Pricing of Guaranteed Minimum Benefits in Variable Annuities

Waterloo, May, 2012

Mikhail Krayzler
Chair of Mathematical Finance
Technische Universität München

Joint work with Rudi Zagst and Bernhard Brunner.
Agenda

1. Introduction and Motivation
2. Financial and Insurance Market Model
3. Pricing of Variable Annuities
4. Model Calibration
5. Example
Introduction and Motivation
What are Variable Annuities

- **Variable Annuities** (VA) are (deferred), fund-linked annuity and insurance products allowing guaranteed payments and participation in the financial markets at the same time.

- Examples for guaranteed payments include
 - minimum interest rate guarantees
 - ratchets

- Variable annuities are often referred to as GMxB, **Guaranteed Minimum Benefits** of type x:
 - GMDB (Death)
 - GMAB (Accumulation)
 - GMIB (Income)
 - GMWB (Withdrawal)
Markets for Variable Annuities

- **Motivation**
 - Increasing life expectancy
 - Reduction of the state retirement pensions in several countries

- **Consequences**
 - VA as a major success story in the North American insurance market
 - Rapid growth of VA business in Japan - from $1.3 billion in 2001 to more than $140 billion in 2008
 - Europe as the latest market for Variable Annuities
European VA Market

There is significantly more non-public activity

Source: Milliman
Existing Literature

Most of the papers in the academic literature differentiate in: guarantees priced, financial and insurance models, consideration of policyholder behavior, pricing methods

- [Milevsky and Posner 2001] GMDB
- [van Haastrecht et al. 2009] GMAB
- [Milevsky and Salisbury 2006], [Dai et al. 2008] GMWB

Our contribution: Derivation of explicit solutions for the prices of some of the VA products currently offered on the market in a hybrid model for insurance and market risks.
Financial Market Model
Financial Market Model
Notation and definitions

- Let $(\Omega, \mathcal{F}, \mathbb{F}, \mathbb{P})$ be a filtered probability space. Furthermore, we assume
- the adapted short rate process r, with the money-market account described as
 \[M_t = \exp \left(\int_0^t r_s ds \right), \]
- a risk-neutral measure \mathbb{Q} under which discounted security S is a \mathbb{Q}-martingale:
 \[S_t = \mathbb{E}_Q \left[e^{-\int_t^T r_s ds} S_T | \mathcal{F}_t \right]. \]
- Financial market under \mathbb{Q} is described via Hull-White-Black-Scholes hybrid model with time-dependent volatility (HWBStdv)
 \[dr_t = (\theta_r(t) - a_r t) dt + \sigma_r dW^r_t, \]
 \[dY_t = \left(r_t - \frac{1}{2} \sigma^2_Y(t) \right) dt + \sigma_Y(t) dW^Y_t, \]
 where $Y = \ln \left(\frac{S_t}{S_0} \right)$ and $dW^r_t dW^Y_t = \rho dt$.

Chair of Mathematical Finance
Financial Market Model
Equity as a numeraire

- Let Q^S denote the equity price measure, with equity price S used as a numeraire. The corresponding Radon-Nikodym derivative (e.g. see [Geman et al. 1996]) is given by

$$
\frac{dQ^S}{dQ} = \exp \left[-\frac{1}{2} \int_0^T \sigma_Y^2(t) dt + \int_0^T \sigma_Y(t) dW_Y^Y \right],
$$

- Using multi-dimensional version of Girsanov’s theorem (e.g. see [Oksendal 2005]) we can rewrite the dynamics under Q^S:

$$
\begin{align*}
 dr_t &= \left(\theta_r(t) - a_r r_t + \sigma_r \sigma_Y(t) \rho \right) dt + \sigma_r dW_t^{r,Q^S}, \\
 dY_t &= \left(r_t + \frac{1}{2} \sigma_Y^2(t) \right) dt + \sigma_Y(t) dW_t^{Y,Q^S}.
\end{align*}
$$

- It can be shown that, conditional on the current filtration \mathcal{F}_0, both r_T and Y_T are normally distributed with the corresponding moments μ_{r_T}, σ_{r_T} and μ_{Y_T}, σ_{Y_T}.
Insurance Model
Notation and definitions

- Random lifetime of a person aged x at $t = 0$ is modeled as a stopping time $\tau(x)$ of a counting process $N_t(x + t)$ with corresponding mortality intensity $\lambda_t(x + t)$.

- Introduce two subfiltrations of \mathcal{F} by $\mathcal{G} = (\mathcal{G}_t)_{t \geq 0}$ and $\mathcal{H} = (\mathcal{H}_t)_{t \geq 0}$
 \[\mathcal{G}_t = \sigma(\lambda_s(x + s) : s \leq t), \quad \mathcal{H}_t = \sigma(\mathbb{1}_{\{\tau(x) \leq s\}} : s \leq t). \]

- **Definition 1.** Survival probability is defined as a probability that a person at the age of $x + t$ at time t survives at least up to time T:
 \[p_t(x + t, T|\mathcal{G}_t) := \mathbb{P}(\tau(x) > T|\mathcal{G}_t \vee \mathcal{H}_t), \]
 \[p_t(x + t) := p_t(x + t, t + 1|\mathcal{G}_t) \text{ - is called one-year survival probability.} \]

- For the survival probability measured at time t of a person at the age of $x + t$ at time t it holds that
 \[p_t(x + t, T|\mathcal{G}_t) = \mathbb{E} \left[e^{-\int_t^T \lambda_s(x + s)ds} \mid \mathcal{G}_t \vee \mathcal{H}_t \right]. \]
Insurance Model
Mortality improvement ratio

- Compare the mortality intensity at time 0 with mortality intensity at time t
- Introduce the **mortality improvement ratio** as
 \[
 \xi_t(x + t) = \frac{\lambda_t(x + t)}{\lambda_0(x + t)}
 \]

Sample path for the mortality improvement ratio
Insurance Model
Mortality improvement ratio

- We model ξ_t as an extended Vasicek process
 \[d\xi_t = k(e^{-\gamma t} - \xi_t)dt + \sigma dW_t. \]

- Initial mortality intensity is described by the Gompertz model
 \[\lambda_0(x + t) = bc^{x+t} \]
 and is calibrated to the current life table.

- Future mortality intensity can be calculated as
 \[\lambda_t(x + t) = \lambda_0(x + t) \cdot \xi_t. \]

- Survival probabilities can be expressed as
 \[p_t(x + t, T|G_t) = C_\lambda(t, T)e^{-D_\lambda(t,T)\lambda_t(x+t)}, \]
 where $C_\lambda(t, T)$ and $D_\lambda(t, T)$ satisfy two ordinary differential equations.
Guaranteed Minimum Income Benefit

Definition

- Let
 - P - single premium
 - T - end of the accumulation period
 - A_t - account value at time t
 - G^x_t - guaranteed amount at time t for the corresponding GMxB

- GMIB provides a policyholder who is alive at the end of the accumulation period T with a benefit V^I_T, defined as

 $$V^I_T = \mathbb{1}_{\tau > T} \max(A_T, G^I_T \cdot g \cdot a_n(T)),$$

 where g is a guaranteed annuitization rate, $a_n(T)$ is a price at time T of a n-year annuity paying one unit each year starting from T.

Chair of Mathematical Finance
Guaranteed Minimum Income Benefit
Definition

- The following options for G^I_T are quite common on the market:
 - No guarantee: $G^I_T = 0$
 - Return of premium: $G^I_T = P$
 - Roll-up: $G^I_T = P e^{\delta T}$, where δ is a continuously compounded roll-up rate
 - Ratchet: $G^I_T = \max_{t_i < T} A_{t_i}$

- We consider a pure equity fund underlying the policyholder’s account, i.e.
 $$dA_t = A_t \frac{dS_t}{S_t}, \quad A_0 = P.$$

- The time 0 fair value of GMIB can be written as
 $$V^I_0 = \mathbb{E}_Q \left[e^{-\int_0^T r_s \, ds} \mathbb{1}_{\{\tau > T\}} \max(A_T, G^I_T \cdot g \cdot a_n(T)) \right].$$
Guaranteed Minimum Income Benefit

Theorem

Analytical expression for V^I_0 can be derived:

$$V^I_0 = P \cdot C(0, T)e^{-D(0, T)\lambda_0} \left(1 + e^{\delta T} g \sum_{i=1}^{n} \left[F_i N(h^1_i) - K_i N(h^2_i)\right] \right),$$

where

$$F_i = e^{M_i + \frac{1}{2}V_i},$$

$$h^1_i = \frac{ln \left(\frac{F_i}{K_i} \right) + \frac{1}{2}V_i}{\sqrt{V_i}},$$

$$h^2_i = h^1_i - \sqrt{V_i},$$

$$M_i = ln(\tilde{C}_i) = ln \left(C(T, t_i)C_r(T, t_i)e^{-D(0, T)\mu_{T_r} - D(T, t_i)\mu_{T_r'} - \mu_{T_r}} \right),$$

$$V_i = \tilde{D}_i^2 = D^2_{\lambda} \sigma^2_{\lambda} + D^2_{r} \sigma^2_{r} + \sigma^2_{Y} + 2D_r \sigma_{r} \sigma_{Y} \rho_{r,Y_T}. $$

K_i is defined as $K_i := \tilde{C}_i e^{-\tilde{D}_i x^*}$, where x^* is a solution of

$$\sum_{i=1}^{n} \tilde{C}_i e^{-\tilde{D}_i x^*} = K.$$
Model Calibration
Insurance Model Calibration

Data

- Initial mortality table (Source: Federal Statistical Office of Germany)

- Mortality improvement ratio (Source: Federal Statistical Office of Germany)
Insurance Model Calibration

Algorithm

- Estimate parameters of the Gompertz model from the initial mortality intensity via least square method

- Estimate parameters of the mortality improvement ratio process via maximum likelihood method. Corresponding log-likelihood function is given by:

\[
\mathcal{L}(k, \gamma, \sigma) = \sum_{i=1}^{n} \ln(f(\xi_i|\xi_{i-1}; k, \gamma, \sigma))
\]

\[
= \frac{n}{2} \ln(2\pi) - n \ln \hat{\sigma}
\]

\[
- \frac{1}{2\hat{\sigma}} \sum_{i=1}^{n} \left(\xi_i - \xi_{i-1} e^{-k \cdot \Delta} - \frac{k}{k - \gamma} e^{-\gamma t_i} \cdot \left(1 - e^{(\gamma-k) \cdot \Delta} \right) \right)^2,
\]

where

\[
\hat{\sigma} = \sigma \sqrt{\frac{1 - e^{-2k \cdot \Delta}}{2k}}
\]
Financial Model Calibration

Data

- Interest rate data: deposit rates, swaps, swaptions (Source: Bloomberg)

- Equity data: implied volatilities term structure (Source: Bloomberg)
Financial Model Calibration
Algorithm

- Estimate θ_t based on the current term structure of the interest rates
- Calibrate Hull-White model to the observed prices for the European swaptions
- Estimate instantaneous volatility from the term structure of the implied volatility
Example

5
Setup

- Type of the guarantee: single premium GMIB
- Guaranteed annuitization rate: 7.5%
- Roll-up rate: 2%
- Maturity of the guarantee: 10 years
- Maturity of the guaranteed annuity: 20 years
- Policyholder: male, 55 year old
- Mortality: German mortality table for 2007/2009
- Financial Model: HWBS calibrated to the market data as of 30/04/2012 (Market data for calibration: VSTOXX, EUR swap based yield curve and swaptions)
Sensitivities to Financial Market Parameters

- Changes in implied volatility

- Changes in interest rates
Sensitivities to Insurance Market Parameters

- Changes in the underlying mortality table

- Resulting GMIB prices
Sensitivities to Product Parameters

- Changes in annuitization rates

- Changes in roll-up rates
Conclusion & Further Research

- HWBSdv for the financial market
- 2-step approach for stochastic mortality modeling
- Explicit expression for GMIB
- Calibration of the presented hybrid model
- Analyze other types of guarantees (GMWB, GMDB)
- Analyze additional guarantee riders (ratchets, resets)
- Incorporate policyholder behavior risk
- Advance the underlying model
- ...

Chair of Mathematical Finance
Thank you for your attention.
Bibliography

Chair of Mathematical Finance