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Introduction and Problem Statement

Is it possible to decode neural signals from
during attempted speech, and translate it
into words, in real time, with a high
accuracy and a large vocabulary, using

deep neural networks?




KElectrocorticography (KECoG)

e [lectrocorticography (ECoG) presents an alternative to EEG

o Implanted electrodes instead of surface of head

e Benefits of ECoG are two-fold:

(1) Higher spatial and temporal resolution

(2)  Less susceptible to contamination from muscle movements and eye blinks




Past Works

Citation

Method

Performance

Kellis et. al. (2010)

1. PCA to extract features
from neural signals

2. Classified words in a
predetermined vocabulary

Roughly 85 4= 13% average
accuracy over 45 two-word
combinations at best

Pei et. al. (2011)

1. Ranked phonetics using
Maximum Relevance and
Minimum Redundancy

2. Naive Bayes classifier for
final prediction

Avg. classification accuracy
for both vowels and
consonants ~40%




Past Works

Citation

Method

Performance

Mugler et. al. (2014)

First to propose phonemes

1. Statistical analysis to
identify and rank features

2. Linear Discriminant
Analysis (LDA)

Phoneme classification
accuracy up to 36% for all,
63% for a single phoneme

Moses et. al. (2021)

Shift to neural networks

1. Stacked LSTM for speech

detection

2. Word classification using
two GRUs

Word error rate of 25.6%
for a 50 word vocabulary




State-of-the-Art Model | Willett et. al. (2023)

o Willett et. al. (2023) created a pipeline to decode ECoG data, achieving
record-low error rates and record-high speed
e There are 10,850 sentences in the published dataset

e Dataset consists of spoken sentences and associated neuronal spike power from
a 125,000 word vocabulary

e First successful demonstration of large-vocabulary decoding!
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Method | Willett et. al. (2023)
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Method | Willett et. al. (2023)

1. Trained a recurrent neural network (RNN) decoder to emit, at each 80 ms time

step, the probability of each phoneme being spoken at that time

a. Used a 9 layer, stacked gated recurrent unit RNN
b.  RNN runs at 4-bin frequency (20 ms bins) outputting a phoneme probability vector every 80 ms

2. These probabilities were then combined with a language model to infer the most
probable underlying sequence of words, given both the phoneme probabilities
and the statistics of the English language

a. Phoneme errors are often corrected by the language model
b. Language model translates the sequence of CTC labels into candidate sentences



Method | Willett et. al. (2023)

Target sentence: we don't listen to the radio at work at all
Decoded phonemes:

A d n. t dh r a W ae a
ly .Oow Iy uw _ah . eh . e{( t . .
<sil>n S <sil> <sil> d <sil> . <sil> <sil>
t . ah ly <sil>
<sil> n . er .
<sil> <sil>
| 1 | | | | | |
0 1 2 3 4 5 6 7
Time (s)

Decoded sentence: we don't listen to the reader at work at all

Example Sentence



Results | Willett et. al. (2023)

e Achieved 9.1% word error rate on 50-word vocabulary

o 2.7 times fewer errors than previous work

e Achieved 23.8% word error rate for the 125,000-word vocabulary

o  First successful demonstration of large-vocabulary decoding

e Patient spoke at an average pace of 62 words per minute



An End-To-End Alternative

e (Common approaches in past works used a chain of models to decode neural
activity, with one or more intermediary steps

What if you have one, end-to-end model? Would that increase accuracy?

e An end-to-end transformer approach might work
o No work yet applying transformers to ECoG data
o A paper on EEG-To-Text was recently published, applying transformers to
decode EEG signals to attempted speech



An End-To-End Alternative

Target tokens

{ <s> Jeb Bush was born in Midland, Texas, where his father ... |

e Transformers have reached good

| <s> edia was bom in 18way, Texas, and he father was a ... |

Cross-Entropy
Loss

Generated tokens

performance on automated speech 7 __________ T Aememmm e
recognition { _ }
Pretrained BART
o Wang & Ji (2021) used a pre-trained

BART to decode EEG into text
o Inspired by Speech Recognition (Hinton et al.
2012)

e We are currently attempting to create an
Encoder for an ECoG dataset
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Thank you!

Q& A Session



