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Abstract 

Protecting northern aquatic ecosystems is critical to ensuring the sustained use of these 

environments; however, with increasing industrial and residential development pressures in this 

region the safe and effective treatment of domestic wastewater is becoming a concern. Globally, 

peatlands have been used successfully to treat and polish domestic wastewater in northern 

environments but there is a dearth of knowledge on contaminant transport in peatlands, specifically 

reactive contaminants; such as the constituents of domestic wastewater. Ladder fens act as the 

conveyers of water, and likely solutes, from the bog peatlands to the aquatic ecosystems and 

similar systems have been used for domestic wastewater treatment. Ladder fens consist of a pool-

rib-pool topography where the flow of water is governed by the peat ribs and their associated 

microtopography. Within a given rib, there are two distinct microtopographies: topographically 

high ridges that impede water flow and topographically low preferential flow paths that enhance 

water flow during periods of high water tables. Thus, the hydrological, and potentially solute, 

connectivity is thought to be controlled by the surface elevation of the low-lying preferential flow 

paths. However, the mechanisms governing the hydrological connectivity of these systems is still 

relatively unknown. Furthermore, there is limited knowledge on the processes and mechanisms 

that govern the fate and transport of contaminants, such as domestic wastewater, in ladder fens. 

Understanding the processes and mechanisms governing the hydrology, solute transport, and 

contaminant removal is critical to safely and effectively using these systems for domestic 

wastewater treatment or polishing; thus, is the primary objective of this thesis.    

 

To elucidate these processes and mechanisms in ladder fens, a continuous experimental 

simulated-domestic wastewater release occurred in 2014 (day of year 192 – 243) with an associated 

hydrological load (2014 – 38 m3 day-1 and 2015 – 30 m3 day-1) in a small sub-arctic ladder fen 

(EXP Fen) in the James Bay Lowland, Ontario, Canada approximately 100 km west of 

Attawapiskat. Typical domestic wastewater contaminants, nitrate (7.6 mg L-1), ammonium (9.1 mg 

L-1), and phosphate (7.4 mg L-1), were injected into the EXP Fen, along with sulphate (27.2 mg L-

1), sodium (25.3 mg L-1), and chloride (47.2 mg L-1) to better mimic local domestic wastewater 

conditions. Given that sulphate can enhance the methylation of mercury in peatlands, total 

dissolved mercury (THg) and methylmercury (MeHg) concentrations were measured at the EXP 
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Fen in addition to the hydrological and biogeochemical conditions throughout the summers of 

2014 and 2015. Prior to the experimental loading the background geochemical and hydrological 

conditions were monitored in 2013 at the EXP Fen and at 3 nearby reference sites (2013 – 2015).  

 

The flow of water and solutes in ladder fens depends on the hydraulic conductivity and 

transmissivity distributions within the peat ribs and the surface elevation of the low-lying 

preferential flow paths. The low-lying preferential flow paths typically had higher hydraulic 

conductivity within the upper 0.1 m of the saturated peat than equivalent elevation in the ridges. 

Yet, overland flow events vastly increased the hydrological connectivity and runoff ratios exceed 

1 during these events (when excluding the pumped water). Once overland flow occurred, the rate 

of water movement from the top of the system to the bottom decreased from weeks to hours. 

However, when the water table resides within the upper peat layers rapid conservative solute 

(chloride) transport was observed. The high hydraulic conductivity (16 – 598 m day-1) in upper 

peat layers resulted in high conservative solute velocities (1.9 m day-1), while adsorptive (sodium) 

solute velocities were only slightly lower (1.1 m day-1). Although the solute velocities were high, 

it was still lower than the average linear groundwater velocity (2.1 m day-1), resulting in a 

retardation factor of 1.2 for chloride and 2.1 for sodium. The retardation factor for chloride, a 

conservative solute, greater than 1 was likely due to diffusion into the inactive porosity of the peat 

(0.29 – 0.44). This processes likely influenced all contaminants studied.  

 

Similar to other treatment or polishing peatlands, the EXP Fen was highly effective at 

removing all contaminants from the pore water and no contaminants were detected at the site 

outflow. Nitrate was only transported 0.5 m into Rib 1, while ammonium (0.3 m day-1) and 

phosphate (0.2 m day-1) were transported further, yet were still relatively immobile. Initially, 

phosphate was completely immobile but the system saturated towards phosphate, resulting in a 

mobile contaminant. Sulphate, unlike the other contaminants, was very mobile (1.3 m day-1) within 

the EXP Fen, more similar to chloride and sodium. Additionally, within the sulphate plume 

elevated THg and MeHg concentrations were observed compared to background and reference site 

concentrations. Methylmercury, as a percentage of THg, comprised 80 -100 % in the pore water 

but no MeHg was observed at the site outflow. The enhanced generation of MeHg and THg is 

potentially a concern when using ladder fens as wastewater polishing or treatment peatlands due 
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to the high mobility of sulphate. However, the efficient removal of all contaminants from the pore 

water suggests that ladder fens may be suitable for domestic wastewater treatment. Nevertheless, 

ensuring the water table is below the high hydraulic conductivity layers would greatly decrease 

the transport rates, thus increasing treatment, allowing for the safe operation of ladder fens as 

treatment wetlands.  
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1  Introduction 

 

With the discovery and subsequent development of mineral resources in the James Bay 

Lowland (JBL), the potential for contaminants to enter these ecosystems has increased. 

Furthermore, the development and operation of mining camps results in the generation of domestic 

wastewater that must be safely and efficiently treated prior to release into the surrounding 

ecosystems. Domestic wastewater is usually elevated in nutrients (i.e., nitrate, ammonium, 

phosphate, etc.) (Kadlec & Wallace, 2009), while many of the ecosystems in the JBL, specifically 

peatlands, are limited towards these nutrients and many base cations (Campbell & Bergeron, 2012; 

Ulanowski & Branfireun, 2013). Additionally, peatlands have been used to treat (Yates et al., 

2012) and polish domestic wastewater (Kadlec, 2009a; Ronkanen & Klove, 2009) in northern 

environments, similar to the JBL. However, there is little information on the transport and fate of 

many of these domestic wastewater contaminants and associated hydrology in peatlands in general.   

 

The JBL is part of the Hudson Bay Lowlands, which is the second largest wetland complex 

in the world (Gorham, 2008), comprising a mosaic of bog and fen peatlands (~90 % of the land 

cover) and small areas of mineral uplands along river channels (Riley, 2011). Underlying the 

peatlands is a marine origin mineral sediment (Price & Woo, 1988; Whittington & Price, 2013) 

that was deposited ~8000 years ago with the generation of the Tyrell Sea (Lee, 1960). The mineral 

sediments, which can be several hundreds of metres thick (Dredge & Cowan, 1989), limit the 

percolation of water from the peatlands to the regional aquifers due to low hydraulic conductivities 

(Whittington & Price, 2013). As such, the primary loss of water during the ice-free season is 

through evapotranspiration (Leclair et al., 2015; Reeve et al., 2000), with minimal runoff 

(Richardson et al., 2012) or groundwater flow to the surrounding aquatic ecosystems (Leclair, 

2015; Perras, 2015; Richardson et al., 2012). However, during periods of high or perched water 

tables, the hydrological connectivity of the landscape is very high, often generating overland flow 

(Price & Maloney, 1994; Quinton & Roulet, 1998; Richardson et al., 2012) through the ladder fen 

peatlands that drain the large bog complexes found in the JBL (Leclair, 2015; Perras, 2015; Siegel 

& Glaser, 1987). However, there remains a dearth of knowledge regarding the mechanisms and 
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processes that govern the flow and transport of both water and solutes within peatlands, which 

limits our ability to safely use these systems for wastewater polishing or treatment. 

 

In large peatland complexes, the bogs provide a water storage role within the landscape 

and fens are the conveyers of water that shuttle water from the bogs to the aquatic ecosystems 

during periods of high landscape hydrological connectivity (Quinton et al., 2003; Siegel & Glaser, 

1987). Both ladder fens and the larger ribbed fens consist of a pool-rib-pool morphology where 

the peat ribs are orientated perpendicular to the direction of water flow (Leclair, 2015; Perras, 

2015; Price & Maloney, 1994; Quinton & Roulet, 1998). The transmission of water through these 

systems relies on a spill-and-fill mechanism (Spence & Woo, 2003), where a threshold water table 

elevation is required to generate flow between pools (Price & Maloney, 1994; Quinton & Roulet, 

1998). Typically the threshold has been assumed to be the peat surface, where once the water table 

exceeds the surface, overland flow occurs (Quinton & Roulet, 1998); however, high hydraulic 

conductivity peat can result in similar hydrological connectivity but this process has only been 

identified in one study (Price & Maloney, 1994). Thus, it has been assumed that the fill-and-spill 

mechanism is primarily controlled by rib topography (i.e., topographical microform), either the 

low-lying preferential flow paths (PFP) that increase connectivity or the topographically higher 

ridges that impede water flow (Price & Maloney, 1994; Quinton & Roulet, 1998). Although there 

is a broad understanding of the processes that govern water flow in ladder fens, the specific 

hydrological mechanisms are still unknown. Furthermore, there is no know information on solute 

transport within ladder fens that is vital to understand when using these systems for wastewater 

treatment or polishing.   

 

At the field scale, solute transport in peatlands is at best poorly understood as there are only 

two published field scale solute transport studies (Baird & Gaffney, 2000; Hoag & Price, 1995). 

These two studies have resulted in a broad understanding of the processes governing solute 

transport, where the majority of solute is transported within the near surface high hydraulic 

conductivity layers (Baird & Gaffney, 2000; Hoag & Price, 1995) and limited vertical advection 

occurs due to the inherent anisotropy of peat (Beckwith et al., 2003b, 2003a). Furthermore, peat 

inherently retards solutes, both reactive and conservative, due to the diffusion of solutes into an 

inactive porosity, which accounts for 40 – 90 % of the total porosity (Hoag & Price, 1997; Ours et 
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al., 1997; Rezanezhad et al., 2012). Thus, advection only occurs within the effective, or active, 

porosity that represents 10 – 60 % of the total porosity (Hoag & Price, 1997; Ours et al., 1997; 

Rezanezhad et al., 2012) and typically decreases with depth and, by extension, state of 

decomposition (Hoag & Price, 1997; Quinton et al., 2000). Long term storage of solutes within 

the inactive porosity is unlikely unless the concentration of the solute in the active porosity remains 

constant over time (Hoag & Price, 1997; Ours et al., 1997). Furthermore, peat has a high cation 

exchange capacity (Gogo et al., 2010; Kyzoil, 2002; Rippy & Nelson, 2007) that can remove some 

contaminants through geochemical adsorption (Heiberg et al., 2012; Ho & McKay, 1999; Kyzoil, 

2002). In addition to adsorption, the sorption of phosphate and other anions (Gerke & Hermann, 

1992; Seo et al., 2005) to the organic molecules can further retard reactive solutes. Thus, the 

geochemistry of peat and peatlands, and by extension ladder fens, creates an environment well 

suited for contaminant treatment. However, there has yet to be a reactive solute transport study at 

the field scale and no experimental field scale study of the fate and transport of domestic 

wastewater within ladder fens in sub-arctic Canada.   

 

The geochemistry of peatlands within the JBL follows the typical patterns observed 

globally (Boeye & Verheyen, 1994; Fraser et al., 2001; Rydin & Jeglum, 2009; Vitt et al., 2003; 

Vitt et al., 1993; Wind-Mulder et al., 1996), where Sphagnum moss dominated systems are low in 

base cations, nutrients and pH, while sedge or woody dominated fen peatlands have higher pH and 

dissolved minerals (Glaser et al., 2004; Ulanowski & Branfireun, 2013). The high water tables of 

these peatlands create anoxic conditions that limits the decomposition of organic matter, allowing 

for an abundance of available labile organic matter for biogeochemical processes (Bengtsson et 

al., 2016; Boelter, 1969; Bonnett et al., 2006; Cabezas et al., 2012; Moore et al., 2005). Yet, many 

of these peatlands are nutrient limited, particularly towards nitrogen and phosphorus (Campbell & 

Bergeron, 2012) and would likely provide the rapid removal of nitrate, ammonium and phosphate, 

due to these limitations, during domestic wastewater treatment or polishing. Furthermore, the 

anoxic conditions increases the microbial demand for oxidizing chemical species, such as nitrate 

or sulphate (Blodau et al., 2009; Bottrell et al., 2007; Heiberg et al., 2012; Niedermeier & 

Robinson, 2007; Rubol et al., 2012). Under these anoxic conditions sulphate undergoes microbial 

reduction that mediates the production of methylmercury in peatlands (Coleman Wasik et al., 

2015; Coleman Wasik et al., 2012; Compeau & Bartha, 1985; Gilmour et al., 1992; Hoggarth et 
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al., 2015; Mitchell et al., 2008). Furthermore, increases in sulphate concentrations have been 

linked to increases in methylmercury in plot-scale peatland experiments (Branfireun et al., 2001; 

Branfireun et al., 1999; Coleman Wasik et al., 2015; Coleman Wasik et al., 2012; Mitchell et al., 

2008); however, sulphate concentrations are typically low in peatlands (Brown & Macqueen, 

1985; Koerselman et al., 1993; Ulanowski & Branfireun, 2013). Although sulphate is usually not 

found in high concentrations in domestic wastewater (Kadlec & Wallace, 2009), elevated sulphate 

concentrations of the pore water in the regional aquifers has been observed in the JBL (Boucher, 

2012) that may increase the sulphate concentration of the domestic wastewater from mining 

camps. Consequently, it is unknown if treating domestic wastewater with elevated sulphate 

concentrations will also produce an increase in methylmercury and what the potential magnitude 

of this response may be. Furthermore, there is limited information on the fate of many wastewater 

contaminants in the peatlands of the JBL and represents a critical gap in knowledge to using these 

systems safely and effectively for domestic wastewater treatment or polishing.  

 

Globally, peatlands have been used for wastewater treatment (Yates et al., 2012) or 

polishing (Eskelinen et al., 2015; Kadlec, 2009a; Palmer et al., 2015; Postila et al., 2015; 

Ronkanen & Klove, 2009; Ronkanen & Kløve, 2007, 2008; Yates et al., 2012) in northern 

environments, having near complete removal of both biological (i.e., bacteria or parasites) 

(Eskelinen et al., 2015; Kadlec, 2009) and chemical (i.e., nitrate, ammonium, total nitrogen, 

phosphate, total phosphorous, sulphate, etc.) contaminants (Eskelinen et al., 2015; Kadlec, 2009a; 

Palmer et al., 2015; Postila et al., 2015; Ronkanen & Klove, 2009; Ronkanen & Kløve, 2007, 

2008; Yates et al., 2012). Typically, a combination of both open water and subsurface treatment 

wetland types allows for the effective treatment of a variety of contaminants (Kadlec & Wallace, 

2009) but many treatment peatlands lack this combination (Kadlec, 2009a; Ronkanen & Kløve, 

2008). However, ladder fens naturally provide both subsurface (peat ribs) and open water (pools) 

treatment. Although the morphology of ladder fens is conducive to domestic wastewater treatment, 

the pH (~5 – 6) is lower in natural occurring ladder fen peatlands (Ulanowski & Branfireun, 2013) 

than typical treatment wetlands (~7 – 8) (Kadlec & Wallace, 2009; Kim et al., 2011; Lee et al., 

2012) and may decrease the efficiency of the biogeochemical processes that remove domestic 

wastewater contaminants. Notwithstanding differences between natural and constructed wetlands, 

the few natural treatment or polishing peatlands have near complete removal of contaminants. 
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These natural treatment peatlands take advantage of the high organic content of the peat, which 

facilitates both biological (Cabezas et al., 2013; Kim et al., 2011; Ronkanen & Klove, 2009; 

Vymazal, 2007; Xing et al., 2011) and geochemical removal (do Carmo Horta & Torrent, 2007; 

Gerke & Hermann, 1992; Heiberg et al., 2012; Morris & Hesterberg, 2012; Noe et al., 2003; 

Palmer et al., 2015; Ronkanen & Klove, 2009; Staunton & Leprince, 1996; Xing et al., 2011; Zak 

et al., 2010). Although the mechanisms of domestic wastewater treatment in natural peatlands are 

well understood, it is unknown if ladder fens are suitable for wastewater treatment or polishing in 

remote northern environments, such as the JBL.  

 

1.1 Objectives 

 

The solute transport, hydrology, mercury dynamics, and biogeochemistry in ladder fens 

are intricately linked; consequently, it is critical to understand the how these different processes 

control the fate and transport of domestic and internally produced wastewater contaminants. 

Therefore the overall objective is to determine the hydrochemical processes and mechanisms 

governing the fate and transport of domestic wastewater in ladder fens during a wastewater 

polishing experiment at the field scale. The specific objectives are to: 

1. Assess the hydrological processes governing the hydrological connectivity in ladder fens, 

2. Determine the processes influencing the transport of conservative (chloride), adsorptive 

(sodium), and wastewater solutes under increased hydrological loading, 

3. Identify the fate of typical domestic wastewater contaminants (nitrate, ammonium, and 

phosphate) during a wastewater polishing experiment, 

4. Ascertain whether the elevated sulphate concentrations, similar to the groundwater of the 

JBL, could influence mercury dynamics during wastewater polishing, and 

5. Comment on the suitability of ladder fens for domestic wastewater treatment in remote 

sub-arctic regions. 

 

This thesis did not evaluate the transport and fate of elevated organic matter that is often 

associated with wastewater, pathogens such as bacteria and viruses, or other wastewater 

constituents that are of emerging concern, such as pharmaceuticals.   
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1.2 Organization of Thesis 

 

This thesis comprises five chapters following the manuscript option at the University of 

Waterloo. The introduction, Chapter 1, presents the general concepts, background information and 

objective of the thesis, where specific concepts are expanded upon within each chapter as required. 

As such, care has been taken to limit duplication within the introduction and conclusions (Chapter 

5) with the rest of the thesis.  

 

Chapters 2 – 4 are the results and analysis of empirical research of a field scale wastewater 

polishing experiment in a sub-arctic ladder fen. The hydrology of ladder fens under high water 

tables and the processes governing the hydrological connectivity is presented in Chapter 2 and 

specifically addressing objective 1. The transport of conservative and adsorptive solutes (objective 

2) under wastewater polishing conditions (i.e., elevated water tables and hydrological 

connectivity) is presented in Chapter 3. Finally, Chapter 4 investigates the transport and fate of 

domestic wastewater contaminants and sulphate during a domestic wastewater polishing 

experiment, addressing objectives 3 and 4. 

 

The final chapter (5) are overall conclusions and recommendations for future research and 

best management practices for the safe and effective use of ladder fens for domestic wastewater 

treatment and polishing. 

 

An appendix (A), at the end of the thesis, is attached to provide the mathematical 

development of the transmissivity calculations and comparison to measured piezometer hydraulic 

conductivity values.  
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2  Experimental hydrological forcing to illustrate water flow processes of a 

ladder fen in the James Bay Lowland, Canada 

 

2.1 Summary 

 

Large peatland complexes dominate the landscape of the James Bay Lowland (JBL) in sub-

arctic Ontario, Canada. However, there is not an in-depth understanding of the hydrological 

processes occurring in these important systems, particularly how ladder fens connect large domed 

bogs to the aquatic ecosystems that drain the peatland complex. To assess the hydrological 

connectivity, the role of the water table, peat transmissivity, and microtopography of a small ladder 

fen, dominated by rib and pool microtopography, was studied for 3 summers (2013-2015) in the 

JBL. The system was manipulated with a sustained hydrological forcing (water addition) to the 

top of the system during 2014 (38 m3 day-1) and 2015 (30 m3 day-1). There was an exponential 

increase in transmissivity towards the peat surface due to extremely high hydraulic conductivities 

within the upper few centimeters of the peat deposit. In the upper few centimeters of peat, hydraulic 

conductivity varied depending on peat microtopography (preferential flow paths = 42 – 598 m day-

1 and ridges = 16 – 52 m day-1), resulting in high hydrological connectivity periods. Furthermore, 

during 2015 there was an abnormally large amount of precipitation (300 mm vs. long-term average 

~100 mm) that resulted in complete surface water connectivity of the site, which caused rapid 

movement of water from the top of system to the outlet (~15 hr) and runoff ratios >1, compared to 

low water table periods (runoff ratio ~0.05). Through understanding the periods of high 

connectivity within ladder fens, and by extension the landscape, this study highlights the 

importance of ladder fens on water retention and drainage, and potentially on solute transport, 

within these landscapes.   

 

2.2 Introduction 

 

In large peatland complexes, fen peatlands are considered the conveyers of water, while 

bog peatlands typically provide a water storage role (Quinton et al., 2003) and release water to fen 

peatlands (Siegel & Glaser, 1987). Fen peatlands typically receive shallow groundwater from the 
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larger domed bogs and represent an important interface between the terrestrial peatlands and 

surrounding aquatic ecosystems (Glaser et al., 1981; Reeve et al., 1996; Siegel & Glaser, 1987). 

The quantity and timing of runoff generation from these peatlands depends on the proportion of 

bogs and fens within a catchment, whereas a greater proportion of fens typically results in higher 

runoff and more rapid responses (Richardson et al., 2012). Many large domed bogs are drained by 

internal fen water tracks (Glaser et al., 2004); these are classified as “ladder fens” in the Canadian 

Wetland Classification System (National Wetlands Working Group, 1997). These are within the 

bog margin and focus bog water discharge, particularly once threshold storage has been exceeded 

(Leclair, 2015; Quinton et al., 2003; Ulanowski, 2014). Ladder fens are typically geochemically 

distinct, with elevated base cations and pH (Perras, 2015), compared to the bogs they drain. 

However, determining the hydrological connectivity of these systems is critical to understanding 

the movement of water and solutes within large peatland complexes to the down-gradient aquatic 

ecosystems.  

 

Ladder fens consist of a pool-rib-pool topography similar to the larger scale ribbed fens, 

where the hydrological connectivity pool-to-pool is inversely related to the size and directly related 

hydraulic conductivity of the peat rib (Price & Maloney, 1994). Ribbed fens exhibit a fill-and-spill 

hydrology where a threshold water table is required to generate flow through the peat ribs to the 

down-gradient pools (Price & Maloney, 1994; Quinton et al., 2003; Quinton et al., 2000; Roulet, 

1991). Typically, the fill-and-spill mechanism is a combination of flow through the high hydraulic 

conductivity layers (Chason & Siegel, 1986; Price & Maloney, 1994; Ulanowski, 2014) of the peat 

ribs, or as diffuse flow over the peat ribs through vegetation (Price & Maloney, 1994; Roulet, 

1991) and the pool-to-pool connectivity will control the maximum flow rate though the fen 

(Quinton et al., 2003; Quinton & Roulet, 1998). The majority of flow over the ribs occurs as 

rivulets on or around the ribs during periods of high water table (Quinton & Roulet, 1998). During 

low water periods, flow through the ribs has been assumed negligible due to low hydraulic 

gradients (Quinton & Roulet, 1998) and the exponential decrease in transmissivity (T) as water 

table declines (Leclair, 2015; Perras, 2015). However, Price and Maloney (1994) found hydraulic 

conductivities several orders of magnitude higher than Quinton and Roulet (1998) that did not 

decrease substantially with water table decline; thus, the pool-to-pool connectivity could still be 

relatively high during periods of low water tables depending on local site conditions. Nevertheless, 
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the upper peat layers typically have very high hydraulic conductivities (Carey et al., 2007; Quinton 

et al., 2008; Surridge et al., 2005; Ulanowski, 2014) through which most water (and solutes) move 

(Ulanowski, 2014). Perras (2015) found ~5 fold increase in DOC flux during high water table (i.e., 

high hydrological connectivity) periods in ladder fens in the James Bay Lowland (JBL). 

Furthermore, ladder fens have been found to drain the surrounding bogs as a single source area 

during periods of elevated hydrological connectivity through high hydraulic conductivity layers 

(Ulanowski, 2014).Thus, during periods with high water tables (i.e., spring freshet and autumn 

wet-up), a substantial proportion of the nutrients, and potentially contaminants (i.e., 

methylmercury) (Kirk & St. Louis, 2009; Ulanowski, 2014), could leave the peatland complexes 

and enter downstream aquatic stream ecosystems.  

 

Ladder fens control the drainage of water, and by extension solutes, from bog peatlands 

into aquatic ecosystems and the flux of both are governed by the fill-and-spill mechanism. 

However, there is only a broad understanding of this mechanism in ladder fens, which is typically 

assumed to be controlled by surface water flow. Given the exponential increase in T with water 

table height in ladder fens, it is likely that high hydrological connectivity would occur without 

overland flow, similar to some ribbed fens, but there is not yet an in-depth understanding of these 

processes in ladder fens. Therefore, the objectives of this study are to: 

1. Further explore role of the peat ribs and changes in T in governing the hydrological 

connectivity of ladder fens, 

2. Assess the ability of these systems to export water under periods of intense hydrological 

loading (e.g., high water tables) through a continuous water table manipulation experiment. 

 

2.3 Study Site 

 

The study site (EXP Fen) (N 5860348.772, E 705883.366) is located in the JBL, ~ 90 km 

west of Attawapiskat near the De Beers Group of Companies Victor Diamond Mine. Regionally, 

two long-term (1971 – 2000) meteorological records are available from Moosonee (coastal, 250 

km southeast) and Lansdowne House (inland, 300 km southwest) and a nine-year record from the 

Victor Mine meteorological monitoring station. During July and August, regional average 

meteorological conditions at Moosonee (14.9 °C and 90 mm) (Environment Canada, 2015a) and 
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Lansdowne House (16.4 °C and 105 mm) (Environment Canada, 2015b) were similar and agreed 

well with the local meteorological monitoring station (15.6 °C and 154 mm). 

 

The peatland complex is characterized by 1.5 – 2.5 m of peat overlying fine-grained 

mineral sediment and a deep Silurian limestone aquifer. Dewatering of the mine pit has 

depressurized the deep limestone aquifer, enhancing recharge from the peatlands proximal to the 

mine (Whittington & Price, 2012; Whittington & Price, 2013). The cone of depression did not 

extend to the EXP Fen in 2011 (Leclair et al. 2015) and at the time of this study (2013-2015) the 

cone of depression beneath the EXP Fen was ~2 m in the underlying limestone aquifer (Monninger, 

2015). The underlying mineral sediments have a relatively low hydraulic conductivity (5.2x10-5 m 

day-1) that helps protect against enhanced percolation losses (Whittington & Price, 2013), so the 

effect of the drawdown from the mineral 

sediment was minor compared to the scale 

of evapotranspiration fluxes experienced at 

the site (Leclair et al. 2015). The EXP Fen 

was found to be similar in hydrological 

function, response to atmospheric 

conditions (i.e., wetting and drying events) 

and DOC export to three other nearby 

ladder fens of similar size and form, all 

located progressively closer to the mine 

(Perras, 2015) and is similar to a nearby 

(~5 km) ladder fen (Ulanowski, 2014), 

designated Reference Site 3 in this study.  

 

The EXP Fen exhibits a pool-rib-

pool morphology (Figure 2-1), similar to 

other ladder fens in the region. The 

direction of water flow is perpendicular to 

the peat ribs, with 0.67 m elevation decline 

over 250 m. Pools and ribs are numbered 

Figure 2-1 A map of the EXP Fen with all relevant 

measurement points. Pools number increases to the south from Pool 1, 

where the hydrological loading occurred. Ribs are also numbered 

sequentially towards the south, where Rib 1 is the rib directly south of 

Pool 1. Hydraulic and elevation gradients are from north to south.  
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incrementally with the northern-most pool as Pool 1 and immediately downslope (south) is Rib 1. 

The area of the EXP Fen (9800 m2) and the pools (2240 m2) and peat ribs (7560 m2) was delineated 

through a combination of air photo interpretation and DGPS surveys. Peat depth was greatest in 

the north, between 1.85 - 2.45 m (average 2.05 m), decreasing along the flow path towards the 

south where average peat depth is 1.85 m. Within individual ribs, surface elevation variability is 

about 0.2 – 0.5 m between the low-lying Preferential Flow Paths (PFP) and ridges. For example, 

low-lying PFP were typically ~0.3 m lower than the crest of the rib. The site is laterally (west and 

east) bound by two bogs, a large pool to the north, and the north branch of North Granny Creek to 

the south. The bogs and up-gradient pool typically contribute groundwater to the EXP Fen (Perras, 

2015). There are two distinct vegetation zones within the EXP Fen; the northern half exhibits poor 

fen vegetation and the south host’s moderate rich fen vegetation. Between Pools 7-10 (Figure 2-1) 

there is a large flat expanse of Sphagnum rubellum with minimal pool-rib-pool morphology. There 

are three nearby reference sites that are well beyond the influence of the mine’s aquifer drawdown 

(Monninger, 2015). These include Reference Site 1 – N 5860348.772, E 705883.366; Reference 

Site 2 – N 5860472.091, E 705811.312; and Reference Site 3 – N 5860472.091, E 705811.312. 

They have similar topography, vegetation, and peat depth; their hydrology was monitored to better 

understand natural variability of these systems.  

 

2.4 Methods 

 

The EXP Fen was intensively studied in 2013 (day of year, DOY, 170 – 287), 2014 (DOY 

156 – 287), and 2015 (DOY 177 – 235). The three reference sites were monitored for water table 

elevation and vertical hydraulic gradients over the same time periods; however, inclement weather 

and equipment availability prevented regular access to the reference sites in 2015 because they are 

accessible only by helicopter. Inter-year comparison was performed solely on the overlapping time 

periods (DOY 177 – 235) but all data collected are presented here. During 2014 and 2015, a point 

source hydrological load was applied to the EXP Fen at an average rate of 38 m3 day-1 (2014, DOY 

192 – 243) and 30 m3 day-1 (2015, DOY 185 – 226) to raise the average water table and monitor 

the hydrologic response, simulating natural periods of high hydrological connectivity (i.e., high 

water tables). A short pumping trial occurred in 2013 (50 m3 day-1, DOY 218 – 223). The water 

supply was provided by a solar powered pump from a nearby (170 m) bog pool complex. Water 
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was pumped into a 23 L bucket fitted with a v-notch, before discharging into Pool 1. A stage-

discharge relationship was determined for the bucket weir, which was equipped with a Slumberger 

micro-diver to continuously record its water level. 

 

2.4.1 Field Methods 

 

Manual measurements of water table and hydraulic head occurred at least every 4 days at 

the EXP Fen and every 10 days at reference sites in 2013 and 2014, while bi-weekly measurements 

were performed at the EXP Fen in 2015. Wells (1.25 m slotted intake, 0.025 m I.D., 0.034 m O.D.) 

and piezometers (0.25 m slotted intake, 0.025  m I.D., 0.034 m O.D.) were constructed with PVC 

pipes; piezometer screens were centred at 0.125, 0.375, 0.675, 1.125 m bgs and 0.125 m above the 

mineral sediment substrate. Both wells and piezometers were screened with a geochemically inert 

geotextile filter sock (Rice Engineering & Operating LTD., 2” Filter Sock) over the entire open 

screen length. The wells at each of the 13 piezometer nests at the EXP Fen (Figure 2-1) were fully 

penetrating (1.85 – 2.45 m slotted intake, 0.052 m I.D., and 0.062 m O.D). Piezometer nests were 

preferentially installed in a mixture of PFP’s and Ridges using visual identification of microforms 

based on elevation. At the three reference sites, a total of 18 piezometer nests (six nests per site) 

with accompanying 1.25 m slotted intake wells were installed, along with wells used to measure 

water level in two pools per reference site. Slumberger micro-divers were used to continuously 

record water table at the EXP Fen and reference sites and barometrically corrected with a 

Schlumberger baro-diver recording at the same frequency.  

 

Meteorological conditions were recorded on Campbell Scientific CR1000 data loggers 

measuring every 5 seconds and averaging over twenty minutes. Net radiation (Q*) was measured 

with net radiometers (REBS Q7.1 Net Radiometer) over Rib 1 and Pool 1, and ground heat flux 

(Qg) was measured with a heat flux plate (REBS HFT3) installed 0.05 m bgs in Rib 1. Precipitation 

(P) was measured using a tipping bucket rain gauge (Texas Instruments TE525M-L tipping bucket 

rain gauge), with values totalled every 20 minutes. Wind speed (METOne 14A Anemometer) was 

measured at 1 and 3 m above Rib 1. Air temperature and relative humidity were measured with a 

weather enclosed HOBO UX100-023 Temperature/RH Data Logger. 
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Daily evapotranspiration (ET) was estimated separately for the peat ribs (𝐸𝑇𝑟) and pools 

(𝐸𝑝) and fractionally weighted based on their aerial coverage and then summed to determine a site 

estimate of ET for the EXP Fen. The area of the pools was determined by a DGPS bathymetric 

survey of the pools and adjusted for changes in pools surface area based on water table height. The 

Priestley and Taylor (1972) combination method was used to determine 𝐸𝑇𝑟, where 

 

𝐸𝑇𝑟 = 𝛼 (
𝑠

𝑠 + 𝛾
) (

𝑄∗ − 𝑄𝑔

𝐿𝑣 ∙ 𝜌𝑤
) 

Equation 2-1 

 

and where 𝛼 is the coefficient of evaporability, s is the slope of the saturation pressure vs. 

temperature curve (Pa °C-1), 𝛾 is the psychrometric constant (Pa °C-1), 𝑄∗ is the net radiation flux 

(J day-1), 𝑄𝑔 is the ground heat flux (J day-1), 𝐿𝑣 is the latent heat of vaporization (J kg-1), and 𝜌𝑤 

is the density of water (kg m-3). A site-specific 𝛼 value was determined by the slope of the line 

relating actual evapotranspiration to equilibrium evapotranspiration, which is determined by 

Equation 2-1 when 𝛼 = 1. To determine actual evapotranspiration, six weighing lysimeters were 

placed throughout the EXP Fen. Lysimeters were installed over a gradient of soil moisture and 

vegetation conditions to ensure a representative site-wide average. Each lysimeter was 0.3 m in 

diameter and 0.45 m deep and was weighed at least every two days. All periods of precipitation 

were excluded from the analysis, resulting in a total of 108 actual evapotranspiration 

measurements used to determine the site 𝛼 value. Infrequent visits to the reference sites precluded 

similar measurements there. 

  

Evaporation from the pools (𝐸𝑝 ) was determined using the Penman (1948) equation for 

open water surface with no vegetation,  

 

𝐸𝑝 =
𝑠𝑄∗ + 𝛾𝜆𝑣𝜌𝑤𝐾𝐸𝜈𝑎{𝑒𝑎

∗ − 𝑒𝑎}

𝜆𝑣𝜌𝑤{s + 𝛾}
 

Equation 2-2 

 

where, 𝜈𝑎 is the velocity of air (m day-1), 𝑒𝑎
∗  is the saturation vapour pressure at ambient 

air temperature (Pa), 𝑒𝑎 is the saturation vapour pressure (Pa), and 𝐾𝐸 is the mass transfer 

coefficient (Pa-1) calculated by the Thornthwaite and Holzman (1939) equation, 
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𝐾𝐸 =
0.622𝜌𝑎𝑘2

𝑝𝜌𝑤[ln{(𝑧𝑎 − 𝑧𝑑)/𝑧0}]2
 

Equation 2-3 

 

where, 𝑘 is the von Karmen’s constant (0.4), 𝜌𝑎 is the density of air (kg m-3), 𝑝 is the 

atmosphereic pressure (Pa), 𝑧𝑎 is the height of the velocity and air temperature measurement (m), 

𝑧𝑑 is the zero plane displacement (~ 0 for water), and 𝑧0 is the surface roughness height (~0.0003 

m for open water, Oke (1987)). 

 

Surface water discharge of the EXP Fen was determined at a small outlet with a 0.5 m long 

by 0.15 m wide and 0.3 m high flume (Figure 2-1). The flume was constructed of ¾ inch plywood 

and was installed flush with the peat surface in the small rivulet through which the fen drains. 

Expanding installation foam was sprayed into gaps between the flume walls and surrounding peat 

to ensure that flow was directed through the flume. Surface water discharge was determined 

through instantaneous salt slug (0.1 L of 0.5 molar NaCl solution) injections (Moore, 2005) and 

the salt spike was measured as specific conductivity (SC) at the end of the flume with an YSI 

Model 63. Given the short length and minimal roughness within the flume, the discharge velocity 

was determined by the time between the instantaneous injection and the peak of the measured SC 

curve at the end of flume. A stage-discharge relationship was determined for the outflow flume, 

which was equipped with a Slumberger micro-diver to continuously record its water level. Runoff 

ratios were determined for each month using the sum of the area normalized (EXP Fen boundaries) 

discharge associated with a precipitation event divided by the total precipitation for a given month. 

 

2.4.2 Hydraulic Conductivity and Transmissivity 

 

Hydraulic conductivity (𝐾) and T of each nest was measured in 2014 and the data applied 

to all study years. The T measurements were attempted in 2015 but high water tables resulted in 

recovery rates too rapid to measure, even with the aid of pressure transducers. The K of each 

piezometer was determined through bail tests where ~40 % of the total pipe volume was removed 

and the rate of refill was measured manually or using a Slumberger micro-divers recording at 1-

second intervals. Manual measurements were performed for T measurements. Manual 
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measurements were made with a 1.5 m long blow stick, measuring at 0.001 m increments. 

Temperature correction to 15 °C (average well water temperature during the T measurements) was 

applied to all data (Klute, 1986; Surridge et al., 2005). The hydraulic conductivity was then 

calculated using Hvorslev (1951) time-lag solution, 

 

𝐾 =
𝑟2 ln(𝐿/𝑅)

2𝐿𝑇0
 

Equation 2-4 

 

where, 𝑟 (m) is the internal radius of the pipe, 𝑅 (m) is the external radius of the pipe, 𝐿 

(m) is the length of the intake, and  

 

𝑇0 =
log 0.37

𝑠𝑟
 

Equation 2-5 

 

where, log 0.37 is an empirical fitting parameter determined by the shape of the 

piezometer, 𝑠𝑟 is the slope of the log-linear head recovery calculated by, 

 

𝑠𝑟 =
𝐻𝑖 − ℎ(𝑡)

𝐻𝑖 − 𝐻0
 

Equation 2-6 

 

where, 𝐻𝑖 (m) is the initial water level in the piezometer, 𝐻0 (m) is the water level in the 

piezometer immediately following bailing, and ℎ(𝑡) (m) is the water level in the piezometer at 

time 𝑡 (hr).    

 

To determine the T of the peat profile, a series of bail tests were performed on the wells 

associated with the each piezometer nest (i.e., fully penetrating wells) with incrementally smaller 

screen lengths. The first bail test was performed on the entire fully penetrating well and the 

response was recorded. Once the first bail test was completed, an inflatable well packer (2” 

Inflatable Pipe Plug, Perma-Type Rubber) was lowered into the well and inflated 0.3 m above the 

bottom of the well to isolate that region from the rest of the well (i.e., if the well was 3 m long, 0 

to 2.7 m of the well remained unblocked). Once inflated, a bail test was performed on the remaining 

non-isolated section of the well above the packer and the response recorded. This was repeated in 
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0.3 m increments until ~0.7 m below the water table when the increments were decreased to 0.1 

m to gain higher data resolution in the upper peat profile; where, presumably the head recovery 

would vary the most. The data were then analysed separately by a modified Hvorslev (1951) 

variable head solution, where instantaneous differences in head were used to estimate the hydraulic 

conductivity of each head change (Ki) by considering the recharge a series of steady state 

conditions (Lagacé, 1986). Each of these individual 𝐾𝑖 were solved using Hvorslev (1951) method, 

accounting for changing 𝐿, h, 𝐻𝑖 and 𝐻0 parameters, as appropriate. 

 

Given the expected exponential increase in hydraulic conductivity closer to the top of the 

water table (Leclair, 2015; Perras, 2015), seepage faces are likely to occur and need to be 

accounted for in estimations of 𝐾𝑖 (Chenaf & Chapuis, 2007; Schneebeli, 1956). To account for 

potential seepage faces during bail tests, Schneebeli (1956) developed an analytical solution to 

estimate the seepage face height (ℎ𝑠𝑓) without additional monitoring wells (Chenaf & Chapuis, 

2007; Schneebeli, 1956), where, 

 

ℎ𝑠𝑓 = √ℎ𝑤
2  + (

𝑄𝑡

𝜋𝐾𝑒𝑠𝑡
) ∙ [0.4343 ∙ 𝑙𝑛 (

𝑄𝑡

𝜋𝐾𝑒𝑠𝑡𝑟2)] − 0.4 − ℎ𝑤 
Equation 2-7 

 

and, ℎ𝑤 (m) is the water table at time t (hr) and 𝑄𝑡 (m3 day-1) is the volumetric discharge 

into the well between time 𝑡𝑡 and 𝑡𝑡−1. The seepage face estimation is added to the screen length 

in Equation 2-4 to calculate a hydraulic conductivity for the time period between each head 

recovery measurement (Ki).  

 

The geometric mean of the measured Ki for a given packer depth was then used to develop 

an average hydraulic conductivity for a given well screen length (K’). Plotting K’ vs screen length 

results in a power function and the hydraulic conductivity at a given point (Ky) within the peat 

profile is determined by taking the derivative of the K’-screen length power function (see 

Appendix A for further detail), then solving for 𝐾𝑦(𝑑) 

 

 

𝐾𝑦(𝑑) = (1 − 𝐵)𝐴𝑑−𝐵 
Equation 2-8 
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where, 𝐴 and 𝐵 are fitting parameters, 𝑑 is the depth, and Ky (m day-1) of a given depth range (i.e., 

0.25 – 0.50 m bgs) can be determined by  

 

𝐾𝑦𝑑2−𝑑1
=

∫ (1 − 𝐵)𝐴𝑑−𝐵𝑑2

𝑑1

∫ 𝜕𝑑
𝑑2

𝑑1

 
Equation 2-9 

 

where, 𝑑1 and 𝑑2 is the depth range for which the hydraulic conductivity is determined and ∫ 𝜕𝑑
𝑑2

𝑑1
 

is the length of the depth range. The T for a given depth range is the numerator of Equation 2-9. 

 

2.5 Results 

 

In the upper 0.1 m of the saturated peat, hydraulic conductivity was between 42 – 598 m 

day-1 and decreased following the power function described above (Equation 2-8) with depth 

below the water table across 

the EXP Fen (Figure 2-2). In 

Rib 1 & 2 a minimum 

hydraulic conductivity (2 – 3 

orders of magnitude lower 

than the above 

measurements) was observed 

between 86.5 – 87 m asl; 

approximately, 0.7 – 1.0 m 

below the surface (Figure 

2-2). A slight increase in 

hydraulic conductivity (~1 

order of magnitude) was 

observed in the peat below 

86.5 m asl (~1.0 – 2.3 m 

below the water table) in 

Figure 2-2 Hydraulic conductivity distribution at the EXP Fen using a 

combination of packer tests (0-0.3 m bgs) and piezometer (>0.3 m bgs) measurements. 

The difference in maximum elevation is due to the differing surface elevations at the EXP 

Fen. Ribs 1-3 surface elevation is ~ 87.4 m asl, while the rest of the site is ~87.0 m asl. 

Hydraulic conductivity as a function of depth below water table is presented in Appendix 

A, Figure A-3. 
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Ribs 1 & 2 (Figure 2-2). This decrease in hydraulic conductivity between 86.5 – 87.0 m asl was 

only observed in Ribs 1 & 2 and not found throughout the site (Figure 2-2). The rest of the site 

follows the exponential decrease (power function) with depth (Figure 2-2).  

 

The T of a given well was controlled by the hydraulic conductivity of the upper 0.1 m of 

saturated peat and minimal additions from below this region were noted. During the dry 2013 

season T varied between 0.1 – 6.1 m2 day-1 depending on location; on average they increased by 

1.3 m2 day-1 from low (0.1 – 3.9 m2 day-1) to high (0.2 – 6.1 m2 day-1) water tables (a rise of 0.25 

m). Conversely, T in 2014 varied between 0.2 – 69.3 m2 day-1 and on average increased by 17.7 m2 

day-1 from low (0.2 – 6.3 m2 day-1) to high (0.7 – 69.3 m2 day-1) water tables (a rise of 0.19 m). 

Typically, the lowest 2014 T (average 2.3 m2 day-1) were of a similar magnitude as the highest 

values in 2013 (average 2.7 m2 day-1). In both years, there was no identifiable pattern in T with 

microform. High water tables (Figure 2-3) precluded T and hydraulic conductivity measurements 

in 2015 due to extremely quick head recovery; thus, they would likely be well above the 2014 

maximum value. 

 

The three study years represent a range of precipitation conditions from dry (2013), average 

(2014), and extremely wet (2015) (Table 2-1). Evaporation from the pools was consistently higher 

than the ribs and averaged 2.6, 4.0, 2.7 mm day-1, while average evapotranspiration from the ribs 

1.9, 3.0, 2.1 mm day-1 in 2013, 2014 and 2015, respectively. Aerially weighted evapotranspiration 

from the EXP Fen was 2.1, 3.2, and 2.2 mm day-1 in 2013, 2014 and 2015, respectively. The 

pumping resulted in average inputs of 5.6, 3.7 and 3.1 mm day-1 normalized over the EXP Fen 

area in 2013, 2014, and 2015, respectively (Figure 2-3); however, pumping as a point source influx 

into Pool 1 was 125, 89 and 69 mm day-1, in 2013, 2014 and 2015, respectively. In 2014, the low 

water level in the bog pool from which water was pumped resulted in debris clogging the pump 

intake, which caused sporadic pumping rates. In 2013 and 2014 the pumping resulted in rapid 

increase in Pool 1 water level, and sharp drops when the water pump failed or was shut off (Figure 

2-3). The very wet conditions in 2015 masked the response to pumping. In 2013, water table 

fluctuations at the EXP Fen were typically less than 0.1 m (not including the short pumping test) 

and responded rapidly to precipitation events (Figure 2-3). The reference sites responded to 

evapotranspiration and precipitation events similarly to the 2013 EXP Fen, notwithstanding larger 
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absolute water table variability (~0.2 – 0.3 m, Figure 2-3). In contrast, in 2014 and 2015, an 

increase of 0.15 – 0.20 m in water table was observed at the EXP Fen during pumping and water 

tables were relatively unresponsive to precipitation events (Figure 2-3). In 2014, the water table 

responded sequentially to pumping in each down gradient pool, typically within 1-3 days after the 

immediate up-gradient pool responded. The flume responded after 34 days (DOY 226), which 

coincided with a large precipitation event (Figure 2-3). Contrary to 2014, in 2015 the water table 

response to pumping across the site was nearly instantaneous, as the flume water table responded 

~15 hr after Pool 1 (Figure 2-3). Once pumping ceased, rapid water table decline was observed in 

2013 and 2014, while absent in 2015 (Figure 2-3). High precipitation following the end of pumping 

in 2015 was coincident with sustained high water tables (Figure 2-3). Both 2013 and 2015 showed 

limited change in storage over the study season (Table 2-1), while a positive change in storage (66 

mm) was observed in 2014 (based on average Sy, 0.23 determined in Chapter 3, of the ribs and a 

Sy of the pools of 1).  

 

Table 2-1 Inter-year comparison of hydrological parameters available for 2013 -2015 (DOY 177 - 234). Outputs from 

the EXP Fen displayed as negatives and inputs as positive. The change in storage was calculated as the total change in water table 

elevation over the study period multiplied by the measured specific yield. The residual term is a combination of the total error and 

the groundwater fluxes. 

 

 

 

 

 

 2013 2014 2015 

Precipitation (mm)   87 109 298 

Evapotranspiration (mm) -99 -189 -130 

SWout 0 -9 -300 

Pumping 34 187 130 

Change in Storage (mm) -1 66 0 

Residual (mm) 21 164 -2 
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Figure 2-4 Total horizontal hydraulic gradients at the EXP Fen between water tables at Pool 1 and the flume 

measurement point. More negative indicates an increased hydraulic gradient. In-between the vertical dashed lines is the 

pumping period. 

Figure 2-3 Water table elevations for Pool 1 (black), Pool 2 (grey), and at the end of the site (flume measurement point, 

dark grey) for the EXP Fen (top) and the three average water tables for the reference sites. In-between the vertical dashed lines is 

the pumping period. Note no data at the reference sites in 2015 due to instrumentation limitations. 
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Horizontal hydraulic gradients between Pool 1 and the flume varied between -0.003 to -

0.004 in 2013, while the additional hydrological inputs (both precipitation and pumping) in 2014 

and 2015 resulted in weaker horizontal hydraulic gradients (Figure 2-4). The lowest horizontal 

hydraulic gradients (Pool 1 to flume) observed in 2014 and 2015 were similar to the highest in 

2013 (~ -0.003). Once the flume water table responded in both 2014 and 2015, the horizontal 

hydraulic gradients were similar, typically around -0.0025.  

 

Unlike 2013 where there was no surface water discharge, 2014 and 2015 had 9 and 300 

mm of surface water discharge, respectively.  On average in 2014, surface water discharge was 0.2 

± 0.2 mm day-1 (13 mm total) relative to the EXP Fen area during the spring and summer (Figure 

2-5) but increased autumn precipitation resulted in total area normalized discharge rates of 0.6 ± 

1.0 mm day-1 (Figure 2-5). In contrast, surface water discharge was consistently high in 2015 (5.1 

± 2.6 mm day-1) (Figure 2-5). Runoff ratios increased due to pumping and precipitation (Table 

2-2). Pumping combined with greater than average precipitation resulted in runoff ratios greater 

than 1 in 2015 when pumping was excluded from the calculation (suggesting an expanding 

contributing area) and < 0.04 (2014 and 2015) when included. By comparison, in 2014 the 

pumping increased runoff ratios from ~0.05 pre-pumping to 0.47 in conjunction with autumn 

precipitation events (Figure 2-5, Table 2-2).  

 

Figure 2-5 Surface water discharge measured at the flume measurement point for all three years at the EXP Fen. In-

between the vertical dashed lines is the pumping period. 
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Table 2-2 Runoff ratios for all measured months. Pumping input were not included in these estimates, when included 

runoff ratios decrease to <0.04 during pumping in both 2014 and 2015. 

 

 

 

 

 

2.6 Discussion 

 

Given the exponential increase in hydraulic conductivity with elevation in the peat profile, 

there is a non-linear increase in T with water table rise. In 2014, as water was pumped into Pool 1 

the water level responded immediately, followed by a rise in Rib 1 water table after only ~0.3 days 

(Figure 2-3). This water passed through Rib 1 via near-surface flow especially in PFPs, and 

cascaded into Pool 2 (Figure 2-6), increasing its water level by 0.1 m in ~1.4 days. The delayed 

water table response in the pool-to-pool transfer illustrates the fill-and-spill mechanism (Spence 

& Woo, 2003) in the ladder fen. Under average climatic conditions (2014) the fill-and-spill 

mechanism within the pool network was initiated by pumping, which caused a ~20% increase in 

average Rib 1 T (from 1.97 ± 0.75 to 2.33 ± 0.97 m2 day-1) associated with the 0.1 m water table 

rise. Within Rib 1 the constant pumping eventually raised the water table by ~0.15 m from the pre-

pumping stage, which thereafter was relatively constant while pumping was maintained. Under 

this condition Rib 1 average T had increased two-fold (to 5.0 ± 4.7 m2 day-1) and high hydrological 

connectivity was achieved in the upper reaches of the EXP Fen. In spite of this, the average 

conditions typified in 2014 provided sufficient storage and evapotranspiration loss that the 

increased hydrological loading did not transfer water down to the tail of the system, and there was 

no system outflow until late August and autumn. In 2013, the water table was well below the high 

hydraulic conductivity layers (Figure 2-2) and the average T of Rib 1 varied between low (1.4 ± 

1.1 m2 day-1) and high (2.7 ± 2.0 m2 day-1) water tables and limited flow through the rib was 

 June July August September October 

2013 0.00 0.00 0.00 0.00 0.00 

2014 0.17 0.04 0.05 0.47 0.29 

2015 No data 1.01 1.38 No data No data 
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observed. Conversely in 2015, water tables exceeded the peat surface in the low-lying PFPs and 

induced high pool-to-pool connectivity after less than one day of pumping.  

 

Once the condition of high hydrological connectivity was achieved, there was a muted 

water table response to precipitation events that added more water to the system because: 1) the 

specific yield of the near-surface peat approached unity, and was unity when the water table was 

above the surface; and 2) the exponentially increasing T with increasing water table elevation 

rendered the system highly efficient at moving water downslope (i.e., the precipitation rate was 

lower than the capacity of the system to shuttle water down gradient). Under this regime the fill-

and-spill mechanism becomes almost redundant and connectivity down the system was 

maximized. At the EXP Fen, this threshold (water table ≈ 87.6 m asl in Rib 1, Figure 2-6) was 

apparent in 2014 and 2015, but not 2013, where much higher precipitation and pumping (Table 

2-1) resulted in relatively constant water tables (Figure 2-3). This threshold corresponds to the 

water table residing in the upper few centimeters of peat in the PFPs, where the highest hydraulic 

conductivities were observed (42 – 598 m day-1), or exceeding the peat surface and generating 

overland flow (Figure 2-6). Although In addition to the potential for surface flow in PFPs, where 

the surface elevation was lower, the hydraulic conductivity of peat in PFPs was higher than that in 

the ridge at the same elevation (16 – 52 m day-1; data not shown) and decreased more rapidly below 

Figure 2-6 A conceptual diagram of flow and connectivity in a typical pool-rib-pool sequence. The solid blue line is the 

high water table and the dashed blue line the low water table in 2014. The blue arrows represent idealized flow paths, where the 

longer the arrow the greater proportion of flow occurs in that region. The inset of is the hydraulic conductivity distribution 

determined for Rib 1 at the EXP Fen. The hydraulic conductivity within the upper few centimeters of peat governs the majority of 

flow during high water table periods.  
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this layer (0.1 – 0.2 m, 4 – 14 m day-1). Thus the movement of water through ladder fens was 

primarily controlled by the T and the peat surface elevation, which define the threshold water table 

required to generate significant flow between pools.   

 

When the EXP Fen was not impacted by pumping (2013 and pre-DOY 192 in 2014), the 

hydrology was similar to that at the reference sites (Figure 2-3) and little or no runoff was 

generated from the site (Figure 2-5, Table 2-2) because the available storage was not filled. In 

2013 and 2014 precipitation was below or at the long-term average (~100 mm) (Table 2-1). In 

contrast, in 2015 nearly 50 % of the average annual precipitation (700 mm) fell during the study 

period (58 days), resulting in an abnormally wet July and August (DOY 177 – 235). 

Evapotranspiration was the dominant water loss during July and August 2013 and 2014 (99 and 

189 mm, respectively), while surface water outflow increased substantially in 2015 and was the 

dominant water loss (Table 2-1). Autumn precipitation events in 2014, along with the high residual 

water storage associated with hydrological loading (filled the available storage, ~180mm), 

produced large amounts of surface runoff (56 mm) after pumping ceased (Figure 2-5, post-DOY 

243) and was the dominant loss during this period. This resulted in increased hydrological 

connectivity of the site, as indicated by the runoff ratios increasing from 0.05 (July and early 

August) to 0.47 (autumn). Conversely, when these systems’ storage capacity is full (2015), runoff 

occurs within hours; given the addition of pumped water the resulting runoff ratio > 1 (Table 2-2) 

(see Figure 2-5). The hydrological connectivity (i.e., runoff and water table response) of the EXP 

Fen is inversely related to the hydraulic gradient between Pool 1 and the flume (Figure 2-4 & 

Figure 2-5) where hydrological connectivity increased, even with lower absolute hydraulic 

gradients (i.e., smaller difference in water table elevation across the site). When these systems are 

dry (2013), a larger absolute, hydraulic gradient is observed between Pool 1 and the flume (Figure 

2-4) but there is poor hydrological connectivity due to low aquifer T, thus the EXP Fen is not well 

connected to the down gradient aquatic ecosystem (i.e., the nearby stream).  

 

The large residual in the 2013 and 2014 water budgets (Table 2-1) are a combination of 

total error and the groundwater fluxes from/to the flanking bogs. Although error can be ~ ±15 % 

of total inputs when a drainage area is well defined (Price & Maloney, 1994), the groundwater flux 

out of the EXP Fen to the lateral bogs was potentially high in 2014. For instance in the most 
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hydrologically impacted area (Pool and Rib 1, ~10 % of the total area) ~83 mm left the EXP Fen 

towards the lateral bogs during pumping in 2014, which would significantly decrease the residuals. 

The groundwater discharge from the EXP Fen to the lateral bogs likely decreased away from Pool 

and Rib 1 due to lower hydraulic gradients and water tables. In 2013 the hydraulic gradients into 

the bog followed the trend observed in 2014, where groundwater was likely leaving the EXP Fen. 

Conversely, in 2015 the hydraulic gradients between the EXP Fen and lateral bogs were minimal 

and no flow was likely to occur. Furthermore, the low runoff ratio when including the pumped 

water suggests a large proportion was shuttled into the bogs and stored rather than generating 

runoff. Notwithstanding these lower gradients, water tables, and runoff ratios (when including 

pumping), the flux into the later bogs may decrease the residuals significantly, resulting closure of 

the water budgets. However, the highly impacted region (Pool and Rib 1) was the only area where 

sufficient T data was available to perform these calculations; thus, were not included in the water 

budget (Table 2-1). 

 

These high water table and high connectivity periods generated by adding pumped water 

mimic key aspects of the spring freshet or autumn high-flows (Perras, 2015) when the hydrological 

connectivity of the landscape is high (Quinton et al., 2003; Quinton & Roulet, 1998; Quinton et 

al., 2005). When overland flow is not present, the high hydrological connectivity was due to the 

increased hydraulic conductivity in the near-surface (Figure 2-6). Thus, the pool-rib-pool 

connectivity is ultimately controlled by the hydraulic conductivity distribution within the rib, when 

overland flow is not present (Figure 2-6). Only during extremely wet years (i.e., 2015) or during 

significant artificial hydrological loading (2014 and 2015) do these high connectivity periods occur 

outside of the spring freshet or autumn wet-up. Furthermore, given the large storage capacity of 

these systems, a significant amount of water is needed during the preceding autumn (2013 ~ 146 

mm, 2014 ~ 52 mm and 2015 ~ 183 mm) and winter snowpack (2013 ~ 78 mm, 2014 ~ 360 mm 

and 2015 ~ 276 mm) (note, snowpack data provided by De Beers Group of Companies Victor 

Mine March Snowpack Survey, Ternes personal communication) to ensure the hydrological 

storage is full. Once full, the high water tables would maintain strong hydrological connectivity 

throughout the spring and early summer as observed in both 2014 (large snowpack) and 2015 

(autumn precipitation and large snowpack). Even with large precipitation events, such as in 2015, 

it is unlikely that the system will remain hydrologically connected throughout the summer without 
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additional hydrological loading, as noted by the sharp decrease in surface water discharge between 

DOY 250, 275, 287 in 2014 and DOY 230 – 232 in 2015 (Figure 2-5) once precipitation ceased. 

Similarities in the June 2014 water table to those measured in both the spring and autumn of 2012 

by Perras (2015) provide reassurance that the function of the EXP Fen (runoff ratio = 0.17, Table 

2-2) has not been measurably affected by mine operations. Furthermore, measured June 2014 water 

tables (similar to high water table in Figure 2-6) potentially describes the normal spring and 

autumn runoff regime. These periods have been identified as times were high fluxes of nutrients 

(Perras, 2015; Ulanowski, 2014) and contaminants (i.e., methylmercury) can enter the aquatic 

ecosystems (Brigham et al., 2009) due to the increase in landscape hydrological connectivity (Kirk 

& St. Louis, 2009; Ulanowski, 2014), as noted by an increase in DOC export in the autumn Perras 

(2015). Furthermore, a greater density of fen peatlands typically results in more rapid stream flow 

response within a catchment (Richardson et al., 2012), the antecedent conditions within the fen 

peatlands will ultimately control the magnitude and timing of the response. If under wet conditions, 

available storage is full, response occurs within hours, while under dry conditions the response is 

muted as only direct flow from riparian ecosystems enters the stream channel. Thus, the 

hydrological connectivity (rib T and surface elevation) of ladder fens have a large impact on the 

quantity, and quality, of water entering the downstream aquatic ecosystems.  

 

2.7 Conclusions 

 

Ladder fens typically act as water and solute conveyers from domed bog peatlands to 

down-gradient aquatic ecosystems; the flux is controlled by the hydrological connectivity and, by 

extension the fill-and-spill mechanism when the water table is below the peat surface. The peat T 

and microform elevation define the critical water table above which connectivity is strong, and 

contribute to the fill-and-spill mechanisms in ladder fens. The exponential increase in T at higher 

water tables can greatly increase the hydrological connectivity of ladder fens and is likely active 

during the spring freshet and autumn wet-up; however, once overland flow occurs, the 

hydrological connectivity of these systems vastly increases compared to non-overland flow 

periods. The highly variable hydraulic conductivity distribution within a given rib seems to follow 

the microtopography but T did not. This study illustrates that T, on average, is similar between 

microforms and it is the local hydraulic conductivity distribution (primarily the upper 0.1 m of 
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saturated peat) that controls the flux through the peat. Additionally, this study presents a modified 

method to determine the hydraulic conductivity at high spatial (vertical) resolution and the T of an 

unconfined aquifer using a single bail test performed over hours instead of an entire season. The 

vast majority of water flows through the upper 0.1 m of saturated peat, which is a smaller vertical 

region than previously assumed (~0.5 m). Without access to the high hydraulic conductivity layers, 

surface water outflow maybe delayed days or indefinitely (if available storage is not yet full), while 

under intense hydrological loading (2015) ladder fens are able to rapidly shuttle water from the 

top of the system to the outlet; highlighting efficiency of these system to export excess water within 

hours under intense hydrological loading (i.e., spring freshet). Furthermore, this study highlights 

the importance of understanding the high flow periods, as these periods of high connectivity are 

critical to understanding the transport of water, and be extension nutrients and contaminants, from 

the surrounding peatlands to the aquatic ecosystems in the JBL but further research on the flow of 

solutes is still required.     
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3 The transport dynamics of chloride and sodium in a ladder fen during a 

continuous wastewater polishing experiment 

 

3.1 Summary 

 

Ladder fen peatlands have excellent potential for wastewater polishing as they naturally 

contain both open water (pools) and subsurface (peat) treatment landforms; however, there is a 

poor understanding of solute transport in ladder fens with and without the increased hydrological 

load imposed by wastewater discharge. To better understand solute transport in ladder fens under 

wastewater polishing conditions a continuous solute (NaCl) tracer experiment (38 m3 day-1 of 

water, chloride – 47.2 mg L-1, and sodium – 25.3 mg L-1) was conducted during the summer of 

2014 (day of year 192 – 243) in a small ladder fen in the James Bay Lowland. The transmissivity 

distribution and effective porosity (average 0.5) of the peat ribs were determined through repeated 

bail tests and the drainable porosity of 18 peat cores at -100 mb, respectively. Water samples (Na+ 

and Cl-) were taken at least every 7 days to capture the solute plumes. Both solute plumes never 

reached the site outflow (~250 m downgradient) and displayed complex plume morphology, 

typically following the patterns of hydraulic conductivity within the upper 0.1 m of the saturated 

peat and not microtopography. Based on the 50 % breakthrough isotherms, Cl- and Na+ were 

transported at an average solute velocity of 1.9 and 1.1 m day-1, respectively (average linear 

groundwater velocity = 2.1 m day-1); thus the solutes were retarded by a factor of 1.2 and 2.1 for 

Cl- and Na+, respectively. Due to the inherent retardation of solutes into inactive pores and 

relatively high solute residence times, this study demonstrates the potential for wastewater 

polishing in ladder fens. 

 

3.2 Introduction 

 

The discovery of large mineral deposits, such as diamondiferous kimberlite and chromite, 

in the James Bay Lowland (JBL) has prompted the building and operation of remote mining 

operations. This increased development pressure increases the likelihood of unintentional (spill) 

or intentional (wastewater polishing) contaminant release into the surrounding peatlands. Fen 
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peatlands have recently been used intentionally for polishing wastewater (Chapter 2; Kadlec, 

2009a; Steinback, 2012a; Yates et al., 2012), since they direct flow through the peat substrate, 

which can remove certain contaminants through biogeochemical processes (Kadlec, 2009a; Palmer 

et al., 2015). However, intentional or sustained discharges of contaminated water creates a 

hydrological loading that raises the water table to levels observed in the spring freshet or autumn 

wet-up (Chapter 2), reducing the system’s ability to detain water and contaminants. A better 

understanding of how fen peatlands transport and transform contaminants is needed. However, to 

our knowledge there are only two published field scale studies that investigate controlled solute 

transport experiments in peatlands. Hoag and Price (1995) used sodium chloride (electrical 

conductivity) in a blanket bog, and Baird and Gaffney (2000) used bromide in a drained basin fen, 

to determine the geochemical transport of the respective systems. Neither of these examined the 

implications of an increased hydrological load caused by the release of wastewater, on the 

hydrological performance of the systems. 

  

Wastewater polishing and treatment wetlands are most effective when the water storage 

capacity, thus residence time, of the system is high, which allows for increased biogeochemical 

reactions that remove contaminants from the pore water (Kadlec & Wallace, 2009). Ribbed and 

ladder fen peatlands (National Wetlands Working Group, 1997) provide both high hydrological 

residence times (i.e., low hydrological connectivity) and high storage capacity within pools during 

the summer months (Chapter 2; Price & Maloney, 1994; Quinton et al., 2003; Quinton & Roulet, 

1998), thus may be particularly effective as wastewater polishing wetlands (Yates et al., 2012). In 

ladder and ribbed fens there is an exponential increase in aquifer transmissivity as water tables 

increase (Chapter 2; Leclair, 2015; Perras, 2015; Price & Maloney, 1994) due to the activation of 

the extremely high hydraulic conductivity layers near the peat surface (Chapter 2). Under dry 

conditions typical in summer, there is limited water flow within these systems and the primary loss 

of water is through evapotranspiration (Chapter 2; Price & Maloney, 1994; Quinton & Roulet, 

1998). Consequently, the capacity to transmit solutes laterally is small. Conversely, during periods 

of high water table (i.e., spring freshet and autumn wet-up) flow is predominantly through the high 

hydraulic conductivity peat layers or is above the peat surface, and a substantial increase in 

hydrological connectivity is observed (Chapter 2; Quinton & Roulet, 1998), thus capacity for 

transport. This is enhanced by microtopography of the peat ribs, where apparent preferential flow 
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paths (PFPs) occur in low-lying sections of the ribs (Chapter 2; Price & Maloney, 1994; Quinton 

et al., 2003; Quinton & Roulet, 1998). These apparent PFPs typically experience overland flow 

and have higher average transmissivities (Chapter 2) than the topographically higher ridge 

microforms. Furthermore, the numerous pools found within the rib-pool topography of these 

systems may create windows of relatively unimpeded solute transport; however the function of 

pools on solute transport and retention has not previously been characterised.  

 

The ability of peat to retard conservative solutes is well known, being caused primarily by 

the dual porosity structure of the peat matrix (Hoag & Price, 1997; Ours et al., 1997; Price & Woo, 

1988; Rezanezhad et al., 2012). The effective, or active, porosity (𝑛𝑒) is typically 0.1 – 0.6 

depending on the degree of decomposition and parent vegetation material that forms the peat (Hoag 

& Price, 1997; Ours et al., 1997; Quinton et al., 2000), while the inactive porosity is conceptualized 

as connected to the active pore network but not contributing to flow (Rezanezhad et al., 2012). 

Solutes can diffuse from the active pore network into the inactive pore network driven by chemical 

concentration gradients (Hoag & Price, 1997; Ours et al., 1997); this decreases the apparent solute 

velocity (υs) compared to average linear groundwater velocity (υ). In a blanket bog, Hoag and 

Price (1995) observed limited transverse horizontal and vertical dispersion of a sodium chloride 

plume and found that the peat inherently retarded the plume by a factor of 2.2 (υs/υ), which was 

interpreted as being caused by diffusion of the solute into inactive pores (Hoag & Price, 1997; 

Ours et al., 1997) or through sodium sorption to the peat and other organic molecules (Caron et 

al., 2015; Ours et al., 1997). The majority of the plume remained near the spill point and advection 

occurred near or at the top of the water table within the high hydraulic conductivity layers (Hoag 

& Price, 1995). Conversely, Baird and Gaffney (2000) found an abundance of macropore flow 

causing the conservative tracer (bromide) to arrive at the measurement points quicker than 

calculated by υ. Although Baird and Gaffney (2000) attributed this to macropore flow, they do 

consider potential errors in the calculation of average well hydraulic conductivity, which averages 

the hydraulic conductivity distribution across the peat aquifer. By using an average peat hydraulic 

conductivity, variations in hydraulic conductivity within the peat profile were not considered, 

potentially skewing the calculation of υ. Furthermore, they used the total porosity (0.7 – 0.9) for 

the calculation of υ and not 𝑛𝑒, which is typically much lower (0.1 – 0.6) (Hoag & Price, 1997; 

Rezanezhad et al., 2012) and results in a higher 𝜈𝑠 (Bear, 1972). Both of these field scale solute 
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tracer tests were performed with an instantaneous application of the tracer but there is no known 

work on continuous application of tracers (or solutes), similar to the process of wastewater 

treatment and polishing wetlands (Kadlec, 2009a; Kadlec & Wallace, 2009).   

 

The increasing industrial and mining development in subarctic and boreal ecosystems 

increases the probability of an unintentional release of contaminants in peat-dominated 

ecosystems, for which better knowledge is required to provide appropriate response. Moreover, 

these systems have the potential to provide a water polishing function, such as for treated 

wastewater. Understanding the mechanisms governing transport is key to managing solute 

releases. Currently there is a dearth of information on transport processes relating to continuous 

loading of solutes, such those associated with wastewater polishing (continuous loading) or a 

pipeline leak. Therefore, this study aims to determine the processes governing both conservative 

(chloride) and adsorptive (sodium) contaminants in a ladder fen under increased hydrological 

loading at the field scale. Thus, the specific objective are: 1) determine the difference of the two 

solute plumes between a conservative (chloride) and adsorbing (sodium) tracer in a ladder fen, 2) 

clarify the role of microtopography and peat hydrophysical properties on solute transport at the 

field scale, 3) elucidate the influence pools have on the transmission of solutes, and 4) comment 

on the suitability of ladder fens to retain solute with a specific focus on wastewater polishing 

processes.  

 

3.3 Study Site 

 

Located in the JBL near the De Beers Group of Companies Victor Diamond Mine (N 

5860348.772, E 705883.366), the hydrological function of an experimental ladder fen (EXP Fen) 

was determined in Chapter 2  for 2013 – 2015. Average July and August (9 years, 2006-2015) 

temperature and precipitation (15.6 °C and 154 mm) from the local meteorological station agreed 

well with two regional meteorological stations’ 30 year average; Moosonee (14.9 °C and 90 mm) 

(Environment Canada, 2015a) and Lansdowne House (16.4 °C and 105 mm) (Environment 

Canada, 2015b). During 2014 (day of year, DOY, 151 – 257) a total of 274 mm of precipitation, 

328 mm of evapotranspiration, 40 mm of surface water discharge, and 187 mm of pumping 
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occurred at the EXP Fen. The majority of surface water discharge occurred in the spring and 

autumn, notwithstanding the additional hydrological loading during 2014 (Chapter 2).  

 

Elevation and hydrological gradients were from the north to south (Chapter 2) and water 

flows perpendicular to the peat ribs (Figure 3-1). The rib microtopography can be separated into 

two apparent microtopographies; low-lying preferential flow paths (PFPs) and topographically 

higher ridges (0.2-0.5 m higher than the PFPs). Pools account for ~23 % of the EXP Fen surface 

area, while the remaining 77 % (total area 9800 m2) was peat. Peat depth was greatest at the north 

end of the site at 1.85-2.5 m (2.1 m average) and decreases to 1.50-1.85 m (1.85 m average) in the 

south. The adjacent bogs and a 

large pool to the north typically 

provide groundwater inputs into 

the EXP Fen and constrain 

groundwater flows within the fen 

boundary, while low hydraulic 

conductivity of the underlying 

mineral substrate limited vertical 

hydrological exchanges (Chapter 

2).  

 

The hydrological 

connectivity of the EXP Fen is a 

function of water table height, 

where an exponential increase in 

transmissivity occurs due to 

increasing water tables within the 

peat ribs (Chapter 2). This 

increased transmissivity reflects 

the several orders of magnitude 

higher hydraulic conductivity of peat near the surface as the water table rises into it (Chapter 2). 

Typically, the hydraulic conductivity of the upper 0.1 m are between 42 – 598 m day-1 in PFPs and 

Figure 3-1 Map of the EXP Fen, adapted from Chapter 2. 



33 

 

16 – 52 m day-1 in ridges (Chapter 2), decreasing exponentially below this layer to ~0.02 m day-1 

within 0.2 m (~86.5 – 87 m asl). In the upper two ribs the hydraulic conductivity followed the site-

wide trend of exponentially decreasing hydraulic conductivity until ~86.5 – 87 m asl but a slight 

increase (0.08 – 0.5 m day-1) in hydraulic conductivity is noted in the lowest layers of peat. This 

increase is not observed in the remaining ribs and peat deposit at the EXP Fen (Chapter 2). Three 

nearby reference sites (Reference Site 1 – N 5860348.772, E 705883.366; Reference Site 2 – N 

5860472.091, E 705811.312; and Reference Site 3 – N 5860472.091, E 705811.312) were found 

to be hydraulically similar to the EXP Fen (Chapter 2) and are used as geochemical analogues in 

this study. 

 

3.4 Methods 

 

The EXP Fen was continuously injected (2014 DOY 192 – 243) with simulated wastewater 

derived from a custom blend fertilizer and associated hydrological loading (38 m3 day-1). Water 

for the hydrological loading was pumped using a solar powered submersible water pump (Lorentz 

PS150-Centric Submersible Pump) from a nearby bog complex (170 m). The injected fertilizer 

solution contained: SO4
2-, NO3

-, NH4
+, PO3

3-, K+, Na+, and Cl-. Only the fate and transport of Na+ 

(25.3 mg L-1), and Cl- (47.2 mg L-1) are considered in this paper. The loading mimicked the 

wastewater effluent from a nearby mining operation (Steinback, 2012a) and coastal arctic 

communities (Yates et al., 2012). A concentrated injection of the fertilizer solution was pumped 

every two hours into a mixing bucket weir, which the pumped water entered, to achieve target 

wastewater concentrations. The simulated wastewater was continuously discharged into Pool 1 

(Figure 3-1) from DOY 192 – 243 in 2014.  

 

Prior to solute injection, the concentrated wastewater source was mixed using a bilge pump 

(Attwood Tsunami T-500, 500 gph) to circulate the solution within the storage container (250 L 

plastic food grade barrel), ensuring a well-mixed solution. Solute injection pumps (controlled by 

a DC switch timer) ran for ~2.5 minutes (~1 L min-1 for 2.5 min, total 2.5 L per injection period) 

every 2 hours during the experimental loading. Discharge rates of both the water and solute 

injections were tested every two days. If the discharge rates deviated from the target rates, 

adjustments were made to pumping rates or pumping time to ensure a near-constant flow rate and 
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concentration was maintained. In Chapter 2 a stage-discharge relationship of the v-notch bucket 

weir was determined to ensure continuous measurements of the volume of pumped water and 

solutes. To ensure Pool 1 was well mixed after pumping and no preferential flow occurred due to 

proximity to the wastewater loading point, an electric trolling motor (Minn Kota Endura Max 40 

lbs 36-inch Trolling Motor) was installed and automatically turned on for 10 minutes after each 

solute injection period. The trolling motor was anchored in the pool sediment and ran at 40 RPM, 

this provided enough circulation to ensure Pool 1 was well mixed. The hydrological and 

geochemical (NaCl) conditions were monitored throughout June-September 2013 and 2014 with 

the wastewater experiment occurring in July and August 2014 (DOY 192 – 243).  

 

3.4.1 Field Methods 

 

At the EXP Fen, manual measurements of water table and hydraulic head occurred at 

minimum of every 3 days in wells (1.25 m slotted intake (S.I.), 0.025 m I.D., 0.034 m O.D.) and 

piezometers (0.25 m S.I., 0.035 m I.D., 0.017 m O.D.) along with specific conductance (SC) and 

temperature (°C), using a YSI Model 63 calibrated weekly, of the well water. Three pipe volumes 

were flushed from each pipe prior to taking SC and temperature readings to ensure the 

measurements were representative of the surrounding pore water. Piezometer screens were centred 

at 0.125, 0.375, 0.675, 1.125 m bgs and 0.125 m above the mineral substrate. At each piezometer 

nest (13) and two wells in the lateral bogs the wells were fully penetrating 0.051 m I.D. and 0.031 

m O.D (Figure 3-1). These nests were preferentially installed in topographically high (ridges) and 

low (PFPs) regions to better identify the role of microtopography on solute transport in ladder fens. 

All piezometers and wells were screened with a geochemically inert geotextile filter sock (Rice 

Engineering & Operating LTD., 2” Filter Sock). A total of 18 piezometer nests with accompanying 

1.25 m S.I. wells were installed at the three reference sites (six nests per site), along with two wells 

measuring pool water table per reference site. Manual measurements of SC and temperature in the 

wells were performed at the reference sites every 10 days.  
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3.4.2 Water Sampling and Analysis 

 

Well water sampling for major ions occurred at least weekly at every well location within 

the solute plume in the EXP Fen and surrounding bogs. Sharp increases in SC were used to 

determine the terminal extent of the solute plume and sampling occurred at least one rib beyond 

the terminal extent to ensure the entire plume was sampled. Prior to sampling, three pipe volumes 

were purged the day prior and only occurred when no precipitation fell for three days prior to the 

sampling event. Each well at the EXP Fen was sampled in 2013 to provide background Na+ and 

Cl- concentrations. Piezometers were sampled three time over the 2014 season, DOY 178 (pre-

pumping), DOY 221 (during pumping), and DOY 254 (post pumping). The reference sites were 

sampled three times (DOY 197, 212, and 237) in 2014 to assess the representativeness of the 

geochemistry of the EXP Fen. Samples were taken in 50 mL FlipMate bottles (Delta Scientific 

Laboratory Products Ltd.) and stored in the field in a cooler with ice packs. Prior to filtering, the 

sample SC and pH were determined using an Orion StarTM A215 benchtop meter. Samples were 

filtered within 24 hours using 0.45 μm polyethersulfone filters. Once filtered, samples were then 

frozen for shipment to the Western University Biotron facility and analysed using EPA 300.0 on 

a Dionex ICS-1600 with AS-DV Autosampler (precision = 0.01 mg L-1). Both Cl- and Na+ iso-

concentration maps were manually interpolated and drawn.  

 

3.4.3 Physical Soil Parameters 

 

Effective porosity (𝑛𝑒), specific yield, and bulk density of the peat was determined for peat 

that was approximately at the elevation of the water table maintained by pumping (equilibrium 

water table), and also at ~1.5 m bgs. A total of 15 sampling locations were selected throughout the 

EXP Fen, focusing on the upper three ribs (9 samples). The remaining six cores were distributed 

evenly throughout the southern half of the EXP Fen. At each location two cores (one shallow and 

one deep) were taken. Cores were extracted in late September 2014, by taking 30 semi-cylindrical 

cores using a Russian Corer. Each core was placed into a semi-cylindrical PVC container of the 

same I.D. as the Russian Corer and covered with plastic wrap for transport to the University of 

Waterloo Wetland Hydrology Laboratory for analysis.  
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Each core was visually inspected for evidence of compression due to sampling and any 

portions of the core that were visually compressed were not used in analysis. Each core was sub-

divided into three 0.1 m high samples for analysis. The cores were saturated with R.O. water for 

24 hours and specific yield was determined by allowing the samples to drain upright (height = 0.1 

m) under gravity for 24 hours. Once completed, the drainable porosity at -100 mb was determined 

to estimate ne. Lastly, the samples were oven dried at 85°C for 48 hours to determine the bulk 

density.  

 

In mineral soils under saturated conditions ne is equivalent to the drainable porosity at the 

field capacity (-100 mb) (Bear, 1972; Klute, 1986); while in peat, Rezanezhad et al. (2012) used 

soil water retention curves and model calibration to determine ne, and both Quinton et al. (2000) 

and Hoag and Price (1997) used visual estimation of thin cross-sectional areas of peat to estimate 

ne. Both of the methods used in peat require extensive laboratory and analytical work to generate 

an estimate of ne and are difficult to reproduce or compare between studies. Since the drainable 

porosity at -100 mb easily encompasses the range of pores sizes in peat that transmit the majority 

of the flow, it should give a reasonable estimate of ne. Thus, 𝑛𝑒 was determined as the drainable 

porosity at -100 mb pressure (Bear, 1972; Klute, 1986) using a pressure cell with a 1 bar pressure 

plate (Soil Moisture Equipment Corp. 5 Bar Pressure Plate Extractor). Once completed, the 

samples were dried at 80°C for 48 hours and bulk density was determined. A Shapiro-Wilk 

normality test was performed on the data and an ANOVA with Tukey’s HSD test to determine if 

microform, site location (north or south) and sample depth had a significant influence on 𝑛𝑒. All 

statistical analysis were performed in R Statistical Software (R Development Core Team, 2010). 

 

3.4.4 Pool Residence Times 

 

Pool bathymetry was determined by a DGPS survey with “bog plate” attachment by resting 

the weight of the unit on the pool bottom. The bog plate, ~ 175 cm2, allowed for more consistent 

measurement in the soft pool bottoms. Once the bathymetric survey was completed the data were 

imported into ARC GIS 10.2 and a TIN was generated for the calculation of the pool surface area 

and volume at each water table elevation recorded throughout the study. The average stable water 

table during pumping was used in the final calculation of residence times (𝑟𝑡) as pool volumes and 
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saturated peat thickness were not changing, an assumption of Equation 3-1. Thus, the 𝑟𝑡 for Pools 

1-4 was estimated by  

 

𝑟𝑡 =
𝑉

𝑄𝑝 + 𝑄𝑠𝑤 + 𝑃
 Equation 3-1 

  

where, 𝑄𝑝 (m3 day-1) is the volumetric discharge through the peat, 𝑄𝑠𝑤 is the volumetric discharge 

from the water input pipe (only pertains to Pool 1) based on the bucket weir discharge determined 

in Chapter 2, 𝑃 is the precipitation, and 𝑉 is the pool volume at the average stable water table. The 

limited groundwater monitoring network past Pool 4 precluded the calculation of residence time 

for these pools but typically they were shallow and small (<1 m3). Discharge through the peat was 

determined by a form of Darcy’s law such that  

 

𝑄𝑝 = ∑(−𝑏𝑖𝐾𝑖𝑖)

𝑛

𝑖=1

 
Equation 3-2 

 

where, 𝑏𝑖 is the thickness of a given layer, 𝐾𝑖 is the hydraulic conductivity of a given layer, and 𝑖 

is the total hydraulic gradient.  

 

3.4.5 Retardation Factors 

 

Average linear groundwater velocity, 𝜈, was determined at the EXP Fen as,  

 

𝜈 =
𝐾𝑖

𝑛𝑒
 

Equation 3-3 

 

where, 𝑛𝑒 is determined for a given transect using the shallow sample, 𝑖 is the total hydraulic 

gradient between pools and 𝐾 (m day-1) is the hydraulic conductivity of the upper 0.10 m of the 

water table (K0-10 cm) determined in Chapter 2 . The hydraulic conductivity from 0 – 0.10 m was 

determined for a given well (see Appendix A) by averaging the hydraulic conductivity along the 

transmissivity curve within the upper 0.1 m of the top of the saturated peat. 
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Chloride and sodium breakthrough (measured concentration 50 % of the input 

concentration, 𝐶 𝐶0 = 0.50⁄ , were determined for individual transects, as well as a site averaged 

value (maximum extent). Two calculations of the retardation factor (R) were performed: 1) the 

entire site including pools and 2) only the peat to better compare these results to past studies that 

did not have any open water pools.   

 

The residence times and distance across pools were removed from the calculations to 

provide an estimate of 𝜈 and υs, the average solute velocity, for the peat substrate and the R were 

determined by  

 

𝑅 =  
𝜈

𝜈𝑠
 Equation 3-4 

 

where, 𝜈𝑠 is determined as 

 

𝜈𝑠 =
𝑙𝑠

𝑡𝑐 𝑐0=0.5⁄ − ∑ 𝑡𝑟𝑒𝑠
 Equation 3-5 

 

where, 𝑙𝑠 is the length along a well transect, or maximum extent of the plume when 𝐶 𝐶0 = 0.50⁄ , 

𝑡𝑐 𝑐0=0.5⁄  is the time of solute breakthrough (𝐶 𝐶0 = 0.50⁄ ) that is linearly interpolated between 

sampling periods and 𝑡𝑟𝑒𝑠 is the sum of all pool residence times up-gradient from the measured 

point. To determine 𝑅𝑠𝑖𝑡𝑒, the site average retardation (including pools), 𝜈 was determined by the 

average 𝜈 of each individual transect (9) and 𝜈𝑠 was estimated by the maximum observed solute 

breakthrough distance (𝑙𝑠) and associated time (∑ 𝑡𝑟𝑒𝑠 = 0). To determine the R within only peat 

(𝑅𝑝𝑒𝑎𝑡), the same calculations were completed but the average distance across the pools were 

removed from 𝑙𝑠 and the sum of the residence times of Pools 1-4 (∑ 𝑡𝑟𝑒𝑠) was subtracted from 

𝑡𝑐 𝑐0=0.5⁄ .  

 

3.5 Results 

 

Average (± standard deviation) solute concentrations at the reference sites (chloride 0.8 ± 

1.1 mg L-1 and sodium 0.5 ± 6.0 mg L-1) were similar to those found at the EXP Fen in 2013 (1.2 
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± 0.5 mg L-1 and 3.9 ± 1.3 mg L-1, respectively). No seasonal trends were observed in chloride or 

sodium at the reference sites. SC increased with depth from 39.9 ± 28.4 μS cm-1 at the water table 

to 88.0 ± 48.7 μS cm-1 at 1.25 m bgs at the reference sites, similar to that at the EXP Fen prior to 

loading, at 19.0 ± 2.5 μS cm-1 and 65.0 ± 36.2 μS cm-1, respectively. 

 

Hydrological loading of 37.7 m3 day-1 began on DOY 192 (July 11th). This resulted in an 

average daily input of 3.7 mm of water normalized over the EXP Fen area, or a point source influx 

into Pool 1 of ~89 mm day-1 (Chapter 2). The discharge resulted in rapid increase in Pool 1 water 

table (Figure 3-2); the periodic sharp decreases in Pool 1 water table resulted from the water pump 

failure. During hydrological loading the water table close to the pumping source (Pool 1) increased 

immediately and responded rapidly (within a few days) in the upper 3 ribs but was not evident 

further down-gradient in the EXP Fen. Typically, sodium and chloride concentrations increased 

following the rise in water table, although the relative concentration of sodium was lower 

compared to chloride (Figure 3-2). In the lower part of the EXP Fen sodium and chloride 

concentrations remained at background levels. 

 

.  
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Figure 3-2 Water table, precipitation (secondary y-axis) and C/C0 for chloride and sodium during the study period. 

Experimental loading occurred between the dashed lines (DOY 192 – 243). In-between the vertical dashed lines is the pumping 

period. The left column of graphs represents the pre-identified PFP’s, while the right are the ridges. The approximate location of 

each microform within the site is represented by P (PFP) and R (ridge). 
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Specific yield was not statistically 

different across the site or between 

microtopography (Figure 3-3). However, 

bulk density was statistically higher (p < 0.05) 

in the shallow north region of the site (Figure 

3-3). Furthermore, no statistical difference in 

𝑛𝑒 was observed between different 

microtopographies (p > 0.1) but the north 

(Ribs 1 & 2) had significantly lower 𝑛𝑒 (0.29 

± 0.14) than the south (0.47 ± 0.09, p < 0.001) 

(Figure 3-3). In the north, 𝑛𝑒 increased with 

depth (0.21 ± 0.11 vs. 0.35 ± 0.15, p = 0.047, 

while in the south there was little variation 

with depth (0.50 ± 0.10 vs. 0.45 ± 0.07, p > 

0.1) (Figure 3-3). Upon visual inspection of 

the cores, slight compression due to the 

sampling technique was observed at the top 

and bottom (< 5 cm) of the samples, thus were 

not used for analysis; the rest of the cores did 

not display pronounced smearing or 

deformation.  

 

3.5.1 Solute Transport 

 

Chloride was transported at an 

average rate (𝜈𝑠) of 2.2 m day-1 (Figure 3-4) 

when excluding pool residence times and 

distances (Table 3-1), slightly lower than that of 

water (𝜈), which was 2.5 m day-1; thus, chloride 

was retarded (𝑅𝑝𝑒𝑎𝑡 𝐶𝑙) by a factor of 1.1 in the 

peat. However, 𝜈 ranged from 0.3 – 13.3 m day-

Figure 3-3 Bulk density, specific yield and effective 

porosity the EXP Fen divided into the northern half (north) and 

southern half (south). Shallow and deep refer to the depth of 

each sample: shallow = at the top of the water table and deep 

= ~ 1.5 m below the top of the water table. *** and * indicates 

significantly different at p < 0.001 and P < 0.05, respectively. 

Specific yield data presented by McCarter and Price (in 

review). 
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1 and υs for chloride ranged between 0.34 – 2.11 m day-1 depending on local gradients, hydraulic 

conductivity and 𝑛𝑒 (Table 3-2) of a given peat transect; this resulted in a range of 𝑅𝑝𝑒𝑎𝑡 𝐶𝑙 of 0.4 

– 31.2. Sodium (Figure 3-5) was transported more slowly relative to chloride (Figure 3-4) at an 

average rate of 1.2 m day-1 (𝑅𝑝𝑒𝑎𝑡 𝑁𝑎 = 2.0). However like chloride, sodium displayed local 

variation in peat υs (0.26 – 0.97 m day-1) and thus a range of 𝑅𝑝𝑒𝑎𝑡 𝑁𝑎 (1.0 – 42.2) depending on 

local hydrophysical conditions (Figure 3-3), which microtopography did not influence. When 

including the pools (𝑅𝑠𝑖𝑡𝑒) in the calculation of R, both solutes had higher R (Cl- =1.2 and Na+=2.1), 

as υs decrease to 1.9 and 1.1 m day-1 for chloride and sodium, respectively. Both solutes displayed 

complex plume behaviour (Figure 3-4 & Figure 3-5) and travelled ~107 m in 42 days. 

 

Table 3-1 Average (± S.D.) pool residence time for the first 4 pools over the entire study period. Due to limited well 

installations it was not possible to calculate residence times for other pools; however, pool volumes were <3 m3. 

 rt (day) 

Pool 1 2.9 ± 0.4 

Pool 2 1.4 ± 0.7 

Pool 3 3.2 ± 1.0 

Pool 4 1.5 ± 0.7 

 

The majority of solute (sodium and chloride) was transported within 0.25 m of the top of 

the saturated peat (Figure 3-6 & Figure 3-7, DOY 221) as indicated by the strong relationship and 

Figure 3-4 Chloride concentration iso-concentration map of the EXP Fen generated from the well water sample data 

during the experimental loading. Note the highly irregular plume development. 
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near 1:1 slope (1.06) between CCl measured in the wells and that in the 0.25 m piezometers 

(p<0.001, df 10, adj. R2 0.995). By comparison, CCl is lower in the 0.5 and 0.75 m piezometers 

than in the wells (p<0.001, slope 0.35, df 11, adj. R2 0.700 and p<0.001, slope 0.05, df 11, adj. R2 

0.614, respectively). The shallowest piezometers (that have similar CCl  to that in the wells) have 

the highest hydraulic conductivity (Table 3-2), corresponding to the saturated hydraulic 

conductivity that increases exponentially towards the surface.  

Table 3-2 The hydraulic conductivity of the upper 10 cm and 25 cm of the saturated peat profile determined in Chapter 

2 , maximum transmissivity, average ne, v , and vs for the regions within the bulk of the solute plume. No data is available beyond 

Rib 3 until Rib 8, where the plume was not observed, due to lack of instrumentation. East and West Bog refers to the lateral bogs 

to the east and west of the site.  

 K0-10 cm  

(m day-1) 

K0-25 cm  

(m day-1) 

Tmax  

(m2 day-1) 

Avg. ne v  

(m day-1) 

vs  

(m day-1)  

Rib 1 Nest 1 42 19 6 0.29 1.2 0.8 

Rib 1 Nest 2 54 24 7 0.29 2.6 0.4 

Rib 1 Nest 3 137 60 17 0.29 5.2 0.4 

Rib 1 Nest 4 324 138 37 0.29 13.3 0.4 

Rib 2 Nest 1 5 2 1 0.12 0.3 0.3 

Rib 2 Nest 2 43 20 4 0.12 3.0 2.3 

Rib 3 Nest 1 138 61 22 0.50 0.8 2.1 

Rib 3 Nest 2 598 256 18 0.50 4.8 1.4 

Rib 3 Nest 3 170 76 69 0.50 1.9 1.3 

East Bog 2 1 50 N/A N/A N/A 

West Bog 4 1 34 N/A N/A N/A 

 

Figure 3-5 Sodium concentration iso-concentration map of the EXP Fen generated from the well water sample data 

during the experimental loading. Note the highly irregular plume development. 
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Figure 3-6 Chloride concentration in the pore water within the peat profile before (172), during (221) and after (257) 

experimental loading. Background chloride concentration (2013 and DOY 172) was < 1 mg L-1. The left column of graphs 

represents the pre-identified PFP’s, while the right are the ridges. The approximate location of each microform within the site is 

represented by P (PFP) and R (ridge). Note, the elevation change on each graph representing the change in peat depth, where the 

top of each graph is the peat surface and the bottom is the mineral substrate surface. Peat depth decreases from north to south and 

is typically lower in the PFP’s than the associated ridges. Dashed lines represent 50 % of C0 
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Figure 3-7 Sodium concentration in the pore water within the peat profile before (172), during (221) and after 

(257) experimental loading. Background sodium concentration (2013 and DOY 172) was < 1 mg L-1. The left column of 

graphs represents the pre-identified PFP’s, while the right are the ridges. The approximate location of each microform 

within the site is represented by P (PFP) and R (ridge). Note, the elevation change on each graph representing the change 

in peat depth, where the top of each graph is the peat surface and the bottom is the mineral substrate surface. Peat depth 

decreases from north to south and is typically lower in the PFP’s than the associated ridges. Dashed lines = 50 % of C0 
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Background sodium concentrations (Figure 3-7) were typically elevated compared to 

chloride (Figure 3-6). Towards the southern portion of the site, sodium concentrations are ~5 mg 

L-1 directly above the mineral (Figure 3-7), while chloride concentrations remain at or below 

detection limits (Figure 3-6). Little downward transport of the solutes occurred (Figure 3-6 & 

Figure 3-7). In the upper two ribs the lowest chloride and sodium concentrations were found 

between 0.7 and 1.0 m below the surface (Figure 3-6 & Figure 3-7). Solute concentrations 

increased slightly past this depth (Figure 3-6 & Figure 3-7). This trend was exaggerated after 

pumping (DOY 257), as the solute below this layer concentration increased or remained constant 

during this measurement period, while chloride, and typically not sodium (Figure 3-7), was flushed 

from the upper peat layers (Figure 3-7). In the rest of the site, there was a continuous exponential 

decrease in solute concentration with depth (Figure 3-6 & Figure 3-7). Due to low temporal 

sampling resolution, estimates of vertical transport rates were not available. Reference sites and 

2013 (pre-solute release) showed low sodium (< 1 mg L-1) and chloride (< 1 mg L-1) pore water 

concentrations.   

 

3.6 Discussion 

 

At the EXP Fen 𝑛𝑒 typically decreased with decreasing bulk density (R2 = 0.22, p = 0.002) 

and increased with specific yield (R2 = 0.36, p < 0.001) based on linear regression, following the 

broad trend observed in the literature (Hoag & Price, 1997; Quinton et al., 2005). However, there 

was no observable trend between the hydraulic conductivity and the measured physical parameters, 

likely due to differing sampling intervals, locations, and scales. It was expected that the Sphagnum 

dominated peat (shallow samples) in the northern portion of the site would have a higher 𝑛𝑒 than 

the deep or southern samples because lower 𝑛𝑒 is typically associated with sedge or woody peat 

and greater levels of decomposition (Hoag & Price, 1997; Quinton et al., 2005); however, this was 

not observed and the surficial northern peat had a lower 𝑛𝑒 (p < 0.001) than the rest of the site 

(Figure 3-3). The lower 𝑛𝑒 coincided with a higher bulk density (p < 0.05), suggesting that the 

surficial peat in the north of the site was physically different than that of the rest of the site. 

Furthermore, there was a greater range and lower minimum specific yield observed in these 

samples (Figure 3-3), yet were not statistically different (p > 0.1). The higher bulk density of the 

shallow northern samples agrees well with the conceptual model of peat where increased bulk 
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density has a lower 𝑛𝑒 (Hoag & Price, 1997; Quinton et al., 2005). The southern region of the site 

follows the trends observed in the literature (Hoag & Price, 1997; Quinton et al., 2005) where the 

surficial poorly decomposed Sphagnum dominated peat had, on average, lower bulk density and 

higher specific yield and 𝑛𝑒. At depth bulk density increased and both specific yield and 𝑛𝑒 

decreased (Figure 3-3) but not significantly (p > 0.1). The significantly lower 𝑛𝑒 (Figure 3-3) in 

the upper section of the EXP Fen may be due to enhanced decomposition of the peat during the 

experiment caused by the additional nitrate and sulphate load (Bayley & Thormann, 2005; Cabezas 

et al., 2012). These compounds have a higher redox potential, thus are energetically favourable for 

microbial decomposition, than is typical in these peatlands (Niedermeier & Robinson, 2007). 

However, there is a dearth of knowledge on how decomposition affects the hydrophysical 

properties of peat and further study is required to better understand the evolution of peat under 

enhanced decomposition. 

 

The raised elevation and lower transmissivity (Table 3-2) within the adjacent bogs limited 

the solute plume to the confines of the EXP Fen, as no solute breakthrough (50% breakthrough, 

C/C0 Cl
- = 0.50) was observed at any bog monitoring well (C/C0 Cl

- = 0.33, 8.3 m, 42 days, Figure 

3-4). Furthermore, microtopography within the EXP Fen contributed to the complex plume 

morphology through the variation in near surface hydraulic conductivity distribution and 𝑛𝑒 (Table 

3-2); however, variations in 𝑛𝑒 were not clearly related to microtopography. For instance, on Rib 

2 apparent PFPs were identified on the western third of the rib (Figure 3-2), yet the primary solute 

breakthrough was typically through the centre of Rib 2 (Figure 3-4 & Figure 3-5). Complex solute 

plumes have been observed in a basin fen by Baird and Gaffney (2000), where tracer (bromide) 

peaks were observed intermittently along transects due to macropores generating preferential flow 

paths for solutes. In the EXP Fen, no macropore flow was observed (i.e., no increases in solutes 

outside of the plume) and the complex plume development was due to variations in hydrophysical 

parameters within a rib.  

 

The largest control on solute transport was the hydraulic conductivity within the upper 0.1 

m of the saturated peat. The hydraulic conductivity of the upper 0.25 m of saturated peat (K0-25 cm) 

was much lower than that of the upper 0.1 m (K0-10 cm) (Table 3-2) and when used to calculate 

𝑅𝑝𝑒𝑎𝑡 𝐶𝑙 it produces values lower than 1. The 𝑅𝑝𝑒𝑎𝑡 𝐶𝑙 lower than 1 potentially indicates macropore 
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flow (Baird, 1997; Baird & Gaffney, 2000) or, more likely, incorrect determination of the 

hydrophysical parameters. Using the hydraulic conductivity of the upper 0.1 m of the saturated 

peat to calculate 𝑅 produces the values as reported (Table 3-2); thus, it is likely that the majority 

of solutes are transported in the upper 0.1 m of the saturated peat and the sampled solute 

concentration within the piezometer was dominated by preferential flow through this layer. 

Although inferences can be made on projected plume development based on microtopography, it 

is critical to understand the near surface hydraulic conductivity distribution as the majority of 

contaminants are transported within this layer, which has the strongest control on solute transport.  

 

The observed maximum plume distance of sodium and chloride were similar but high 

concentrations of sodium (Figure 3-5, ~20 mg L-1, C/C0 Na
 = 0.80) were limited to the upper reaches 

of the EXP Fen. Conversely, high concentrations of chloride (Figure 3-4, ~40 mg L-1, C/C0 Cl
 = 

0.80) were observed much further down-gradient as fewer processes retard chloride transport 

(Ours et al., 1997; Rezanezhad et al., 2012). As chloride and sodium were transported down-

gradient in the EXP Fen, both were subject to physical diffusion into inactive pores (Hoag and 

Price, 1997), as evidenced by the retardation factor for chloride being greater then unity (𝑅𝑝𝑒𝑎𝑡 𝐶𝑙 

= 1.1). Additionally, sodium was also influenced by geochemical (sorption) retardation in addition 

to diffusion into inactive pores (Rezanezhad et al., 2012), so a higher retardation factor (𝑅𝑝𝑒𝑎𝑡 𝑁𝑎  

= 2.0) was observed. It is noteworthy that the observed range of R for the peat within the EXP Fen 

(𝑅𝑝𝑒𝑎𝑡 𝐶𝑙  = 0.4 – 31.2, 𝑅𝑝𝑒𝑎𝑡 𝑁𝑎 = 1.0 – 42.2) includes values below 1 indicating the likelihood for 

preferential or macropore flow (Baird & Gaffney, 2000; Rezanezhad et al., 2012), surface water 

flow (not observed) (Chapter 2; Price & Maloney, 1994; Quinton & Roulet, 1998) or local 

variations in the hydrophysical properties (i.e., 𝑛𝑒, K, and anisotropy) (Chapter 2; Hoag & Price, 

1995; Quinton et al., 2008; Quinton et al., 2005), which can cause the solute to arrive at the 

measurement point before the calculated average calculated pore-water velocity, 𝜈.  Retardation 

factors for chloride and sodium are similar to those reported in the literature for peat: chloride: 2.7 

– 7.3 (Hoag & Price, 1997), sodium: 1.73 (Rezanezhad et al., 2012), and EC (NaCl): 2.2 (Hoag & 

Price, 1995). The observed average 𝑅𝑝𝑒𝑎𝑡 𝑁𝑎 was similar to the REC observed by Hoag and Price 

(1995). In the only other published field study we could find, Baird and Gaffney (2000) were 

unable to calculate R because of macropore flow and/or because they did not account for the 
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effective porosity; this resulted in R < 1. Notwithstanding differences in K and 𝑛𝑒 between Hoag 

and Price (1995) and the values determined in this study, in simple two chemical component (i.e., 

Na+ and Cl-, NaCl)  tracer experiments the electrical conductivity is an expression of both solutes 

when calculating R (Mastrocicco et al., 2011). While the sodium values agree with those reported 

in the literature, the role of competitive adsorption in peat (Ho & McKay, 1999; Ho et al., 2002) 

between sodium and the other wastewater cations (i.e., potassium and ammonium) is unknown. 

However, given the large cation exchange capacity observed in peat (Gogo et al., 2010), it is 

unlikely that the cation exchange capacity was exceeded during this experiment.  

 

The pools in the EXP Fen were typically shallow (<0.3 m deep, except for Pool 1 with a 

maximum depth of 1.5 m) and elongated, typically reaching a stable SC within 2-6 days after initial 

detection (data not shown) indicating a pool was at the input concentration of solute. Thus, 

depending on the volume and morphology of the pool, transmission of solutes was delayed by 2-

6 days due to dilution. Pools are unable to efficiently store solutes in hydraulically dead-zones 

once the input concentration is achieved; these dead-zones are a function of the shape of the pools 

(Figure 3-1) (Persson et al., 1999; Polprasert & Bhattarai, 1985; Postila et al., 2015; Thackston et 

al., 1987). However, the near equal influent and effluent zone lengths (north and south pool edge, 

respectively), approximately parallel edges, and large length to width ratios results in minimal 

dead-zones (Persson et al., 1999; Persson & Wittgren, 2003; Thackston et al., 1987) and high pool 

hydraulic efficiency in the small, shallow pools, such as those found in the EXP Fen (Thackston 

et al., 1987). Given that the length to width ratios are above 10 (data not shown) and the pools are 

typically < 0.6 m deep, the hydraulic efficiencies are high (> 0.75) (Persson, 2000; Persson et al., 

1999; Persson & Wittgren, 2003; Polprasert & Bhattarai, 1985; Thackston et al., 1987). This 

suggests the natural morphology of ladder fens may be ideal for open water wastewater treatment 

and polishing as the majority of the pool volume is active (Persson et al., 1999; Persson & 

Wittgren, 2003). However, once at the input solute concentration the pools transported the solute 

slower than the input υs, as 𝑛𝑒 increases to unity (Bear, 1972). Thus, the pools create regions of 

lower solute transport due to the decreased υs (assuming conservation of mass) within the pools, 

lowering the site wide υs (Cl- = 1.9 m day-1 and Na+ = 2.1 m day-1). Furthermore, the pools, regions 

of lower υs, occupy ~26 % of the linear distance the chloride plume during the experiment and 

consequently slightly increased 𝑅𝑠𝑖𝑡𝑒 𝐶𝑙 to 1.2 (1.1). Sodium displays similar behaviour as chloride, 
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where 𝑅𝑠𝑖𝑡𝑒 𝑁𝑎 increases 2.1 (2.0). However, these values assumes plug-flow through the pools 

and does not account for the effect of wind mixing of both water and solutes, where solute transport 

can be accelerated or decreased depending on the prevailing wind direction (Shaw et al., 1997). 

Shallow pools, such as those found at the EXP Fen, will have a greater proportion of the pool 

volume influenced by wind, further limiting the storage of contaminants (Persson, 2000; Persson 

et al., 1999; Shaw et al., 1997). However, these are speculative findings and a more robust study 

on solute transport in peatland pools is required. Although pools seem to reduce solute transport 

in this ladder fen, the effect was minimal and unlikely to alter the release of contaminants to down-

gradient aquatic ecosystems.      

 

Prior to loading chloride was negligible (<1 mg L-1) and sodium was <5 mg L-1 within the 

peat pore water at the EXP Fen, except for directly above the mineral substrate (Figure 3-6 & 

Figure 3-7 DOY 172) where upward diffusion of solutes likely occurred over long time periods 

(Price, 1991; Reeve et al., 2000, 2001; Siegel et al., 1994). The strong vertical layering in sodium 

and chloride concentration at the EXP Fen during and after loading typically followed the same 

pattern as K (Chapter 2). Notwithstanding average downward vertical hydraulic gradients (0.08) 

observed in Chapter 2, the exponential decrease in K restricted vertical advection of both sodium 

and chloride during and after the experimental loading (Figure 3-6 & Figure 3-7). A bimodal 

distribution of chloride and sodium was observed in Ribs 1 & 2 and an exponential decrease in 

chloride concentration with depth below water table was observed at the rest of the site (Figure 

3-6 & Figure 3-7). The lower sodium and chloride concentrations at mid-depth in Ribs 1 & 2 

corresponds to a relatively abrupt decrease in K in a layer at that depth, which can cause a flow 

deflection (Bear, 1972). The bisecting flow resulted in solute advection directly to the deep peat 

layers from the pools, yet at a much lower υs than in the upper peat layers (Figure 3-6 & Figure 

3-7, DOY 257) and may store contaminants at depth over longer time periods. This unintentional 

contaminant storage is potentially beneficial under wastewater treatment scenarios as it removes a 

portion of the contaminant from the upper, high permeability, peat layers. However, it is the local 

site conditions that are driving this storage and, although interesting, may not apply to other ladder 

fens.  
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Contaminants within the upper peat layers and pools readily flush from the EXP Fen, as 

noted by the rapid decrease in chloride concentration between the end of loading and the final 

sampling date, 14 days post-loading (Figure 3-2 & Figure 3-6, DOY 257). There was an ~50 % 

decrease in chloride concentration in Ribs 1-3 within the upper peat layers, likely due to a 

combination of dilution from precipitation and advection (Figure 3-6), and a slight increase in 

chloride concentration in Rib 8, 140 m down gradient, due to advection. Sodium decreased 

similarly to chloride in the upper 3 ribs but there was no observed increase at Rib 8 (Figure 3-7), 

likely due to sorption of the sodium to the peat, which removed it from the aqueous phase (Ho & 

McKay, 2000; Rezanezhad et al., 2012). SC, an indication of all wastewater solutes injected, of 

Rib 1 decreased by 75 % by DOY 297 2014 (54 days post loading), while the rest of the site was 

near or at pre-loading levels (data not shown). This indicates that most of the solutes were; 1) 

flushed from the site within 54 days post-loading; 2) subject to dilution from precipitation; 3) 

retained by adsorption in the case of sodium; or 4) a combination of the different processes. 

Preliminary data from June 2015 (not shown) suggests that some of the wastewater solutes were 

stored above the water table due to decreasing water tables in the autumn (SC was ~2 to 3 times 

higher in the vadose zone compared to pre-loading levels as well as that on DOY 297, 2014). Once 

the EXP Fen water table rose during the spring freshet (2015), the stored wastewater solute was 

free to be flushed from the vadose zone and redistributed from the upper few ribs to the rest of the 

site. Notwithstanding the role of ground frost on the hydrology of the system (Quinton et al., 2005; 

Woo et al., 2000), the high water tables associated within the spring freshet result in rapid 

transmission of solutes to the down-gradient aquatic ecosystems due to the extremely high 

hydrological connectivity observed during these periods (Chapter 2; Leclair, 2015; Perras, 2015; 

Quinton et al., 2003; Quinton & Roulet, 1998). Furthermore, as the ground frost recedes (Woo et 

al., 2000), the hydrological connectivity remains high with a perched water table located within 

the high K layers, resulting in further contaminant flushing. However, low water tables during the 

growing season and frozen ground during the winter limits flushing to the shoulder seasons. Thus, 

it may take several years to completely flush relatively mobile contaminants (i.e., sodium and 

chloride) from these systems.  
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3.7 Conclusions 

 

This study illustrates the complex plume morphology of both sodium and chloride due to 

spatial variations in ne, K, anisotropy, and sorption, as well as the morphology of the pools. 

Although this study illustrates the mechanisms controlling the plume complexity, further studies 

are required to better understand the role of degree of decomposition and compression (i.e., pore 

structure, anisotropy, etc.) and parent material (i.e., Sphagnum, sedges, wood, etc.) on peat 

hydrophysical properties and solute transport in peatlands. The high spatial variability of peat 

hydrophysical properties can result in calculated R < 1. These low values may be an artefact of the 

inability to measure hydrophysical properties at a sufficiently dense spatial resolution. Because the 

determination of ne is not standard in the peat literature, it is difficult to compare between studies. 

We propose to adopt the -100 mb drainable porosity standard for saturated peat, as it agrees well 

with the conceptual model of the dual porosity structure of peat and soil water retention (Hoag & 

Price, 1997; Ours et al., 1997; Rezanezhad et al., 2012) and would allow for easy comparison 

between studies.  

 

Both chloride (conservative) and sodium (reactive) were not transported out of the EXP 

Fen during the 42 day study period, resulting in system residence times much higher than 42 days 

during a climatically average summer. The majority of solute transport occurring the highly 

conductive upper 0.1 m of the saturated peat. Other wastewater contaminants likely have higher 

residence times than either of these solutes as they are bioavailable (Kadlec, 2009a; Kim et al., 

2011; Lens et al., 1995; Ronkanen & Klove, 2009), in addition to physical and geochemical 

removal processes. Thus, treatment efficiencies are likely greatly enhanced compared to sodium 

and chloride. However, there needs to be careful manipulation and control of the water table to 

avoid surface water flow within low-lying apparent PFPs, which can greatly increase the 

hydrological connectivity. Furthermore, maintaining hydrological loading so that the water table 

remains 0.05 – 0.10 m below the highest hydraulic conductivity layers, where the majority of 

solutes were transported, will exponentially decrease the solute transport rate (exponential 

decrease in hydraulic conductivity) and increase the solute residence time, thus treatment 

efficiency. To further enhance transport predictability, stable water tables need to be maintained 
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limit solute storage within the vadose zone, which may be remobilized during high water table 

periods.  

 

The high hydrological connectivity with the aquatic ecosystems in ladder fens during these 

high water table periods (Chapter 2) questions the suitability of fen peatlands, which convey water 

to aquatic ecosystems, for domestic wastewater treatment or polishing. Bog peatlands, which play 

a water storage role in many northern landscapes (Quinton et al., 2003), may be better suited to 

retaining solutes for longer time periods as the residence time of these systems is typically much 

longer than fens (Price & Maloney, 1994; Quinton et al., 2003; Quinton & Roulet, 1998). Unlike 

fen peatlands, which typically have a linear flow regime pool to pool, bogs have an unorganized 

flow regime where the flow between pools can be sporadic depending on the local hydraulic 

conductivity and elevation of the intersecting peat between pools (Price & Maloney, 1994). Like 

ladder fens, the flow pool to pool relies on a threshold water table being exceeded where the 

hydraulic conductivity increases exponentially towards the surface (Price & Maloney, 1994). 

Thus, similar hydrological mechanisms to ladder fens may control solute movement within bogs 

but the unorganized flow path of water and likely solutes would require a larger area to be 

contaminated and difficult to predict the flow paths. The combination of these features suggest 

that large bog complexes may be more suitable for domestic wastewater treatment or polishing but 

further research is required to better understand the movement of solutes within these ecosystems.    

 

This study did not investigate the role of the spring freshet and ground ice on solute 

transport in peatland and remains an important gap in the literature for these northern 

environments. Furthermore, a broad understanding of the role of pools was elucidated within this 

study but the mechanisms governing solute transport within ladder fen pools has not yet been 

identified and requires further investigation prior to using these systems for wastewater treatment 

or polishing. This study demonstrates the potential for ladder fens to be used for wastewater 

treatment and polishing due to the inherent retardation of solutes into inactive pores and relatively 

high solute residence time during a climatically average summer (~100 mm of precipitation). 

However, unintentional contaminant releases or wastewater treatment and polishing during high 

water table periods will result in rapid transport. Unintentional release during low water table 

periods may result in storage of some contaminants within the vadose zone where they will be 
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accessible during periods of high water table (i.e., spring freshet) or leached during precipitation 

events. The differences in transport and storage between these hydrological conditions likely 

necessitates different remediation techniques and strategies. In either case, careful observation and 

management of the water table is required to ensure minimal release of wastewater or other 

contaminants to the surrounding aquatic ecosystems.  
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4 The transport and treatment of domestic wastewater contaminants 

enhances net methylmercury production in an undisturbed sub-arctic 

ladder fen peatland 

 

4.1 Summary 

 

Safely treating domestic wastewater in remote communities and mining operations in sub-

arctic Canada is critical to protecting the surrounding aquatic ecosystems. Undisturbed fen 

peatlands have been used to effectively minimize the release of contaminants to the aquatic 

ecosystems; however, there is a limited understanding of wastewater transport or treatment in 

undisturbed fen peatlands. To elucidate these processes, a small (9800 m2, ~250 m long) ladder 

fen was continuously injected with a wastewater surrogate derived from a custom fertilizer blend 

and 38 m3 day-1 of water for 51 days. The simulated wastewater was: sulphate (27.2 mg L-1), nitrate 

(7.6 mg L-1), ammonium (9.1 mg L-1), phosphate (7.4 mg L-1), and chloride (47.2 mg L-1). Major 

ion, total mercury (THg) and methylmercury (MeHg) pore water concentrations were measured 

throughout the study period. No wastewater contaminants were detected in the site outlet (~250 m 

downgradient) and most wastewater contaminants, except for SO4
2- and Cl-, remained relatively 

immobile. Within the SO4
2- plume, MeHg concentrations became highly elevated relative to 

background (up to 10 ng L-1) and comprised 80 – 100 % of dissolved THg in the pore water.  No 

MeHg was exported at the outflow. Since the added contaminants were effectively transformed, 

sequestered or otherwise removed from pore waters in this experimental system, it appears that  

that fen peatlands have a large capacity to safely treat residential wastewater contaminants; 

however, the inadvertent generation of THg and MeHg maybe a cause for concern.  

 

4.2 Introduction  

 

In high latitude regions, the treatment of domestic wastewater from communities and 

commercial operations, such as semi-permanent mine camps, have infrastructural complications 

that are not faced in the south. Common technical solutions used elsewhere are often challenging 

to implement logistically and financially because electricity is often generated by costly diesel 
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generators.  In many northern regions peatlands dominate the landscape (Glaser et al., 2004) and 

have been shown that they can  be used for primary wastewater treatment (Yates et al., 2012) or 

tertiary wastewater polishing (Eskelinen et al., 2015; Kadlec, 2009a; Postila et al., 2015; Ronkanen 

& Klove, 2009; Ronkanen & Kløve, 2008). Typically, natural treatment or polishing peatlands are 

dominated by subsurface flow regimes (Ronkanen & Kløve, 2007, 2008) with one or two settling 

ponds at the influent point (Kadlec, 2009a). However, different contaminants are sometimes better 

treated by different wetland designs that are not necessarily features of natural peatlands 

(Ronkanen & Kløve, 2007, 2008). A mixture of both subsurface flow and open water treatment 

cells often produce the best results for treating a variety of contaminants (Kadlec & Wallace, 2009; 

Kim et al., 2011). Ladder fens, and the larger ribbed fens, are found throughout the JBL and consist 

of a series of pools and peat ribs where the water flow is perpendicular to the orientation of the 

peat ribs (Chapter 2; Chapter 3; Glaser et al., 1981; Leclair, 2015; National Wetlands Working 

Group, 1997; Perras, 2015; Ulanowski, 2014). The peat ribs bisect pools and are elevated above 

the pool bottoms by ~1 – 2 m; furthermore, the peat ribs have two distinct microforms that vary in 

surface elevation by ~0.5 m from the lowest elevation of the rib during low water tables (National 

Wetlands Working Group, 1997). These low regions are considered preferential flow paths and 

function as surface water conduits during periods of high water table (Price & Maloney, 1994; 

Quinton & Roulet, 1998). Topographically higher regions are classified as ridges and act to impede 

the transmission of water through ladder fens (Price & Maloney, 1994; Quinton & Roulet, 1998). 

This pool-rib-pool morphology may be ideal for treating a wide range of contaminants as both 

surface and subsurface features are expressed naturally in these systems. However, there is a dearth 

of information on the transport and fate of domestic wastewater contaminants in these peatlands 

and the subsequent the risk of their release to down-gradient aquatic ecosystems.   

 

The peat ribs in ladder and ribbed fens control the movement of water (Chapter 2; Price & 

Maloney, 1994; Quinton et al., 2003; Quinton & Roulet, 1998) and solutes (Chapter 3) through 

the non-linear transmissivity-water table relationship common in peatlands (Chapter 2; Leclair, 

2015) and the absolute elevation of the low-lying preferential flow paths. During periods of high 

water table, greater hydrological connectivity with the down-gradient aquatic ecosystems is 

observed in these systems (Chapter 2; Price & Maloney, 1994; Quinton et al., 2003; Quinton & 

Roulet, 1998), increasing the likelihood of contaminant release (Chapter 3). The additional 
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hydrological load associated with wastewater treatment and polishing (Chapter 2; Postila et al., 

2015; Ronkanen & Kløve, 2008) increases the water table, resulting in more rapid transport of 

contaminants (Chapter 3). Although the transport of chloride (Cl-) and sodium (Na+) has been 

identified in these systems (Chapter 3), there is a limited understanding of how more reactive 

contaminants are transported in peatlands, as published peatland transport studies have focused on 

sodium chloride (Hoag & Price, 1995) or bromide (Baird & Gaffney, 2000).   

 

Typically, domestic wastewater has elevated phosphate (PO4
3-), ammonium (NH4

+), and 

nitrate (NO3
-) and other contaminants that are above background levels (Eskelinen et al., 2015; 

Kadlec, 2009a; Postila et al., 2015; Ronkanen & Klove, 2009) and all of these wastewater 

components are typically not present in measurable amounts in waters of in sub-arctic peatlands 

(Campbell & Bergeron, 2012). Additionally, peatlands are efficient at removing many of these 

contaminants through a variety of biogeochemical (Beltman et al., 2000; Boeye et al., 1999; Gerke 

& Hermann, 1992; Kadlec, 2009a, 2009b; Palmer et al., 2015; Richardson, 1985; Seo et al., 2005) 

and physical processes (Hoag & Price, 1995; Hoag & Price, 1997; Kadlec, 2009b; Postila et al., 

2015). For instance, the diffusion of contaminants into inactive pores will affect both reactive and 

conservative solutes based on their concentration in the mobile pore water (Hoag & Price, 1997; 

Rezanezhad et al., 2012) and diffusion coefficient (Appelo & Postma, 2005); this process likely 

provides relatively minor removal (Rezanezhad et al., 2012) under stable geochemical conditions. 

In many wastewater treatment wetlands and peatlands, PO4
3- is primarily removed through 

sorption to metal-humic complexes (i.e., Al3+, Fe3+, or Ca2+) (Richardson, 1985; Ronkanen & 

Klove, 2009) or precipitation (i.e., calcium phosphate) out of the aqueous phase (Kadlec & 

Wallace, 2009; Richardson, 1985); however, some removal of PO4
3- may occur as uptake by 

terrestrial (Kirkham et al., 1996) or aquatic vegetation (Noe et al., 2003; Pietro et al., 2006). 

Typically open water treatment wetlands are preferred for PO4
3- treatment (Kadlec & Wallace, 

2009). Nitrogen, both NH4
+ and NO3

-, can be treated in both surface water or subsurface wetlands 

but subsurface treatment wetlands are typically more effective because of the availability of labile 

organic matter, sorption sites, anoxic conditions, microbial and vegetation communities (Kadlec 

& Wallace, 2009). There are two primary removal pathways for NH4
+: 1) sorption to colloids or 

soil material and 2) nitrification to NO3
- (Eskelinen et al., 2015; Ronkanen & Klove, 2009). 

Sorption to soil or colloids results in a labile NH4
+ pool since any change in geochemical conditions 
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may release the bound NH4
+, yet provides a significant proportion of NH4

+removal (Kadlec & 

Wallace, 2009). Alternatively, nitrification to NO3
- results in either vegetation uptake, which stores 

nitrogen until senescence, or denitrification, which removes the nitrogen from the system 

(Ronkanen & Klove, 2009). Given the necessity to treat PO4
3-, NH4

+, and NO3
-, ladder fens, with 

their pool-rib-pool morphology, may provide an effective natural treatment system in these remote 

regions.  

 

Domestic  wastewater is typically not elevated in sulphate (SO4
2-), but this compound is 

typically targeted in agricultural treatment wetlands (Kadlec & Wallace, 2009). However, in 

regions with SO4
2- rich groundwater, for instance the JBL (Steinback, 2012b),  domestic water that 

may be derived from groundwater wells may have elevated SO4
2- concentrations, which eventually 

appear in the domestic wastewater or other process waters associated with industrial activities. The 

addition of SO4
2- to waterlogged anoxic peat soil has been shown to increase methylmercury 

(MeHg) concentrations in peat pore waters (Branfireun et al., 2001; Branfireun et al., 1999; 

Coleman Wasik et al., 2015; Coleman Wasik et al., 2012; Hoggarth et al., 2015; Mitchell et al., 

2008). Although MeHg is formed naturally, and is found in very low concentrations in major rivers 

in the Hudson Bay region (Kirk & St. Louis, 2009), the treatment of SO4
2- through microbial 

reduction may increase MeHg production within the peatland pore water because the methylation 

of mercury is facilitated by SO4
2- reducing bacteria in these environments (Branfireun et al., 1999; 

Coleman Wasik et al., 2015; Compeau & Bartha, 1985; Gilmour et al., 1992; Hoggarth et al., 

2015; Mitchell et al., 2008; Olson & Cooper, 1974); thus, potentially increasing the MeHg load in 

the down-gradient aquatic ecosystems. However, it is unknown if additional SO4
2- in the 

wastewater will result in elevated MeHg in these systems while treating other wastewater 

contaminants.  

 

With increasing development in peatland-dominated northern regions (i.e., the Canadian 

sub-arctic, JBL) there will be an increased need for domestic wastewater treatment and polishing. 

Given the limited information on the treatment and transport of wastewater contaminants and 

mercury dynamics when using ladder fens as wastewater polishing wetlands, this study used an 

experimental approach to better understand the ability of ladder fens to polish domestic wastewater 
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in remote peatland dominated landscapes and identify contaminants of concern due to their 

mobility. Specifically this study sought to: 

1. Determine the transport of typical wastewater nutrients  (NO3
-, NH4

+, and PO4
3-, SO4

2-) 

and assess their potential export to down-gradient aquatic ecosystems; 

2. Identify the impact of elevated SO4
2- concentrations on the production of MeHg during 

wastewater treatment; 

3. Provide the first assessment on the suitability of ladder fens for domestic wastewater 

treatment in remote sub-arctic regions. 

 

This study did not evaluate the transport and fate of elevated organic matter that is often 

associated with wastewater, pathogens such as bacteria and viruses, or other wastewater 

constituents that are of emerging concern, such as pharmaceuticals.   

 

4.3 Study Site 

 

A continuous wastewater polishing 

experiment was conducted in a small ladder 

fen (9800 m2) in the JBL (N 5860348.772, E 

705883.366) near the De Beers Group of 

Companies Victor Diamond Mine, during 

the 2014 growing season. Average 

precipitation and temperature during the 

study period (July and August 2014) were 

14.9 °C and 90 mm, respectively, based on a 

nine year record from a local meteorological 

monitoring station which agreed well with 

long-term Environment Canada records at a 

station ~100 km away (Chapter 2). The 

experimental fen (EXP Fen) consisted of a 

series of peat ribs and pools (Figure 4-1), 

where the peat ribs were perpendicular to the 

Figure 4-1 A map of the EXP Fen adapted from Chapter 2. 

Pools are sequentially number from the input pool (north) towards the 

south. Ribs follow the same sequential numbering starting for the first 

rib down-gradient (south) from Pool 1. 
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direction of water flow (Chapter 2) and solute transport (Chapter 3). The ribs were on average ~10 

m wide with some areas much narrower (>3 m, Figure 4-1) and consisted of low-lying sections 

that increased hydrological connectivity during periods of high water tables, and topographically 

higher ridges that reduce water flow, but typically not solute transport (Chapter 2). Pools account 

for 2240 m2 and are typically < 1 m deep (Chapter 2). In the absence of excess hydrological loading 

caused by wastewater pumping, the water table generally remains below the elevation of the high 

hydraulic conductivity peat in the near-surface layer for most of the year. Consequently, the site 

remains poorly hydrologically connected, except for spring freshet and autumn wet-up (Chapter 

2). At this site the addition of water associated with wastewater polishing raised the water table 

into the high hydraulic conductivity layers (Chapter 2), resulting in most solutes being transported 

within the upper 0.1 m of saturated peat. Pools lowered the transport rates due to solute dilution 

and lower solute velocities (Chapter 3). For more detail on the hydrology or solute transport see 

Chapter 2  and Chapter 3, respectively. The hydrology of the EXP Fen was similar to 3 other 

nearby ladder fens studied by Leclair (2015) and Perras (2015), as well as 3 other more remote 

ladder fens that were used as reference sites for this study (Reference Site 1 – N 5860348.772, E 

705883.366; Reference Site 2 – N 5860472.091, E 705811.312; and Reference Site 3 – N 

5860472.091, E 705811.312). Furthermore, Cl-, Na+, and specific conductance in the EXP Fen 

was not distinct from the 3 reference sites (Chapter 3).  

 

4.4 Methods 

 

A concentrated solution of wastewater was created using a custom blend fertilizer to mimic 

wastewater from the De Beers Group of Companies Victor Diamond Mine domestic wastewater 

(Steinback, 2012a) and be similar to that reported for other northern Canadian communities (Yates 

et al., 2012). The concentrated solution was injected (every 2 hours for 2.5 min) into a continuous 

water input (38 m3 day-1 from a nearby bog pond, ~170 m away) to achieve target average 

concentrations of SO4
2- (27.2 mg L-1), NO3

- (7.6 mg L-1), NH4
+ (9.1 mg L-1), PO3

3- (7.4 mg L-1), K+ 

(24.5 mg L-1), Na+ (25.3 mg L-1), and Cl- (47.2 mg L-1) between day of year (DOY) 192 – 243 in 

2014. Prior to entering the EXP Fen, the water input and wastewater solution were mixed in a 

bucket weir that drained into Pond 1 (Figure 4-1). To ensure Pond 1 remained well mixed and 

preferential flow did not occurred due to proximity to the injection point (Chapter 3), a mixing 
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motor anchored in the sediment of Pond 1 ran for 10 minutes after the solution was injected. 

Unexpected variations in the volume of water or concentrated wastewater solution pumped into 

the EXP Fen occurred due to mechanical pumping issues and resulted in large short-term changes 

in the final concentration of wastewater entering the EXP Fen; between 50 – 180 % of average 

target concentrations. The hydrological response (Chapter 2) and transport of Cl-  and Na+ (Chapter 

3) are reported elsewhere; thus, only the transport (mobility) and fate of the wastewater 

contaminants NO3
-, NH4

+, PO4
3-, and SO4

2- are presented in this study, along with THg and MeHg. 

 

4.4.1 Water and Soil Temperature 

 

Water and soil temperature were measured in both the low-lying preferential flow paths 

and ridge microforms of Ribs 1, 2 & 10 at 0.05 m below the water table, which is the approximate 

layer in which the majority of solute was transported (Chapter 3), and in Pools 1 & 2 (1 and 5 cm 

below water surface, 20 cm above the pool bottom and at the pool bottom). Temperatures were 

measured using copper-constantan thermocouples (Figure 4-1), and were recorded on a Hobo 

UX120 4-channel Data Loggers at 1-second intervals, averaged every 20 minutes. The variable 

nature of the pool water level required the upper two thermocouples to be installed on a floating 

thermopile to ensure constant measurement depths relative to the pool surface.   

 

4.4.2 Water Sampling and Analysis 

 

During the polishing experiment, well water samples (Figure 4-1) for major ions and DOC 

were taken at least every 7 days between DOY 192 – 243, along with pre- and post-loading samples 

taken on DOY 172 and 254, respectively. Total mercury (THg) and MeHg were sampled every 7 

days for the first 4 weeks of the experiment and every 2 weeks thereafter. Pre-loading mercury 

samples were taken on DOY 172 and 179 and post-loading mercury sampling occurred on DOY 

254. All sampling occurred when no significant precipitation fell for the preceding three days and 

all wells were purged the day prior to sampling to ensure a representative pore water sample. All 

piezometers and wells were screened with a geochemically inert geotextile filter sock (Rice 

Engineering & Operating LTD., 2” Filter Sock). Specific conductance was measured in each well 

every three days to determine the maximum extent of the wastewater plume and sampling occurred 
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at least 1 rib beyond the observed maximum extent to ensure sampling captured the entire 

wastewater plume. The three reference sites were sampled three times over the study period (DOY 

192, 212, and 237) for major ions, DOC, THg and MeHg. All water sampling was performed using 

a low-flow peristaltic pump with PTFE lines. After each sample was collected the lines were 

flushed with DI water and environmentalized (rinsing the bottle with well water 3 times) prior to 

taking the next sample. Field, line, DI, filter and preservation blanks were taken during each 

sampling event to monitor for any potential contamination. Duplicates were taken every 10 

samples for major ions, DOC, and THg and MeHg.  

 

Major ions and DOC samples were taken in sterile 50 mL FlipMate bottles (Delta Scientific 

Laboratory Products Ltd.), which were environmentalized prior to taking the sample. Samples 

were then stored in a chilled cooler for storage and transport until filtering. Samples were filtered 

using 0.45 μm polyethersulfone filters within 48 hours (typically < 24 hr) and frozen for transport 

to the Western University Biotron Institute for Experimental Climate Change Research for 

analysis. Analysis followed EPA 300.0 methodology using a Dionex ICS-1600 with AS-DV 

Autosampler. Dissolved organic carbon was analyzed by OI Analytical with persulphate wet 

oxidation after removing inorganic carbon with H3PO4 and purging volatiles on an Aurora 1030W 

TOC analyzer (limit of detection, LOD = 0.2 mg L-1). Iso-concentration maps were manually 

interpolated. 

 

Mercury (THg and MeHg) were sampled following the “clean-hands dirty-hands” EPA 

method 1669 in 250 mL sterile PETG bottles. Each sample was double-bagged and 

environmentalized prior to taking the sample and stored in a dark chilled cooler in the field. Prior 

to filtering and preservation, the samples were stored in a dark refrigerator at 4 °C for a maximum 

of 48 hours (typically < 24 hr). Samples were vacuum filtered (0.45 μm nitrocellulose membrane 

filters) using an acid-washed PTFE apparatus. Once filtered, samples were acidified to 1 % v/v 

with OmniTrace Ultra™ hydrochloric acid and rebagged in two clean plastic bags for storage (dark 

refrigerator at 4 °C) and transport to the Western University Biotron Institute for Experimental 

Climate Change Research. Total mercury analysis was performed on a Tekran 2600 mercury 

analyzer following EPA method 1631 (LOD = 0.05 ng L-1) and MeHg analysis performed on 

Tekran 2700 analyzer following EPA method 1630 (LOD = 0.0054 ng L-1). 
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4.4.3 Treatment Efficiency (TE) 

 

Dilution and dispersion during transport of the wastewater contaminants mask the 

geochemical or biological processes polishing the wastewater in the EXP Fen. To separate the 

hydrological processes from the biogeochemical processes, the injection concentration of a given 

wastewater contaminant (𝐶0 𝑠) was adjusted to the ratio between the observed concentration of Cl- 

(𝐶𝐶𝑙−) and the injected concentration of Cl- (𝐶0 𝐶𝑙−) at a given sampling point, assuming Cl- is 

conservative in peatlands (Hoag & Price, 1997; Ours et al., 1997; Rezanezhad et al., 2012). This 

allows for the calculation of treatment efficiency (TE) solely due to biogeochemical processes, 

where 

 

 

𝑇𝐸 = (1 −
𝐶𝑠

𝐶0 𝑠 ∙ (
𝐶𝐶𝑙−

𝐶0 𝐶𝑙−
⁄ )

) ∙ 100% Equation 4-1 

 

where 𝐶𝑠 is the observed wastewater contaminant concentration (mg L-1).  

 

4.5 Results 

 

Pool and rib water temperatures slightly decreased over the study period and on average 

ribs (average 14.3 °C) were 4.3 °C cooler than the pools (average 18.6 °C) (Figure 4-2). The 

temperature at the water table within the ribs (low-lying = 0.05 m bgs and ridge = 0.20 m bgs) 

were not distinct from each other and typically the highest temperatures in the ridges were at the 

water table (data not shown). Pool 1 showed little stratification in temperature with depth, while 

Pool 2 had stronger stratification (Figure 4-2).  
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The continuous wastewater 

loading resulted in a shift in DOC, pH, 

and calcium (Ca2+) concentrations at the 

EXP Fen, particularly in the uppermost 

ribs. Dissolved Organic Carbon 

decreased until DOY 205 after which it 

followed the same trend as the pumping 

source water in the uppermost ribs and 

pools (Figure 4-3). Beyond the 

uppermost ribs and pool, DOC followed 

the same trend as the reference sites, 

slightly increasing over the study period 

(Figure 4-3). A decrease in pH was 

observed in the uppermost ribs (highly 

impacted), while little systematic 

fluctuation occurred outside of the 

impacted region and the reference sites 

(Figure 4-4). Furthermore, the decreased 

pH in peat rib (1-4) was lower than the 

pH observed at the reference sites 

(Figure 4-4). Pool 1 pH (~4.4) did not 

change throughout the study period, 

while down-gradient pools followed the 

same trend in pH as Rib 1 (Figure 4-4), 

which decreased after ~DOY 198 (+4 

days after pumping began). The decrease 

in pH coincides with an increase in Ca2+ 

concentration within rib pore water and 

Pool 2 (Figure 4-5). Similar to pH, the 

Pool 1 Ca2+ concentration did not 

fluctuate throughout the study and 

Figure 4-2 Pool and pore water temperatures for the low-lying 

region of Rib 1 (mbgs), Pool 1 and Pool 2 (from surface (FS) and from 

bottom (FB). There was not distinct differences in temperatures between 

Rib 1, 2, and 10 at a given depth. 
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remained low, similar to that at the reference sites (Figure 4-5). In the non-impacted regions Ca2+ 

(Figure 4-5) and pH (Figure 4-4) remained similar to or higher than that at the reference sites 

depending on the peat thickness, where thinning peat displayed higher Ca2+ concentrations due to 

better connectivity with mineral rich groundwater. 

Figure 4-3 DOC concentrations at the EXP Fen ribs 

and pools, and the reference sites. Error bars are max/min. Pool 

samples represent only 1 replicate. 

Figure 4-4 pH at the EXP Fen ribs and pools, and 

reference sites. Error bars are max/min. Pool samples 

represent only 1 replicate. 
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4.5.1 Contaminant Transport 

 

Nitrate was not transported 

beyond Rib 1 and concentrations were 

low within the peat (Figure 4-6), while 

concentrations remained near or at the 

input concentration within Pool 1 

(Figure 4-6). During the initial 6 days 

of the experiment elevated NO3
- 

concentrations were detected at a 

maximum of 6 m from Pool 1; 

however, elevated NO3
- concentrations 

within Rib 1 were not detected past 0.5 

m of Pool 1 by the end of the 

experiment. The calculation of NO3
- 

solute velocity was not possible due to 

the limited transport (i.e., 50 % of its 

input concentration was not observed 

outside of Pool 1).  

  

Over the study period NH4
+ was 

transported ~69 m, albeit reaching <50 

% of its input concentration (29 % of 

the total distance), with the highest 

concentrations observed in Pool and 

Rib 1 (Figure 4-6). Within the peat ribs, 

NH4
+ was mobile where NO3

- 

concentrations were elevated (Figure 

4-6, +2 Days to +13 Days), travelling 

several meters over 13 days. However, 

Figure 4-5 Ca2+ concentrations at the EXP Fen ribs and pools, 

and reference sites. Error bars are max/min. Pool samples represent only 

1 replicate. 
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beyond the extent of the NO3
- plume, NH4

+ was even more mobile and travelled ~20 m over 13 

days (Figure 4-6, +29 Days and +42 Days). Over the entire study period, the velocity of NH4
+ 

(calculated as the rate required to observe 50 % of the input concentration at a point) was ~0.3 m 

day-1. 

 

 

Figure 4-6 Manually interpolated NO3
- and NH4

+ concentration contour maps at the EXP over the study period. Input 

concentrations were 7.1 and 9.1 mg L-1 for NO3
- and NH4

+, respectively.  
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Phosphate was relatively immobile within the EXP Fen over the study period, travelling 

only ~32 m or ~13 % of the EXP Fen (Figure 4-7). Although the maximum extent of PO4
3- was 

~32 m, it displayed more complex transport behaviour than the other contaminants. During the 

first 13 days of the experiment PO4
3- was not readily transported within Rib 1 yet became more 

mobile after this period (Figure 4-7). This mobile phase increased the solute velocity from ~0 m 

day-1 to ~ 0.3 m day-1 by the end of the experiment, resulting a rate of 0.2 m day-1.   

 

Unlike the other wastewater contaminants, SO4
2- was highly mobile within the EXP Fen 

travelling a total distance of 117 m (~47 % of the EXP Fen) and had a highly irregular plume 

(Figure 4-8); similar to both Cl- and Na+ (Chapter 3). The highest concentrations remained near 

the source (Pool 1) and rapidly decreased past Pool 3 (Figure 4-8). However, the maximum extent 

was much farther than the 50% input concentration threshold and the average solute velocity was 

1.3 m day-1. 

 

 

 

 

 

 

Figure 4-7 Manually interpolated PO4
3- concentration contour maps at the EXP over the study period. Input 

concentration 7.4 mg L-1 
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4.5.2 Treatment Efficiency 

 

Within Pool 1 NO3
- TE continuously increased over the experiment (Figure 4-9), 

plateauing at ~20 – 30 %. During the initial few days after pumping began, NO3
- TE rapidly 

increased until DOY 205 – 209 in Rib 1, where it remained relatively constant (80 – 100 %) 

thereafter in all Rib 1 nests (Figure 4-9). A strong increase in TE was observed with distance 

through Rib 1; for instance, on DOY 198 the 1st nest’s TE was 40 % while the 3rd nest’s was 85 % 

(Figure 4-9). The NO3
- TE followed this trend until DOY 220 when TE of all nests was ~100 % 

(Figure 4-9). 

 

Minimal removal of NH4
+ was observed within the pools (Figure 4-9), with the bulk being 

removed within the peat ribs (Figure 4-9). Initially there were high TE (40 – 80 %) within the peat 

of Rib 1; however, this decreased rapidly until DOY 205 when the TE began to plateau between 

20 – 50 % depending on location within the rib; typically increasing with distance from Pool 1 

(Figure 4-9).  

 

Initially PO4
3- was rapidly removed from both the peat pore water and pools (Figure 4-7) 

but after DOY 198 a steady, linear, decrease in TE was observed in both Pool and Rib 1 (Figure 

Figure 4-8 Manually interpolated SO4
2- concentration contour maps at the EXP over the study period. Input 

concentration 27.2 mg L-1 
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4-9). The slope of the decrease is approximately the same between each nest group and only the 

timing of increase differs based on distance from Pool 1 (Figure 4-9). By DOY 220 PO4
3- in both 

Pool 1 and the 1st nest was near or below 0 TE, while in the 2nd and 3rd nests was well above 0 but 

decreasing (Figure 4-9).  

 

There was little to no removal of SO4
2- within the pools, as observed by the near zero slope 

of the TE in Pool 1 (Figure 4-9) and no relationship in Pool 2 (data not shown). There was a slight 

increase in TE with distance through Rib 1 (Figure 4-9); however, TE remained low compared to 

the domestic wastewater contaminants, reaching a maximum TE of ~50 % by the end of the 

experiment (Figure 4-9). Unlike the other contaminants, SO4
2- TE did not plateau by the end of the 

experiment and more temporal variability, yet less spatial variability, was observed.  

 

Figure 4-9 Treatment efficiency (TE) for NO3
-, SO4

2-, NH4
+, and PO4

3- in Rib 1 and Pool 1. 1st – 3rd nests refer to the 

position of a nest in proximity to Pool 1 along a given north-to-south transect (i.e., 1st nest are the 4 nests closest to Pool 1 and 

3rd nests are furthest from Pool 1). Negative values indicate a net release of a given contaminant. 
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4.5.3 Mercury  

 

Prior to wastewater loading, concentrations of THg and MeHg in the pore water (Figure 

4-10) and pools were similar to the reference sites across the EXP Fen (Figure 4-10). Once loading 

began an increase in both THg and MeHg occurred in the peat ribs (Figure 4-10). THg 

concentrations increased ~5-fold in Rib 1 and the percentage of methylmercury (%MeHg) was 

nearly 80-100 % by the end of the wastewater loading (DOY 234). The highest MeHg 

concentrations occurred within Rib 1 in conjunction with high SO4
2- and THg concentrations. Both 

THg and MeHg concentrations remained low in the pools, showing only slight increases in 

%MeHg over the experiment (Figure 4-10 & Figure 4-11). Increases in pool THg and MeHg were 

observed down-gradient from peat ribs (Figure 4-10). Fourteen days post-wastewater loading, 

absolute concentrations of THg and MeHg decreased (Figure 4-10), while %MeHg within the pore 

water remained high across the site in the absence of elevated SO4
2- concentrations (Figure 4-11). 

 
Figure 4-10 Concentration of THg (black bars), MeHg (grey bars), and %MeHg (black line) in Pools 1 & 2, Rib 1, and 

the reference sites. Error bars are 1 standard deviation from the mean (n= 4 in the pools, 12 in the rib, and 16 at the reference 

sites). Note the two different y-axis, where the primary y-axis concentration and the secondary y-axis is the %MeHg. 
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4.6 Discussion 

 

There was high 

variability in 

wastewater 

contaminant mobility 

during the experiment, 

with NO3
- being the 

least mobile and SO4
2- 

the most mobile 

(Figure 4-6 & Figure 

4-8). The pattern of 

transport was similar 

between the 

wastewater 

contaminants (Figure 

4-6, Figure 4-7 & 

Figure 4-8) and Cl- and 

Na+ reported in 

Chapter 3, typically responding to patterns of high solute velocities, small rib widths and high 

hydraulic conductivities (Chapter 3). The consistent temperature within the peat ribs at the water 

table indicates that transport was likely not influenced by temperature.  

 

The minimal temperature stratification of Pool 1 compared to Pool 2 demonstrates that 

Pool 1 was well mixed, unlike Pool 2 (Figure 4-2), because of the mixing motor. Due to the 

stratification observed in Pool 2 (Figure 4-2), the active transport portion of the pools could be 

restricted to the upper few centimeters, which may reduce the storage of contaminants in the pools, 

and explain the rapid transport across them (Figure 4-6 & Figure 4-8). Furthermore, the pools 

influenced the transport of the wastewater contaminants similarly to Cl- and Na+, where dilution 

was initially observed but offered little storage once achieving a given contaminant concentration. 

Conversely, in Chapter 3 slightly lower solute velocities within the pools (Chapter 3), suggesting 

Figure 4-11 The %MeHg overlaid with SO4
2- contours for pre-loading 29 days after 

the experiment began, and post-loading (14 days after the experiment ceased). Both pre and post-

loading SO4
2- concentrations were below background levels. 
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that a the high hydraulic efficiency (Thackston et al., 1987) primarily controlled the accelerated 

transport of solutes within pools. Both NH4
+ and SO4

2- followed this trend closely where little 

removal occurred in the pools (Figure 4-9) and were transported the furthest down-gradient (Figure 

4-6 & Figure 4-8), while both the relatively immobile contaminants (NO3
- and PO4

3-) were 

removed (slightly) within the pools (Figure 4-9). The relatively rapid transport of NH4
+ and SO4

2-  

was potentially assisted by wind induced short-circuiting across the pools (Shaw et al., 1997) that 

would increase the solute velocity. Furthermore, these two mobile contaminants were typically 

transported into the pools once an equilibrium water table was reached (Chapter 3), potentially 

resulting in higher solute velocities than observed with both Cl- and Na+ (Chapter 3). However, 

more in-depth research on the in-pool hydrodynamics and biogeochemical interactions is required 

to better understand their role and function for both transport and wastewater polishing. When no 

removal within the pools occurred (SO4
2-), the contaminant plume had similar maximum extent to 

Cl-  and Na+ during the study period (Chapter 3). However, the plumes differed in location of the 

highly elevated concentrations (< 70 % of input concentration) depending on the removal 

pathways. Although the hydrophysical properties of the EXP Fen governs contaminant plume’s 

shape and extent, the development of these plumes were dependent on the biogeochemical 

processes influencing each of the wastewater contaminants.  

 

Nitrogen, NO3
- and NH4

+, were both removed from the aqueous phase in both pools and 

ribs and likely followed separate yet linked removal pathways. Both contaminants were primarily 

removed within the peat ribs as indicated by their greater TE than that in the pools (Figure 4-9). 

Within the pools, volatilization of NH4
+ was likely through nitrification and subsequent 

denitrification in addition to sorption to colloids or the pool sediments (Kadlec & Wallace, 2009). 

This variation in NH4
+ transport, indicates that both of the potential treatment pathways for NH4

+ 

occurred in the EXP Fen: 1) geochemical sorption to the peat substrate (Richardson, 1985) and 2) 

uptake or transformation by biological processes (Noe et al., 2003; Xing et al., 2011). Within the 

NO3
- plume, it is likely that geochemical sorption to particles/peat was the dominant treatment 

pathway for NH4
+ because NO3

- is more bioavailable to peatland vegetation (Bubier et al., 2007; 

Xing et al., 2011) and NH4
+ requires oxidation to NO3

- for efficient vegetation uptake (Kadlec & 

Wallace, 2009; Xing et al., 2011). Oxidation to NO3
- was limited in the ribs and is likely confined 

to the capillary fringe because of slow oxygen diffusion (Armstrong, 1967). Outside the NO3
- 
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plume, TE increased (Figure 4-9, 2nd & 3rd nests) and remained between 30 – 40 % in the peat ribs 

beyond Rib 1 (data not shown). It is within these regions of the EXP Fen that both NH4
+ removal 

pathways are operating, increasing the TE and limiting transport. Although NH4
+ was eventually 

completely removed from the pore water, it remained a relatively mobile contaminant in surface 

water during periods of enhanced hydrological connectivity, such as those observed in 2015 

(Chapter 2). Under these conditions the release of NH4
+ to the surrounding aquatic ecosystems is 

likely.  

 

In Rib 1, ~ 80 – 100 % NO3
- removal occurred, followed by ~20 % removal within Pool 1 

(Figure 4-9); this effectively prevented further down-gradient transport of NO3
-. By DOY 209, 

near complete removal of NO3
- had occurred within 0.5 m of the pool edge and no transport was 

observed past this point (Figure 4-6). The complete removal of NO3
- from the pore water within 

the first meter of the peat rib illustrates the nutrient limited status of these anoxic systems (Xing et 

al., 2011). Due to the high water tables, anoxic and reducing conditions likely dominated the 

saturated peat, resulting in two pathways for NO3
- removal: microbial reduction and vegetation 

uptake (Ronkanen & Klove, 2009; Xing et al., 2011). Microbial reduction of NO3
- was likely active 

within this system due to the available carbon (i.e., peat) and anoxic conditions (Basiliko et al., 

2006; Lamers et al., 2012); thus, complete removal of nitrogen occurs as N2O or N2 gas (Lamers 

et al., 2012; Xing et al., 2011). The second pathway may have been through terrestrial and aquatic 

vegetation uptake (Ronkanen & Klove, 2009), which store N-NO3
- within the vegetation, but 

potentially release the nitrogen during the fall senescence (Bubier et al., 2007; Ronkanen & Klove, 

2009) and subsequent period of high hydrological connectivity (Chapter 2). This pathway could 

result in significant release of nitrogen to down-gradient aquatic ecosystems; however, internal 

nutrient cycling can help mediate this release through conversion of organic nitrogen to 

biogeochemically available forms (Bubier et al., 2007). Both of these pathways occur in aquatic 

and terrestrial wastewater treatment wetlands (Kadlec & Wallace, 2009). However, unlike many 

constructed wetlands where the majority of nitrogen is removed within open water treatment 

systems, in the EXP Fen nitrogen was primarily removed within the peat ribs. Thus, the size and 

shape of the peat ribs, in addition to the other hydrophysical properties, will likely control the 

treatment of NO3
-, and subsequently NH4

+, and its potential release to down-gradient aquatic 

ecosystems.     
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During the experiment PO4
3- was initially immobilized but was remobilized over the course 

of the experiment as indicated by the decreasing TE over time and net gain of PO4
3- within Pool 1 

by the end of the experiment (Figure 4-7). During the initial few days of the experiment, treatment 

of PO4
3- likely comes from multiple sources ranging from aquatic vegetation and algae uptake 

(Pietro et al., 2006), particulate precipitation (Kastelan-Macan & Petrovic, 1996; Morris & 

Hesterberg, 2012; Noe et al., 2003; Richardson, 1985), terrestrial vegetation uptake (Kirkham et 

al., 1996), and sorption to metal-humic complexes on the peat or colloids (Nieminen & Jarva, 

1996). The absence of PO4
3- within the EXP Fen after 13 days of loading illustrates the large 

capacity for the biogeochemical processes in peatlands to remove PO4
3- (Figure 4-7). Furthermore, 

the rapid removal of PO4
3- suggests particulate production or sorption to peat or colloids were the 

primary mechanisms for PO4
3- removal (Nieminen & Jarva, 1996; Noe et al., 2003; Richardson, 

1985). However, this may leave the removed PO4
3- in readily accessible forms if different 

geochemical conditions occur. For example, after DOY 205 a shift in geochemical conditions 

occurred, indicated by the deceased pH (Figure 4-4), which corresponded with the observed 

decrease in PO4
3- TE (Figure 4-9) and increased Ca2+ concentrations (~ 5 to 10 mg L-1, Figure 4-5). 

It is likely that the decrease in pH resulted in the dissolution of calcium phosphate precipitates 

(Ferguson et al., 1973), releasing bound PO4
3- into the aqueous phase. Additional removal of PO4

3- 

occurred within the ribs by biological processes as illustrated by the increasing TE between Nests 

1-3 for a given time (Figure 4-9), yet became saturated to PO4
3- over time (as noted by the increase 

in TE at all nests, Figure 4-9). Once the peat is saturated with respect to PO4
3, no more can be 

removed through biological or geochemical processes under the prevailing biogeochemical 

conditions, this further additions of PO4
3- are mobile.  

 

Initially, complete treatment of PO4
3- occurred in Rib 1 over the first 6 days (DOY 192 – 

198) but a decrease was observed after this period, which cascaded through Rib 1 to Pool 2 (Figure 

4-9). This cascade created PO4
3- fronts, which have been observed in many treatment wetlands 

(Kadlec & Wallace, 2009) and typically indicate saturation of the system towards PO4
3- (Pietro et 

al., 2006; Ronkanen & Klove, 2009; Seo et al., 2005). These fronts are exemplified in the EXP 

Fen where PO4
3- was initially immobile (Figure 4-7) but then broke through to Pool 2 in ~13 days 

and the front was then halted at Rib 2, showing limited movement within this rib for the remainder 
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of the experiment (Figure 4-7). However, this transport behaviour raises the question of the 

suitability of ladder fens, and other peatlands, for treating PO4
3- due to the potential for release to 

aquatic ecosystems over time. Other northern treatment peatlands have observed >90 % 

phosphorous removal over several years due to humic-aluminum complexes binding most of the 

PO4
3- entering the wetland (Ronkanen & Klove, 2009); however, it is unknown if there is a large 

presence of metal-humic complexes in the EXP Fen peat or if calcium phosphate precipitation 

controls PO4
3- removal. However, given the observed low pH and reducing conditions (generation 

of MeHg) it was unlikely that metal-humic binding was dominant within the EXP Fen. Raising the 

pH of the wastewater influent may allow for greater PO4
3- removal through metal-humic 

complexes and calcium phosphate precipitation because they are more efficient at circumneutral 

or slightly basic pH (Ferguson et al., 1973; Heiberg et al., 2012; Morris & Hesterberg, 2012; Noe 

et al., 2003; Staunton & Leprince, 1996). Raising the pH may decrease the likelihood of PO4
3- 

release to downstream aquatic ecosystems, increasing TE and the longevity of a ladder fen for 

wastewater polishing. Furthermore, addition of aluminum or iron flocculants prior to release into 

the polishing peatland may also increase the treatment of PO4
3- (Kadlec & Wallace, 2009) but the 

implications of these additions in peatlands are unknown and require further study.  

 

4.6.1 Sulphate and Mercury  

 

The lack of removal of SO4
2- in pools (Figure 4-9) coupled with low TE (Figure 4-9) 

resulted in an extensive plume. Although TE continuously increased over the study period in Rib 

1 (Figure 4-9), there was no treatment, or potentially release, (TE < 0) in Pool 1 (Figure 4-9) or 

other pools (data not shown), indicating that the peat ribs were the primary zone of SO4
2- removal 

in the EXP Fen (Figure 4-7). The deeply anoxic conditions in peatlands (Bottrell et al., 2007; 

Koretsky et al., 2006; Rubol et al., 2012) and typically nutrient limited conditions in 

peatlands(Campbell & Bergeron, 2012; Chapin et al., 2003; Juutinen et al., 2010) promote the 

accumulation of carbon as peat (Gorham, 1991; Kuhry & Vitt, 1996). Thus, terminal electron 

acceptors (i.e., NO3
- or SO4

2-) are an important biogeochemical process in the accumulation of 

peat and peatlands (Achtnich et al., 1995; Keller & Bridgham, 2007; Limpens et al., 2008). Given 

that production of MeHg is mediated by SO4
2- reduction (Compeau & Bartha, 1985; Gilmour & 

Henry, 1991) and has been identified as a primary mechanism in peatlands (Branfireun et al., 2001; 
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Branfireun et al., 1999), it is likely that this process governed the elevated MeHg concentrations 

in the EXP Fen. Additionally, the higher redox potential within the NO3
- plume potentially limited 

SO4
2- reduction (i.e., treatment), resulting in no observed treatment within Pool 1; further 

suggesting the microbial mediated reduction pathway. Furthermore, there was no observed plateau 

in TE over the study period; thus, the EXP Fen did not saturate towards SO4
2- and will likely 

continue to produce MeHg provided temperature does not become limiting. Although under the 

current geochemical conditions the EXP Fen was not saturated with respect to SO4
2, suggesting a 

large storage capacity, the observed high mobility suggests ladder fens have limited capacity for 

treating this contaminant.  

 

The increase in THg and MeHg in the pore water coincided with the observed decrease pH 

(Figure 4-4) and elevated SO4
2- concentrations. The decrease in pH increases the solubility of both 

MeHg and Hg(II) (Melamed et al., 2000), which explains the increase in THg in the pore water 

(Figure 4-10). Within the peat, the microbial SO4
2- reducing community likely utilized the elevated 

SO4
2- and Hg(II) concentrations (Compeau & Bartha, 1985; Gilmour et al., 1992), similar to 

Branfireun et al. (1999), and produced the elevated MeHg concentrations. However, the extremely 

high, MeHg concentrations and %MeHg in the pore water was unexpected and far higher than 

normally observed in the reference sites (Figure 4-10). Outside of the SO4
2- plume, MeHg 

concentrations remained at similar concentrations as the background and reference site (Figure 

4-10 & Figure 4-11). These data indicate that any increase in SO4
2- concentrations in the peat pore 

water of this peatland will increase the MeHg concentration in pore waters. Furthermore, the 

persistence of elevated MeHg concentrations 14 days after the experiment indicates the potential 

for long-term contamination after wastewater polishing has ceased. These peatlands appear to be 

conducive to MeHg production particularly under elevated SO4
2- loading, however increased 

export of MeHg was not observed over the course of this experiment, so the degree of potential 

impairment of downstream aquatic ecosystems is not known.  

 

4.6.2 Ladder Fens as Wastewater Treatment Wetlands 

 

Peatlands have been shown to effectively treat or polish wastewater in northern 

environments (Eskelinen et al., 2015; Kadlec, 2009a; Ronkanen & Klove, 2009; Yates et al., 
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2012). For instance, Kadlec (2009a) observed a three order of magnitude (~10 – 0.01 mg L-1) 

decrease in NO3
- (complete), PO4

3-, and NH4
+  within 1400 m of in the influent point in a domestic 

wastewater polishing peatland. However, under continual operation the removal rate coefficient 

slightly decreased but this was minor as the peatland still effectively removed the contaminants 

from the pore water (Kadlec, 2009a). Additionally, Ronkanen and Klove (2009) found similar 

rapid removal of both NO3
- and phosphorus in two polishing peatlands in Northern Finland. In the 

EXP Fen, a plateau in TE was observed for both NO3
- and NH4

+ (Figure 4-9), indicating a potential 

sustained removal rate. The rapid and complete removal of NO3
- resulted in highly efficient TE 

(~100 %), which agrees well with both Ronkanen and Klove (2009) and Kadlec (2009a). 

Conversely, NH4
+ TE was much lower (~20 – 50 %), resulting accelerated transport, similar to 

Ronkanen and Klove (2009). The observed plateau in TE indicates that Rib 1 saturated towards 

NH4
+ by the end of the experiment. Given the observed transport rate, NH4

+ would potentially be 

detected at the outflow in ~800 days (~2.2 years) of sustained use. Once detected at the outlet the 

system could be considered saturated towards NH4
+ and once saturated the TE of the EXP Fen 

would likely be similar to the observed TE plateau. Additionally, PO4
3- did not plateau during the 

experiment and TE continually decreased (Figure 4-9) indicating that once the system is saturated 

towards PO4
3- minimal removal may occur; however, this has not been observed in other polishing 

peatlands (Kadlec, 2009a; Ronkanen & Klove, 2009) and longer-term studies of ladder fens’ 

ability to remove and store PO4
3- are required. Only SO4

2- was mobile (~1.3 m day-1) and could 

potentially be released in ~200 days, sooner than the domestic wastewater contaminants. However, 

this is speculative and given the effective polishing observed at other peatlands over much longer 

time spans, further research is needed to determine the true treatment potential of ladder fens. 

Notwithstanding the potential for release from the EXP Fen, precautions can be taken to increase 

the TE or residence time of solutes in ladder fens, thus increasing the time until release.     

 

To increase TE and limit the potential release of contaminants to aquatic ecosystems it may 

be prudent to alter the geochemical properties of the influent prior to wastewater treatment. 

Typically, treatment wetlands have a circumneutral or slightly basic pH (Kadlec, 2009a; Lens et 

al., 1995; Palmer et al., 2015; Vymazal, 2014) that was not observed in the EXP Fen. Increasing 

the pH of the influent may help increase TE of PO4
3- and decrease the solubility of mercury. By 

increasing the pH it is possible that the highly elevated methyl and THg concentrations will not 



79 

 

occur, increasing the suitability of ladder fens as treatment or polishing wetlands. The transport 

and residence time of any contaminant is directly related to the hydrological connectivity of a 

ladder fen (Chapter 3). Decreasing the hydraulic load associated with wastewater treatment 

(Chapter 2) will lower the water table and decrease the hydrological connectivity of the system 

(Chapter 2). This will increase the residence time of the system, allowing for greater contaminant 

polishing or treatment. Furthermore, by decreasing the hydrological connectivity, mobile 

contaminants, such as SO4
2-, will be limited spatially; thus, the production of MeHg will be 

confined to the limited SO4
2- plume. Additionally, the longer residence times within the pools will 

increase the likelihood of photodegradation of the MeHg (Fleck et al., 2014), further decreasing 

the potential for contaminant release to the surrounding aquatic ecosystems. Other, less mobile 

contaminants, will be further spatially limited under a decreased hydrological load but care must 

be taken to ensure saturation towards a given contaminants (i.e., PO4
3-) does not occur. Seasonal 

manipulation of the water table may be required to prevent flushing of contaminants during the 

autumn senescence, which coincides with a period of high hydrological connectivity (Chapter 2). 

Lowering the inputs during the autumn and spring can prevent the rapid transport of stored 

contaminants to the aquatic ecosystems as the system residence time during these periods can be 

hours instead of days (Chapter 2). During extreme hydrological events, such as those experienced 

in 2015 (Chapter 2), wastewater release should be paused to prevent the rapid transport of 

contaminants to aquatic ecosystems. Although this study represents a single growing season of 

wastewater polishing, the 100 % treatment (no observed increase at the outflow) of all 

contaminants, either added or generated, highlights the ability of ladder fens to polish wastewater 

contaminants safely in sub-arctic environments.  

 

4.7 Conclusions 

 

There was complete treatment of all contaminants within 50 % of the total EXP Fen length 

and minimal transport of MeHg after the loading experiment during a climatically average 

summer. However, the unexpected magnitude of the mercury and MeHg response due to the SO4
2- 

loading will require careful control of the water table to ensure rapid transport of contaminants 

does not occur. Given the risks of MeHg contamination, further research is required to determine 

the biogeochemical dynamics and transport of mercury in wastewater polishing peatlands to ensure 
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their use minimizes the potential risks. In any case, careful control of the water table by varying 

the input rate in treatment or polishing ladder fens can help mitigate these risks. Furthermore, 

creating peat dams (mounds of peat) in the low-lying regions of ribs could help avoid periods of 

surface water connection from the input to the outflow, significantly decreasing the hydrological 

(Chapter 2), thus chemical, connectivity of ladder fens. Although the broad function of the pools 

to treat wastewater was determined in this study, there remains a gap in knowledge of the specific 

hydrochemical processes occurring within the pools and further study of these processes could 

lead towards more efficient use of ladder fens as treatment or polishing wetlands. Although this 

study does indicate the potential for ladder fens to be used for domestic wastewater polishing, there 

remains a number of questions that should be addressed; chiefly, what is the longevity of these 

systems and how might the efficiency of these systems change within the context of a changing 

climate? Furthermore, the effects of biological contaminants or pharmaceuticals were not assessed; 

thus, pose an unknown risk when using these systems for domestic wastewater treatment or 

polishing. This study demonstrated that the pool-rib-pool morphology of ladder fens can provide 

both surficial (pools) and subsurface (peat ribs) treatment wetlands in remote northern regions that 

can effectively treat various wastewater contaminants provided that the effluent stream discharge 

rate be managed.  
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5 Conclusions and Recommendations 

 

 

This study demonstrated that the pool-rib-pool morphology of ladder fens provides both 

surficial (pools) and subsurface (peat ribs) treatment wetlands in remote northern regions that can 

effectively treat various domestic wastewater contaminants. Nevertheless, this study represents the 

initial contaminant plume development, a transient state, and does not necessarily represent the 

transport and fate of domestic wastewater contaminants during sustained use or under changing 

climatic conditions. Understanding the hydrochemical processes governing the transport and fate 

of domestic wastewater contaminants is critical to safely and effectively using ladder fens for 

wastewater treatment or polishing. Ladder fens act as water and solute conveyers from bog 

peatlands to the aquatic ecosystems and have an immense ability to retard domestic wastewater 

contaminants; especially during the initial transient phase. However, the ability to treat these 

contaminants is directly related to the hydrology of ladder fens, which can be split into three 

distinct phases: 1) low subsurface hydrological connectivity, 2) high subsurface hydrological 

connectivity, and 3) high subsurface and surface hydrological connectivity. The hydrological 

connectivity depends on the water table elevation (depth below or above peat surface) and the 

hydraulic conductivity distribution of the peat profile, where an exponential decrease in hydraulic 

conductivity and transmissivity below the surface of the peat ribs creates a highly anisotropic 

aquifer. Consequently, during low hydrological connectivity periods the water table elevation is 

below the high hydraulic layers and minimal water flow or contaminant transport occurs. 

Conversely, during periods of high water tables, yet no overland flow, the hydraulic conductivity 

of the upper few centimeters of peat is exponentially higher than directly below and significantly 

increased connectivity; however, there can still be a substantial residence time due to a large 

storage capacity (~34 days), leading to no observed contaminant release. However, the highest 

connectivity periods occur during overland flow events (i.e., 2015) where the low-lying 

preferential flow paths are inundated and connect the pools via surface water. This substantially 

decreases the residence time to mere hours rather than weeks. It is during these high connectivity 

events (i.e., spring freshet and autumn wet-up) that the majority of solutes are likely transported 

out of ladder fens and into the surrounding aquatic ecosystems.  
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Like water, the transport of solutes was primarily governed by the peat ribs, with the pools 

initially diluting contaminants, delaying their transmission, but having little influence on the 

transport thereafter as the hydraulic efficiency was near unity and no additional storage was 

available. The majority of solutes are transported within the upper few centimeters of saturated 

peat, which corresponds with the high hydraulic conductivity peat layers. The peat hydrophysical 

properties primarily governed the transport of solutes when no overland flow was observed. The 

highly heterogeneous distribution of hydrophysical properties within a given rib and the influence 

of pool morphology results in complex contaminant plumes that would be extremely difficult to 

predict based on microtopography alone; thus, knowledge of the peat hydraulic conductivity 

distribution and other hydrophysical properties are required to accurately predict both conservative 

and reactive contaminant plume development. Furthermore, a more thorough understanding of the 

influence wind on solute transport within pools is required to better understand the retention 

processes within ladder fens and other similar peatlands. Additionally, in northern regions, winter, 

with its associated snowpack and ground ice, influences the hydrology of many ecosystems; these 

influences were not studied here so require further investigation. The influence of the spring freshet 

and ground ice on solute transport and domestic wastewater treatment or polishing is poorly 

understood and may represent a period when enhanced solute transport and decreased treatment 

or polishing potentially occurs due to perched water tables within the high hydraulic conductivity 

peat and overland flow; thus, domestic wastewater treatment or polishing wetlands may not be 

suitable during the spring freshet.  

 

During this transient experiment, nitrate, ammonium and phosphate posed little risk to the 

surrounding aquatic ecosystems, as the transport was limited to the upper reaches of the EXP Fen; 

however, sulphate was highly mobile. Within the sulphate plume both MeHg and THg were 

elevated and 80 – 100 % of the THg was MeHg where the sulphate concentrations were highest. 

Limiting the mobility of sulphate would decrease the area of elevated MeHg production. As with 

all the contaminants studied, the effective removal greatly depends on hydrological conditions, 

chiefly water table elevation.  
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Although this study has highlighted many mechanisms and processes governing the 

transport and fate of domestic wastewater contaminants in ladder fens, there remains a large gap 

in our understanding of many of the processes and mechanisms that control a number of important 

processes. The mechanisms governing the removal and storage of these contaminants, the 

biological and hydrophysical evolution of a treatment or polishing peatland, the role of ground ice 

and spring freshet, and influence of a changing climate are all unknown. It is these gaps that are 

critical to fill and represent the next steps for contaminant treatment and transport research in 

ladder fens peatlands, and peatlands in general. Understanding if the change in magnitude of 

nutrient export during the fall senescence due to the additional phosphorous and nitrogen load is 

critical in assessing the long-term viability of these systems to treat domestic wastewater. During 

the fall senescence a proportion of the nutrient load would be flushed from the system, decreasing 

the treatment efficiency. Additionally, there is still a lack of knowledge of the magnitude of 

geochemical storage (sorption) of contaminants in ladder fens and potentially represents a large 

sink within these systems. However, without more knowledge on these processes and the total 

available geochemical storage, it is difficult to predict the longevity of these systems. Both of these 

research gaps can be filled using a combination of isotope tracers, mass balances, laboratory 

experiments, and numerical modelling. Isotope tracers would enable the tracking of some 

contaminants through the peatland as they enter and exit various storage compartments. Mass 

balances, for instance N:P, will further identify the primary storage or removal mechanisms when 

isotopes are unsuitable, and highlight any shifts in biogeochemical processes. Thus, if these two 

broad methods are combined, a better understanding of the flow of nutrients in these systems could 

be identified. However, the longevity of these systems is also dependent on the evolution of the 

peat and vegetation because the presence of both nitrate and sulphate in the domestic wastewater 

would increase the redox potential of the system, potentially enhancing peat decomposition. 

However, the evolution of these systems while under a domestic wastewater load remains 

unknown, as this study only identified the initial non-equilibrium fate and transport during a 

climatically average summer.  

 

Understanding the relationship between peat decomposition and changes in hydrophysical 

properties (i.e., effective porosity, pore throat size distribution, bulk density, etc.) will be critical 

to predicting longevity of these systems. Using solute breakthrough experiments under various 
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degrees of decomposition and in different parent materials, a better understanding of the 

relationship between peat decomposition and change in hydrophysical properties can be achieved. 

Additionally, there is uncertainty about the hydrological effects of a changing climate, which 

propagates uncertainty regarding the ability of these systems to safely and effectively treat or 

polish wastewater in the future. Using data from the current literature on degree of decomposition 

on hydrophysical properties and the above experiments, coupled with region specific climate 

change scenarios, these processes could be numerically modelled at the field scale. This would 

allow for a better understanding of the long-term evolution of treatment or polishing peatlands in 

a changing climate. However, more needs to be known about the evolution of the hydrophysical 

properties as the vegetation and microbial community compositions evolve. Although there 

remains a large amount of research needed, this study illustrates that domestic wastewater 

polishing in ladder fens may be viable under the current hydroclimatic regimes, if certain 

precautions are taken.  

 

Based on the results of this study there are several practices that can be followed to 

minimize the risk of contaminant release while using ladder fens for wastewater treatment or 

polishing. Managing the water table so it, on average, is below the high hydraulic conductivity 

layers will greatly increase the residence time of the system, increasing treatment efficiency. This 

practice would further limit the solute advection rate, limiting plume extent, and subsequently 

decreasing the area of enhanced MeHg and THg production. Controlling the water table could be 

achieved through two management practices. First, using multiple ladder fens for treatment or 

polishing, instead of one ladder fen, would decrease the volume of water delivered to a given 

wetland, thus decreasing the rise in water table compared to that with a single wetland option. The 

second option is to control the influent load so that high water tables are not produced. This option 

would involve the most active management as precipitation events or evaporation periods would 

alter the discharge rate required to maintain a target water table (i.e., below the high hydraulic 

conductivity layers). Additionally, limiting overland flow by blocking the preferential flow paths 

with peat dams would decrease the pool-to-pool connectivity and enhance the removal of all 

contaminants through increased residence time within the organic substrate and pools. In addition 

to hydrological controls, chemical manipulations may provide additional treatment pathways; 
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however, there has yet to be enough study of these processes to recommend using them without 

further research on their effect on the ladder fens.   

 

Notwithstanding the intensive study of this one particular ladder fen, the similar 

topographical, hydrological, and geochemical conditions between the EXP Fen and the reference 

sites, as well as previously studied nearby ladder fens, suggests the process identified can likely 

be applied to other ladder fens. Furthermore, the pool-rib-pool morphology of ladder fens is similar 

to other peatlands, specifically the larger ribbed fens, in which the hydrological connectivity is 

controlled by the peat ribs. A combination of surface water flow through low-lying regions and 

the high hydraulic conductivity layers govern the water flow in ribbed fens, making ladder fens 

suitable analogs for the hydrology and potentially solute transport but at a smaller scale and more 

manageable to study. Notwithstanding the limited information on solute transport in ribbed fens, 

it is likely that the processes governing the transport in these systems is similar to ladder fens due 

to the similar hydrological controls on these systems. Given their typically larger size, ribbed fens 

may be ideal for domestic wastewater treatment or polishing in remote northern regions, as a larger 

volume of water can be introduced before increasing the water table into the high hydraulic 

conductivity layers or above the peat surface. However, pool morphology may differ between these 

two peatland types, which will influence the transport and storage of the solutes. It is likely that 

domestic wastewater contaminants would have similar initial treatment efficiencies for a given 

flow rate in different peatlands, as removal primarily occurred within the peat ribs and not the 

pools, further confirming the broader applicability of this study to other peatland types. 

Additionally, the solute transport in the peat seems to be consistent between different peatland 

types (i.e., blanket bogs or basin fens) and diffusion into inactive pores retards conservative 

solutes, indicating this process is common in most peat soils. However, given that fen peatlands 

convey water in these landscapes rather than store water, and presumably solutes, large domed bog 

peatlands may be more suitable for domestic wastewater treatment or polishing. Large domed bog 

peatlands have numerous ponds separated by peat ridges, somewhat analogous to the peat ribs 

observed in the EXP Fen, and may operate under similar hydrological processes (i.e., threshold 

spill-and-fill mechanisms). Using domed bogs would likely increase the solute residence time as 

the drainage pattern is typically unorganized until it reaches the downgradient fen peatlands. This 

inherent unorganized hydraulic pond-ridge structure could provide suitable storage and treatment 
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or polishing, notwithstanding the differing geochemical conditions within bogs. However, due to 

the unorganized structure it would be difficult to predict the solute flow paths and it could impact 

a much larger area than it would in a ladder fen. Furthermore, the lower pH associated with bog 

peatlands may influence the treatment efficiency of phosphate and the solubility of THg and 

MeHg. Further research is needed on the hydrobiogeochemical suitability of bog peatlands for 

domestic wastewater treatment or polishing. Thus, there remains an interesting question about 

which peatland type is most suitable for wastewater treatment or polishing in remote northern 

environments. The similarity of hydrological processes between peatland types suggests that many 

different types of peatlands with the suitable hydrological conditions (i.e., observable hydrological 

gradients, both open water and subsurface regions, etc.,) could safely and effectively treat or polish 

domestic wastewater but more research is required into the longevity of these systems, suitability 

of various peatland types, the role of winter and ground ice, and the influence of climate change 

before full-scale adoption of peatland based wastewater treatment or polishing can be adopted. 
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Appendix A 

 

Rational 

 

In remote regions, full scale pumping test to determine aquifer properties are costly and 

logistically challenging and potentially out of the budget of many researchers; yet, there remains 

a need for the rapid determination of these properties in these regions. Although the analytical 

methods for multiple monitoring point pumping tests are well known (Bouwer & Rice, 1976; 

Neuman, 1975), there is not yet a method for single well bail or slug tests in highly permeable 

anisotropic unconfined aquifers, such as peatlands. Traditionally, the in-situ estimation of peat 

hydraulic conductivity is determined using slug or bail tests performed on piezometers screened 

at specific depths (Baird, 1997; Baird & Gaffney, 1994; Baird et al., 2004; Schlotzhauer & Price, 

1999; Surridge et al., 2005; Wallage & Holden, 2011); where, the hydraulic conductivity is 

determined by relating the head recovery in the standpipe of a piezometer and a well construction 

dependent shape factor (Baird & Gaffney, 1994; Baird et al., 2004; Brand & Premchitt, 1980, 

1982; Hvorslev, 1951). The Hvorslev (1951) time-lag solution is commonly used in peatlands and 

is suitable when the head recovery curve does not exhibit a sinusoidal function (time at 90 % head 

recovery / time at 50 % head recovery = 3.322) or when recovery is complete or near complete (99 

% head recovery) (Baird & Gaffney, 1994; Brand & Premchitt, 1982; Hvorslev, 1951). Although 

complete recovery readily occurs in fully screened wells installed in peat (thus, negating the need 

to account of media compressibility), using the Hvorslev (1951) time-lag solution maybe incorrect 

as it assumes a constant screen length and water flow perpendicular to the well; neither of which 

occur during fully screened well bail tests. Unlike piezometers, where the region contributing to 

flow will remain approximately the same over the course of the test, during a bail test on a well 

the region contributing to flow will increase as the phreatic surface in the well increases; however, 

the variable head Hvorslev (1951) solution can account for this variation. The transmissivity of 

peat deposits has been estimated using multiple bail tests on fully screened wells at different water 

tables over an entire field season several months (cf. Price and Maloney, 1994) and solved using 

the time-lag method of Hvorslev (1951). This method requires significant field work and personal 

to achieve satisfactory results. Due to this, the goal of this study was to develop field methods and 
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analytical solution for a single well response test that could be performed over hours instead of 

months.  

 

Methods 

 

To determine the transmissivity of the peat profile, a series of bail tests were performed on 

13 fully penetrating wells (0.052 m I.D., and 0.062 m O.D) with incrementally smaller screen 

lengths. The first bail test was performed on the entire fully penetrating well and the response was 

recorded. Once the first bail test was completed, an inflatable well packer (2” Inflatable Pipe Plug, 

Perma-Type Rubber) was lowered into the well and inflated 0.3 m above the bottom of the well to 

isolate that region from the rest of the well (i.e., if the well was 3 m long, 0 to 2.7 m of the well 

remained unblocked). Once inflated, a bail test was performed on the remaining non-isolated 

section of the well above the packer and the response recorded. This was repeated in 0.3 m 

increments until ~0.7 m below the water table when the increments were decreased to 0.1 m to 

gain higher data resolution in the upper peat profile; where, presumably the head recovery would 

vary the most. The resulting packer tests were then analysed separately using a modified Hvorslev 

(1951) time-lag variable head solution, 

 

𝐾𝑖 =
𝑟2 ln(𝐿𝑡/𝑅)

2𝐿𝑡𝑇𝑡
 

Equation A - 1 

 

where, 𝐾𝑖 is the hydraulic conductivity for a given time period between each head recovery 

measurement, 𝐿𝑡 (m) is the screen length at time t (hr), and  

 

𝑇𝑡 =
log 0.37

𝑠𝑡
 

Equation A - 2 

 

where, 𝑠𝑡 is the slope of the head recovery over time between each measurement point calculated 

by,  
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𝑠𝑡 =
ℎ𝑡 − ℎ𝑡−1

𝑡𝑡 − 𝑡𝑡−1
 

Equation A - 3 

 

where, ℎ𝑡 (m) is the water level in the pipe at time t (hr), ℎ𝑡−1 (m) is the water level in the 

pipe at the time prior to t (hr), 𝑡𝑡 (m) is the time (hr), and 𝑡𝑡−1 (hr) is the time prior to 𝑡𝑡.  

 

Given the expected exponential increase in hydraulic conductivity closer to the top of the 

water table (Leclair, 2015; Perras, 2015), seepage faces are likely to occur and need to be 

accounted for in estimations of 𝐾𝑖 (Chenaf & Chapuis, 2007; Schneebeli, 1956). To account for 

potential seepage faces during bail tests, Schneebeli (1956) developed an analytical solution to 

estimate the seepage face height (ℎ𝑠𝑓) without additional monitoring wells (Chenaf & Chapuis, 

2007; Schneebeli, 1956), where, 

 

ℎ𝑠𝑓 = √ℎ𝑤
2  + (

𝑄𝑡

𝜋𝐾𝑖
) ∙ [0.4343 ∙ 𝑙𝑛 (

𝑄𝑡

𝜋𝐾𝑖𝑟2)] − 0.4 − ℎ𝑤 
Equation A - 4 

 

and, ℎ𝑤 (m) is the water table at time t (hr) and 𝑄𝑡 (m3 day-1) is the volumetric discharge into the 

well between time 𝑡𝑡 and 𝑡𝑡−1. The seepage face estimation is added to the screen length in 

Equation A - 1 to calculate a hydraulic conductivity for the time period between each head recovery 

measurement. The geometric mean of the measured Ki for a given packer depth is then used to 

develop an average hydraulic conductivity for a given well screen length (K’). Plotting K’ vs screen 

length results in a power function where, 

 

𝐾’ = 𝐴𝑥−𝐵 
Equation A - 5 

 

and, 𝐴 and 𝐵 are fitting parameters and 𝑥 is the screen length.  

 

Assuming the aquifer was comprised of an infinite number of thin horizontal layers with 

constant hydraulic conductivity and finite layer thickness. Also it is assumed that the flow toward 

the borehole is horizontal and the main part of the flow is passing through the unblocked part of 

the well and that part of aquifer corresponding to that. The equivalent hydraulic conductivity (𝐾’) 

for horizontal layers in Cartesian coordinate can be written as, 
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𝐾′ =
∫ 𝐾𝑖 × 𝜕𝑥

𝑥

0

∫ 𝜕𝑥
𝑥

0

 
Equation A - 6 

 

where, 𝑥 increases downward and is 0 at the surface. Equation A - 6 can be used for radial flow in 

cylindrical coordinates; thus, can be written as, 

 

𝐾′ =
[𝐹]0

𝑥

[𝑥]0
𝑥 =

[𝐹]0
𝑥

𝑥
=

𝐹(𝑥) − 𝐹(0)

𝑥
 

Equation A - 7 

 

𝑥 × 𝐾′ =  𝐹(𝑑) − 𝐹(0) 
Equation A - 8 

 

where, 𝐹(𝑥) is the integration of hydraulic conductivity with respect to depth (𝑑) and 

 

𝐾𝑦(𝑑) =
𝜕𝐹(𝑑)

𝜕𝑑
 

Equation A - 9 

 

where, 𝐾𝑦(𝑑) is the hydraulic conductivity in a given depth (𝑑) or the hydraulic conductivity of 

the infinitely thin horizontal layer at a given depth. Therefore,  

 

𝜕(𝑥 × 𝐾′)

𝜕𝑥
=  

𝜕[𝐹(𝑥) − 𝐹(0)]

𝜕𝑥
 

Equation A - 10 

 

Since 𝐹(0) is a constant (0), Equation A - 10 can be written as, 

 

𝜕(𝑥 × 𝐾′)

𝜕𝑥
=  

𝜕[𝐹(𝑥)]

𝜕𝑥
 

Equation A - 11 

 

thus,  

 

𝜕(𝑥 × 𝐾′)

𝜕𝑥
=

𝜕(𝐴 × 𝑥1−𝐵)

𝜕𝑑
= (1 − 𝐵) × 𝐴 × 𝑑−𝐵 

Equation A - 12 
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By combining Equation A - 11 and Equation A - 12, 𝐾𝑦 was determined by taking the derivative 

of the K’-screen length power function (Equation A - 5), then solving for 𝐾𝑦(𝑑) 

 

𝐾𝑦(𝑑) = (1 − 𝐵)𝐴𝑑−𝐵 
Equation A - 13 

 

and the Ky (m day-1) of a given depth range (i.e., 0.25 – 0.50 m bgs) can be determined by  

 

𝐾𝑦𝑑2−𝑑1
=

∫ (1 − 𝐵)𝐴𝑑−𝐵𝑑2

𝑑1

∫ 𝜕𝑑
𝑑2

𝑑1

 
Equation A - 14 

 

where, 𝑑1 and 𝑑2 is the depth range for which the hydraulic conductivity is determined and ∫ 𝜕𝑑
𝑑2

𝑑1
 

is the length of the depth range.  

 

To assess the validity of this new method five piezometers (0.25 m slotted intake, 0.025  m 

I.D., 0.034 m O.D.) were installed within 0.5 m of each fully screened well at 0.25, 0.50, 0.75, 

1.25 m and directly above the mineral substrate. Bail tests were performed on each piezometer and 

the recovery was recorded using Slumberger micro-divers at 1 second intervals. The resulting 

response curves were then analysed using Hvorslev (1951) time-lag solution. The hydraulic 

conductivity determined from the piezometers were plotted against the integration of the same 

screen depth (Equation A - 7) from the transmissivity tests, where a 1:1 slope indicates perfect 

agreement. Due to the potential variability in temperature within the aquifer, temperature 

correction to 15 °C was applied to all data (Klute, 1986; Surridge et al., 2005). 

 

Results 

 

The hydraulic conductivity typically followed an exponential increase as the packer 

progressively sampled closer to the surface in the peat profile  (shorter screen lengths) and had 

good agreement with the observed values (R2 > 0.86) (Figure A-1). Regression between hydraulic 

conductivity of the piezometer method and the packer method resulted in a slope of 1.7 (adj. R2 = 

0.63, df 32, p<0.001) (Figure A-1); where, a 1:1 slope is ideal and a slope of 1 equals perfect 
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agreement between methods.  However, a sharp decrease in fit is observed with hydraulic 

conductivities less than 1 m day-1 and when excluding those values a slope of 1.12 (adj. R2 = 0.79, 

df 16, p<0.001) was observed (Figure A-2), while below that threshold a slope of 0.5 was observed 

(adj. R2 = 0.10, df 15, p=0.126) (Figure A-2). Typically, hydraulic conductivities above 1 m day-1 

were exclusively observed within the upper 0.5 m of the saturated peat aquifer (Figure A-3). 

 

Discussion and Conclusions 

 

Similar to Surridge et al. 

(2005), temperature correction 

resulted in a change of ~25 % in 

the hydraulic conductivities. 

The good agreement between 

the transmissivity tests and the 

piezometer measurements 

where hydraulic conductivity 

was above 1 m day-1 (slope near 

1) indicates the potential for this 

method to determine the 

hydraulic conductivity of the 

upper layers in peatlands. The 

slope of the relationship 

between screen length and 

hydraulic conductivity when the 

latter is above 1 m day-1 indicates that the packer method slightly over-estimated (~12 %) hydraulic 

conductivity compared to the traditional Hvorslev (1951) time-lag solution for locations closest to 

the water table; it under-estimated (~46 %) further below the water table. Furthermore, previous 

work estimating the transmissivity of the peat aquifer in the EXP Fen (0.07 – 43 m2 day-1) (Perras, 

2015) observed over a range of water tables (-0.3 – 0.0 m bgs) agrees well with the estimated range 

in this study (0.1 – 69.3 m2 day-1). The method seems to be applicable for estimating both the 

hydraulic conductivity near the top of the water table (0.5 m) and the transmissivity of the highly 

Figure A - 1 Linear regression between piezometer measured log10 K and 

the integrated log10 K determined by integrating the transmissivity curve over the 

piezometer screen opening depth. The lumped regression (dashed black line) 

accounts for all measurements, while hydraulic conductivities greater than 1 m day-

1 (dark grey points and line) and less than 1 m day-1 (grey points and line) were 

separated. 
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anisotropic and 

heterogeneous aquifer. 

Unlike previous 

methods where bail or 

slug tests were 

performed at various 

water tables through the 

spring, summer and fall, 

this method requires 

only one test to be 

performed near or at the 

maximum water table 

and are typically 

completed within 

several hours. Thus, 

significantly less time is 

spent in the field and 

potentially decreasing 

overall costs associated 

with field work.   

 

 

 

Notwithstanding 

the good agreement with 

measured data and 

previous studies (Perras, 

2015), further 

refinement of this 

method is required to 

achieve greater accuracy Figure A - 2 K' vs screen length for all nine tested wells. 
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within the low 

hydraulic 

conductivity peat 

layers. To achieve 

higher accuracy high 

temporal resolution 

pressure transducers 

could be used to 

better capture the 

entire recovery 

curve, as well as 

decreasing the packer 

interval to 0.1 m 

throughout the test 

instead of 0.3 m in 

the lower portion of 

the aquifer. Although 

pressure transducers can provide high temporal resolution pressure data, they are subject to large 

fluctuations in pressure as noted by Surridge et al. (2005) and observed during an extremely wet 

year (2015, data not shown). This phenomena has been identified when the permeability of the 

substrate is extremely high, resulting in rapid flow into the well (Surridge et al., 2005) and from 

seepage faces (Chenaf & Chapuis, 2007; Schneebeli, 1956). It is possible to capture these rapid 

rates using manual (i.e., blow sticks) measurements to gain an estimate of the recharge; however, 

for fully penetrating wells (2.3 m in this study) the length of the blow stick may impede the 

measurements. Utilizing a combination of decreased packer intervals (0.1 m), pressure transducers, 

and longer blow sticks may increase the sensitivity of the method to the low hydraulic conductivity 

layers at the bottom of the peat profile. Notwithstanding these potential improvements and limited 

sample size, the method presented in this study gives good approximations of both the 

transmissivity and the hydraulic conductivity of the upper peat layers. Additionally, this method 

also has the advantage over traditional transmissivity tests, which require multiple measurements 

Figure A - 3 Hydraulic conductivity distribution at the EXP Fen. Above 0.3 m the 

hydraulic conductivity was determined through the packer method, while below 0.3 m the values 

were determined from the piezometer tests. The difference in maximum elevation is due to the 

differing surface elevations at the EXP Fen. Ribs 1-3 surface elevation is ~ 87.4 m asl, while the 

rest of the site is ~87.0 m asl. 
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at different water table elevations because it requires one test performed near the peak water table 

to generate the transmissivity and hydraulic conductivity distribution.   


