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Introduction

What characterizes a good time complexity?
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Introduction

Figure: In an age with so much data, even linear runtime may not suffice
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Example Applications

Figure: Computing the average number of friends users have is synonymous to

computing the average degree in a graph
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Example Applications

Figure: Determining the number of daily unique users to Amazon can be modelled

as determining number of distinct elements in a stream
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Sublinear Algorithms

What are sublinear algorithms?

Algorithms whose resource requirements (e.g. time or space) are substantially smaller than the

size of the input (n) that they operate on.

Today we will look at the sparse recovery problem where we will minimize the number of

queries/measurements to recover a vector.
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Sparse Recovery

Consider the following problem in F2...
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We are allowed queries in the form of inner products

How would you solve this problem?

CS 05 Sublinear and Streaming Algorithms April 10, 2024 7 / 20



Sparse Recovery

Consider the following problem in F2...

·



0

1

0

0

1

1

0

0



=



0

1

0

0

1

1

0

0


We are allowed queries in the form of inner products

How would you solve this problem?

CS 05 Sublinear and Streaming Algorithms April 10, 2024 7 / 20



Sparse Recovery

Consider the following problem in F2...

·



0

1

0

0

1

1

0

0



=



0

1

0

0

1

1

0

0


We are allowed queries in the form of inner products

How would you solve this problem?

CS 05 Sublinear and Streaming Algorithms April 10, 2024 7 / 20



Sparse Recovery
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A straightforward solution: let A = In (the identity matrix) to get A · x = Inx = x which

obviously allows us to recover any x .

Can we do better than this solution? NO!
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1-Sparse Recovery

A 1-sparse vector has just 1 non-zero entry. What measurements can we perform to recover the

index of that non-zero bit? 
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1-Sparse Recovery

With structured data such as a 1-sparse vector, we have more tools at our disposal ... such as

simulating binary search.

see here!
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https://drive.google.com/file/d/1kEgh74Z4vA16aLPdEojYxgrcdI2HFCsh/view?usp=drive_link


1-Sparse Recovery: Adaptive Solution

Adaptive Solution: 
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An output of 1 at each stage tells us to focus in on the bottom half of the vector, while 0 tells

us to focus on the top half.
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1-Sparse Recovery: Non-Adaptive Solution

what if we do not get to look at the output at each stage? What queries do we use then?
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In this case, n = 8, log(8) = 3; we can recover the index of 1 in x with 3 vectors.
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1-Sparse Recovery: Non-Adaptive Solution
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= 0

(100)2 = 4
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2-Sparse Recovery

What if the vector has 2 non-zero indices?

Coming up with a non-adaptive solution is already very tricky.

What if there are k non-zero indices?

We want to extend the binary search approach for k = 1 case to the general k case, which

seems quite challenging.
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General k-Sparse

What is k-sparse?
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⇒ k = 3

We will use another approach based on probabilistic arguments to show that we can pick

random A ∈ Fm×n
2 and with high probability we can recover x from A · x for all x ∈ Fn

2
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General k-Sparse

Uniqueness of Measurement Output
We should make sure that for any two different x ̸= y , A · x ̸= A · y as otherwise we cannot

distinguish x and y from the resulting vector.

We do NOT want:
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Probabilistic Analysis

Before we describe the algorithm completely, we look at the following important lemma:

Lemma:

For all x ̸= y ∈ Fn
2, and r ∈R Fn

2, Prr (< r , x >=< r , y >) = 1
2

Proof: Let i ∈ [n] be any index where xi ̸= yi . Consider picking r by first pick r−i ∈ Fn−1
2 where

r−i is the vector of r excluding the index i , and then pick ri ∈ F2. We have two cases:

See here!

CS 05 Sublinear and Streaming Algorithms April 10, 2024 17 / 20

https://drive.google.com/file/d/1Id9a3zUDY39BrYjFwzgyze1WYZTsaiLL/view?usp=sharing


Probabilistic Analysis

x =
[
0 1 0 1 0 1 0 1

]
y =

[
0 1 1 1 0 1 0 1

]
r =

[
1 1 ? 0 0 1 1 0

]
Case 1: ⟨r−i , x−i ⟩ = ⟨r−i , y−i ⟩

We need ri = 1 to determine x ̸= y . The probability of having ri = 1 is 1
2
, so we have

Prr (⟨r , x⟩ = ⟨r , y⟩) =
1

2

Case 2: ⟨r−i , x−i ⟩ ̸= ⟨r−i , y−i ⟩

In this case, we need ri = 0 to determine x ̸= y , as ⟨ri , xi ⟩ = ⟨ri , yi ⟩ promises

⟨r−i , x−i ⟩+ ⟨ri , xi ⟩ ̸= ⟨r−i , y−i ⟩+ ⟨ri , yi ⟩. The probability of having ri = 0 is 1
2
, so we have

Prr (⟨r , x⟩ = ⟨r , y⟩) =
1

2
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General k-Sparse

Using the above lemma, we can conclude that with a random matrix, we can distinguish x

and y with “high enough” probability:

PrA(A · x = A · y) =
1

2m

where m is the number of rows of A.

If m is large enough we can argue that with high probability, A and distinguish between all

pair of k-sparse vectors x , y ∈ Fn
2

m = O(k log(n))
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Conclusion

1 Probabilistic analysis provides us with tools to solve problems in sublinear time with “high

enough” accuracy.

2 Sublinear algorithms are designed to operate with resource requirements significantly lower

than the size of their input. To achieve this, they rely on techniques of approximation and

randomization, providing valuable information about the problem with a fraction of the

resources typically needed.

Thank You!
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