

Synthesis of Coal-based Clean Fuel and Chemicals

Dr. Zhong Li

Key Laboratory of Coal Science and Technology of MOE Taiyuan University of Technology Shanxi, China

> *WISE University of Waterloo 2015.06.12*

Where We Are

Taiyuan University of Technology

One of the oldest three national University in China

Peiyang University (1895~)

Peking (1898~)

Basic Information

20 Colleges 67 Undergraduate majors 169 Master's degree programs 49 Doctorate programs

Employees 3976 Teaching staff 1941 Professors 311 Associate professors 589 Full-time undergraduates 25000 Ph.D.& Master's Degree Students 5930

Located in Shanxi

富汗

The Yellow River 伊尔库茨克 **flows through Shanxi province** Taiyuan^{*} Beijing 2斯坦 **The geographic constructions are** 沈阳 呼和浩特 北京 **mainly mountain,** 朝鲜 日本海 美津 日本 石家庄 渤海 3 首尔 **plateau or basin.** 太原 韩国 东京 郑州 西安 光州 **One of the birthplaces** 苏岩礁 杭州 重庆 **of the Chinese people** 东海 贵阳 福州 **with a long history,** \leq $\frac{1}{2}$ 昆明 台北 南宁 湖列岛 缅甸 香港 绿岛(火烧岛) 越 東门 内比都 **Brilliant civilization** 老挝 太平洋 南海 万象 菲律宾 **and a large amount of** 西沙群岛 (黄岩礁) 泰国 阿加尼亚 柬埔寨 **historical and cultural** 南沙群岛 **heritage** 斯里兰卡 司令码 帕劳 科伦坡 马来西亚 ◎ 吉隆坡 马尔代夫 马鲁古海峡 新加坡

Historical and Cultural Heritage

Coal in Shanxi 2014

- The production of coal 0.9 billion tons
- Export sales 0.56 billion tons.
- Coal power electricity 20 million KV
- Coke production 50 million tons
- Synthetic ammonia and urea 15 million tons
- Methanol and alkene 4 million tons
- Synthetic oil 2 million tons

Coal Chemical Industry

Product route

Coal-based fuels and Chemicals

corolation) though broadcro

Chinese VS. Global

Coal Chemical Industry in China

Coal Chemical Projects

Coal Consumption

Water Consumption

CO2 Emissions

Key Lab of Coal Sci. and Tech.

Research direction

Clean Separation Techniques for Coal

Research direction

$\geq C_1$ **Chemistry and Technology**

- ◆ Reaction and mechanism of CO+H₂ to alcohol, ether, ester and etc.
- **Conversion of methanol**
- **Methanol fuel substituted petroleum from coal**
- **Environmental friendly catalyst**

Clean Fuels and Chemicals

Dimethyl Carbonate (DMC) Synthesis

Dr. Zhong Li

Key Laboratory of Coal Science and Technology of MOE Taiyuan University of Technology Shanxi, China

> *WISE University of Waterloo 2015.06.12*

Dimethyl Carbonate (DMC)

Industry Technology

Industry Technology

DMC production in China (2012)

Oxidative Carbonylation of Methanol

- **Liquid phase**
- **Enichem Inc. (Italy)**

1983, 5500 t/a.

1988,up to 8800 t/a.

1993, up to 12600 t/a.

- **Japan Daicel Chem Inc.** 1991, 6000 t/a.
- **Catalyst deactivation.**
- **Equipment corrosion.**

 \triangleright Excess CuCl can be removed due to easy sublimation when heated, thus obtained supported Cu^I catalyst

- Li Z, Xie K, Slade R C T. *Appl Catal A: Gen*, 2001, 205(1-2): 85-92
- Li Z, Xie K, Slade R C T. *Appl Catal A: Gen*, 2001, 209(1-2): 107-115

Adsorption complex of CuCl with silica–titania support via coordination mechanism

Structural models of SO⁴ 2- /ZnO和**S2O⁸ 2- /ZnO solid acid**

Structural model of Cu-SiO² -TiO2 catalyst

 \triangleright Other solid acids, such as SiO_2/TiO_2 , SiO_2/ZrO_2 , SiO_2/Al_2O_3 , SO_4^2/M_xO_y and $S_2O_8^2$ /MxO^y can also be used as support to prepared Cu-based catalyst *via* SSIE.

- **Li Z, Wang R, Zheng H, et al. Fuel, 2010, 89(7): 1339-1343**
- **Li Z, Liu S, Ren J***, et al. Chin J Catal***, 2010, 31(6): 683-688**
- **Ren J, Li Z, Liu S***, et al. Kinet Catal***, 2010, 51(2): 250-254**
- **Ren J, Liu S, Li Z***, et al. Catal Commun***, 2011, 12(5): 357-361**
- **Li Z, Meng F, Ren J***, et al. Chin J Catal***, 2008, 29(7): 643-648**
- **Li Z, Huang H, Xie K.** *Chem J Chin U***, 2008, 29(8): 1609-1615**
- **Ren J, Li Z, Liu S***, et al. Catal Lett***, 2008, 124(3-4): 185-194**
- **Ren J, Liu S, Li Z***, et al. Appl Catal A: Gen***, 2009, 366(1): 93-101**

Cu⁺ /Y zeolite exhibits good catalytic performance.

Fig. 9. Selectivities and production rates as a function of methanol conversion (achieved by varying the feed residence time) on Cu-Y (a, d), Cu-ZSM-5 (b, e), Cu-MOR (c, f) at 403 K under CH₃OH/CO/O₂ (12.12/20.2/2.02 kPa). \bullet \bullet OK/S 1 OK/S

Zhang, Y.H., et al., J. Catal., 2007, 251(2): 443-452

- *Angew Chem int Ed. 2005, 44: 4774. Appl Catal A: Gen. 2010, 382: 303.*
- *Phys Chem Chem Phys. 2012, 14: 2183.*
- *Catal Rev. 2006, 48: 269.*

The mechanism of DMC synthesis on Cu-exchanged zeolite Y

 Zhang, Y.H., A.T. Bell, J.Catal., 2008, 255(2): 153-161 Zheng, X.B., A.T. Bell, J.Phys. Chem. C, 2008, 112(13): 5043-5047

Problems:

- \triangleright CuCl refining process is complicated.
- \triangleright Pipe blocked and low-efficiency because CuCl is easy to sublimate, solid reaction is insufficient.
- **CuCl can not be removed completely**, still leading to catalyst deactivation and corrosion of equipment.

☼ **Cu-based catalyst prepared with chlorine-free copper salt could solve the problems.**

Chlorine-free CuY catalyst

The chlorine-free CuY catalyst is prepared by **solution phase ion exchange** of **copper nitrate** solution with the NaY zeolite.

Introducing high temperature activation to achieve high catalytic activity.

High temperature activation

Effect of activation temperature on CuY catalytic performance

 CuY Catalyst shows good catalytic performance after activated between **600 ~ 700^oC**

Li Z*, Fu T, Wang R*, et al. Chem J Chin U***, 2011, 32(6): 1366-1372**

High temperature activation

- \geq Cu²⁺ in the supercage would be easily auto-reduced to Cu⁺ in the activation process.
- \triangleright High activation temperature promote Cu²⁺ migrated into the sodalite cages and hexagonal prisms.
- \triangleright Auger kinetic energy of Cu⁺ is lower 3eV than pure Cu₂O.
- **Li Z*, Fu T, Wang R***, et al. Chem J Chin U***, 2011, 32(6): 1366-1372**

Principle of Cu location Controlling

 \triangleright Cu migrates into small cage.

How to hinder Cu migrate into the small cage ?

Li Z*, Fu T, Wang R*, et al. Chem J Chin U***, 2011, 32(6): 1366-1372**

Principle of Cu location Controlling

Effect of metal cation on Cu location

Quantitative analysis of H² -TPR profiles

aTemperature at which the Cu²⁺ \rightarrow **Cu⁺ reduction rate is maximum.**

^bThe percentage of Cu2+ ions located in the cage is given in brackets.

 The Cu located in the supercage is promoted by introducing Ce or La into small cage.

Effect of metal cation on CuY catalytic performance

a Cu mass percent of bulk phase measured by AAS.

b Cu mass percent of epiphase measured by XPS.

- \triangleright Cu content are similar among the catalysts, which implies that introducing Ce or La doesn't influence the exchange degree of Cu cation and Y zeolite.
- \triangleright The catalytic performance of CuY catalyst are improved by introduction of Ce or La cation.

Effect of metal cation on Cu location

> Zheng H, Qi J, Zhang R, Li Z*, Wang B, Ma X. Fuel Process Technol, 2014, 128: 310-318

Effect of metal cation on environment around Cu⁺

 Introduction of Cs cation decreases the ratio of Cu located in the supercage. However, CuCsY catalyst shows the best activity.

Effect of metal cation on Cu location

 \checkmark Introducing Cs species into the supercage of CuY zeolite significantly improves the adsorption energy of co-adsorbed CO and the stability of transition state configuration for CO insertion reaction.

> Zheng H, Qi J, Zhang R, Li Z*, Wang B, Ma X. Fuel Process Technol, 2014, 128: 310-318

NaY zeolite treated with oxalic acid

Textural properties for NaY zeolites

Zeolites	$S_{\rm BET}$ $\left(\frac{m^2}{g}\right)$	S_{micro}^a $\left(\frac{m^2}{g}\right)$	$S_{ext}^{\quad a}$ $\left(\frac{m^2}{g}\right)$	V_{micro}^{b} $\rm \left(cm^3/g \right)$	$V_{\text{meso}}^{\text{b}}$ $\rm \left(cm^3/g \right)$
NaY	517	486	30	0.251	0.012
$NaY-2-0.2$	549	489	59	0.261	0.041
$NaY-4-0.2$	440	314	125	0.164	0.079
$NaY-6-0.2$	513	413	99	0.183	0.061
$NaY-4-0.1$	491	422	68	0.195	0.038
$NaY-4-0.3$	298	249	49	0.102	0.020

^a:calculated by t-plot method. \rightarrow volume adsorbed at $p/p=0.99$

Mesopore size distribution of NaY zeolites

 About 4nm Mesopores are formed by acid treatment.

NaY zeolite treated with oxalic acid

- The sodalite cages are partially broken.
- \checkmark Cu species in the smallcage can contact with the reactant, increasing the catalytic activity.

Summary

- **Cu⁺ -SSIE catalyst provides similar environment around the active center Cu⁺ with CuCl, showing a good catalytic activity.**
- **Cu⁺ in the supercage is the active center of oxidative carbonylation reaction.**
- \checkmark Cu²⁺ in the CuY catalyst is auto-reduced to Cu⁺ during the high **temperature activation process.**
- **Introducing metal caution, not only adjusts more Cu located in the supercage, but also changes the environment around the active center Cu⁺ ,**

 Mesopores in Y zeolite make the reactant molecular easily access the active sites,resulting in the improvement of catalytic activity.

The chlorine-free Cu/AC catalyst is prepared by **pyrolysis of Cu(CH₃COO)**₂ /AC.

 AIChE J. 2013, 59(10): 3797-3805. Angew Chem int Ed. 2005, 44: 4774.

- *J Catal. 2010, 276(2): 215-228.*
- *Chem Eng J. 2010, 165(1): 78-88.*

Cu/AC catalyst was prepared *via* **pyrolysis of Cu(CH3COO)² /AC.**

965 960 955 950 945 940 935 930 925 Binding energy/eV

heat-treated for 4h

 XRD patterns of $Cu(CH_3COO)_2 \cdot H_2O/AC$ heat-treated for 4h a $150 \,^{\circ}\text{C}$, b $200 \,^{\circ}\text{C}$, c $250 \,^{\circ}\text{C}$, d $300 \,^{\circ}\text{C}$, e 350 ^oC, f 400 ^oC, g 450 ^oC

Cu _{2p} patterns of Cu(CH₃COO)₂·H₂O/AC a $150 \, \text{°C}$, b $200 \, \text{°C}$, c $250 \, \text{°C}$, d $300 \, \text{°C}$, e 350

 \triangleright Cu₂O was main active species.

Li Z* , Wen C, Wang R, Zheng H, Xie K. *Chem J Chin U***, 2009, 30: 2024-2031**

Catalytic mechanism over Cu2O surface

- \checkmark O₂ is adsorbed on the surface of **Cu2O(111) with oxygen vacancy defects, and easy to decompose to lattice oxygen, which is conducive to the formation of CH3O species.**
- **CO and CH3O are co-adsorbed on the surface of Cu2O(111) to produce monomethyl carbonate species.**

Optimized coadsorbed structures and transition states over Cu2O(111) surface

- Zhang R, Song L, Wang B, **Li Z***. *J Comput Chem,* 2012, 33: 1101-1110
- Zhang R, Ling L, **Li Z***, Wang B. *Appl Catal A-Gen*, 2011, 400: 142

Catalytic mechanism over Cu/AC catalyst

Ren J, Wang W, Wang D, Zuo Z, Lin J, **Li Z***. *Appl Catal A: Gen*, 2014, 472: 47-52

\triangleright AC surface modification

XPS spectra of C1s (A), O1s (B), and N1s (C) of the AC samples

Carbon、**oxygen and nitrogen contents of the AC samples obtained by XPS**

surface oxygenated groups of the AC samples determined by Boehm titration

Acid treatment effectively modify the

surface oxygenated groups on AC.

Zhang G, **Li Z***, Zheng H, Fu T, Ju Y, Wang Y. *Appl Catal B: environ*, 2015, 179: 95-105

\triangleright AC surface modification

TEM images of catalysts a Cu/AC-0, b Cu/AC-2, C Cu/AC-4, d Cu/AC-8,

 The surface oxygenated group is conducive to the dispersion and valence distributions of copper species.

Zhang G, **Li Z***, Zheng H, Fu T, Ju Y, Wang Y. *Appl Catal B: environ*, 2015, 179: 95-105

.......

Oxidation state and catalytic activity of Cu/AC catalyst

 The optimal catalytic performance is due to the highest dispersion of Cu⁺ and Cu⁰ species.

Zhang G, **Li Z***, Zheng H, Fu T, Ju Y, Wang Y. *Appl Catal B: environ*, 2015, 179: 95-105

Cu/AC catalyst applied in liquid phase reaction

DMC yield of three types of Cu/AC catalysts

Li Z*, Ju Y, Zheng H. *J Catal*, under review.

H² -TPR patterns of Cu/AC catalyst before and after reaction

After reaction, the oxidation and dispersive states of Cu species are similar.

Li Z*, Ju Y, Zheng H. *J Catal*, under review.

TEM of Cu/AC catalyst before and after reaction

Li Z*, Ju Y, Zheng H. *J Catal*, under review.

Dimethyl Carbonate synthesis

Catalytic activity and stability in 180 day

- **Methanol conversion >12%**
- **DMC** selectivity $\approx 95\%$
- **Activity better than CuCl catalyst**

No equipment corrosion & environment pollution problem

The project is being conducted in pilot scale.

Summary

Cu2O was main active species of Cu/AC catalyst for oxidative carbonylation reaction.

 \triangleright **O**₂ **adsorbed on Cu**₂**O**(111) **is easily to promote the formation of CH3O species. With CO adsorbed on Cu2O(111), monomethyl carbonate species are formed.**

The surface oxygenated group is favor to the reduction of Cu2+ to active Cu⁺ species.

Cu/AC catalyst applied in liquid phase reaction exhibits excellent catalytic activity and stability.

Acknowledgement

Colleagues: Prof. Jun Ren Prof. Baojun Wang Prof. Riguang Zhang Dr. Huayan Zheng Dr. Fanhui Meng Dr. Tingjun Fu, Dr. Hanqing Zhao

Collaborators: Prof. Jun Shen Prof. Xinbin Ma (Tianjin University), Prof. Dianzeng Jia (Xinjiang University) Dr. Shaowei Yan (Sedin Eng. Co., Ltd) Dr. Dongfei Wang (Lu'An Group) Mr. Xuewei Chen (China Kinghua Group)

PhD students: Guoqiang Zhang Yuchun Wang Lifei Yan Ruiyu Wang Bin LIU

MS students: Chunmei Wen Jun Qi Kai Yang Jiazhen Wang Yao Qin Yanjiao Li Yubo Ju Jiao Li Zhiqiang Hao Mengyun Li Xia Wang Yanqing Zhang Etc.

Acknowledgement

Acknowledgement

Financial Supports:

Thanks!

Web: <http://www.tyut.edu.cn/li>

Tel/fax: +86-351-6018526

Email: lizhong@tyut.edu.cn^{*}