquid phase reaction exhibits excellent catalytic activity and stability.

Acknowledgement

Colleagues: Prof. Jun Ren Prof. Baojun Wang Prof. Riguang Zhang Dr. Huayan Zheng Dr. Fanhui Meng Dr. Tingjun Fu, Dr. Hanqing Zhao

Collaborators: Prof. Jun Shen Prof. Xinbin Ma (Tianjin University), Prof. Dianzeng Jia (Xinjiang University) Dr. Shaowei Yan (Sedin Eng. Co., Ltd) Dr. Dongfei Wang (Lu'An Group) Mr. Xuewei Chen (China Kinghua Group)

PhD students: Guoqiang Zhang Yuchun Wang Lifei Yan Ruiyu Wang Bin LIU MS students: Chunmei Wen Jiazhen Wang Yubo Ju Mengyun Li Etc.

Jun Qi Yao Qin Jiao Li Xia Wang

Kai Yang Yanjiao Li Zhiqiang Hao Yanqing Zhang

Acknowledgement

Acknowledgement

Financial Supports:

Thanks!

Web: http://www.tyut.edu.cn/li

Tel/fax: +86-351-6018526

Email: lizhong@tyut.edu.cn