Bipartiteness Testing

Aadila Ali Sabry

What is

Bipartiteness?

A graph G on n vertices is ϵ -far from a graph property P if we need to add or remove at least ϵn^2 edges from G to obtain a graph that does have the property P

Standard Decision Maker vs. Property Tester: Accuracy

Decision Making Algorithm	Accepts 100%	Rejects 100%	Rejects 100%
	G has property P	G is <i>e</i> -close to P	G is ϵ -far from P
Property Testing Algorithm	Accepts ² / ₃		Rejects ² /3

Complexity

Time complexity vs. Query complexity Input Size >> Query Complexity

The query complexity of bipartiteness testing does not depend on the size of the input [Goldreich, Goldwasser, Ron '98]

Known to Date

 $\longrightarrow o\left(\frac{1}{\epsilon^2}\right)?$

If a graph is ϵ -far from bipartite, then a random sample on $O\left(\frac{1}{\epsilon}\right)$ vertices is not bipartite with high probability

 $O\left(\frac{1}{\epsilon^2}\right)$

[Alon, Krivelevich '02] proved this and used it to prove the current best tester If a graph is ϵ -far from bipartite, then a random sample on $O\left(\frac{1}{\epsilon}\right)$ vertices is $\Omega\left(\epsilon\right)$ -far from bipartite with high probability

Conjectured by [Bogdanov, Li, '10] and can be used to show a better tester if proven

The Bogdanov/Li conjecture holds true when the graph is **regular**

Bogdanov and Li, 2010

And in the case when all the vertices in the graph have **low-degree** or all the vertices have **high-degree**

Gonen and Ron, 2010

The Container Method to Improve Bounds on Bipartiteness Testing

The container method gives a collection of containers $C \in P(V)$ such that:

- 1. There are not too many containers
- 2. Each independent set is fully contained in a container
- 3. For a graph that is ε -far from bipartite, each container is smaller than $(1-\varepsilon)n$

We've been able to use the container method to prove Bogdanov/Li's conjecture in the cases that the containers are all small or all large!

Thank you!

CREDITS: This presentation template was created by <u>Slidesgo</u>, and includes icons by <u>Flaticon</u>, and infographics & images by <u>Freepik</u>