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OUT OF DISTRIBUTION DETECTION
A model's ability to recognize and 
appropriately handle data that deviates 
significantly from its training set.

Importance:

§ Error Reduction

§ Data Quality Control

§ Model Robustness

§ Safety and Reliability
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OUT OF DISTRIBUTION DETECTION - CHALLENGES
§ Defining “Out-of-Distribution”

§ High Dimensionality

§ Computation Costs

§ Domain Shift

§ Model Calibration

§ Noise and Outliers

§ Transferability

§ Evaluation Metrics
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STATISTICAL DATA DEPTH
A data depth measures how close a given point is located to the center of a distribution. For 𝓍 ∈ ℝ! 
and a p-variate random vector X distributed as 𝑃 ∈ 𝒫, a data depth is a function 

𝐷 ∶ 	ℝ!	×	𝒫	 → 0, 1 , 𝒙, 𝑃 	⟼ 𝐷(𝒙|𝑃)
that is : 
D1  translation invariant: 𝐷 𝒙 + 𝑏	 𝑋 + 𝑏) = 𝐷 𝒙 𝑋) for any 𝑏 ∈ ℝ!;

D2  linear invariant: 𝐷 𝐴𝒙	 𝐴𝑋) = 𝐷 𝒙 𝑋) for any 𝑝	×	𝑝 non-singular matrix 𝐴;

D3  vanishing at infinity: lim
𝒙 →$

𝐷 𝒙 𝑋 = 0;

D4  monotone on rays: for any 𝒙∗ ∈ argmax
𝒙∈ℝ!

𝐷 𝒙 𝑋 , any 𝑥 ∈ ℝ! , 
      and any 0 ≤ 𝛼 ≤ 1 it holds: 𝐷(𝒙|𝑋) ≤ 𝐷(𝒙∗ + 𝛼(𝒙 − 𝒙∗)|𝑋);

D5  upper semicontinuous in x: the upper-level sets 𝐷( 𝒙 𝑋 ≤ 𝒙 ∈ ℝ!: 𝐷(𝒙|𝑋) ≥ 𝛼  
          are closed for all 𝛼.
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STATISTICAL DATA DEPTH
There are many definitions of data depth:
• Mahalanobis depth (Mahalanobis, 1936) 
• Convex hull peeling depth (Barnett, 1976; Eddy, 1981) 
• Projection depth (Stahel, 1981; Donoho, 1982) 
• Simplicial volume depth (Oja, 1983) 
• Simplicial depth (Liu, 1990) 
• Majority depth (Singh, 1991) 
• Zonoid depth (Koshevoy and Mosler, 1997) 
• Regression Depth (Rousseeuw and Hubert, 1999)
• L!-depth (Zuo and Serfling, 2000) 
• Spatial depth (Serfling, 2002) 
• Expected convex hull depth (Cascos, 2007) 
• Geometrical depth (Dyckerhoff and Mosler, 2011) 
• Lens depth (Liu and Modarres, 2011)
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STATISTICAL DATA DEPTH – BIVARIATE DEMO

Synthetic data generated using two different multivariate normal distributions.
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STATISTICAL DATA DEPTH - BIVARIATE DEMO
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Outermost convex hull;
Corresponds to data depth ~ 0
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STATISTICAL DATA DEPTH - BIVARIATE DEMO
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Next convex hull;
Data depth is now ~ 0.15
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STATISTICAL DATA DEPTH - BIVARIATE DEMO
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At each level, we construct a 
new convex hull and assign 

data depth values accordingly.
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STATISTICAL DATA DEPTH – MULTIVARIATE DEMO
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STATISTICAL DATA DEPTH – MULTIVARIATE DEMO
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STATISTICAL DATA DEPTH - CHALLENGES
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§ High Dimensionality

§ Scalability

§ Robustness

§ Choice of Depth Measure

§ Non-Euclidean Data

§ Interpretability

§ Computation of Depth Regions

§ Integration with Machine Learning Models

STATISTICAL DATA DEPTH IN DEEP LEARNING



CURRENT CHALLENGES
Out of Distribution Detection

§ Defining “Out-of-Distribution”

§ High Dimensionality

§ Computation Costs

§ Domain Shift

§ Model Calibration

§ Noise and Outliers

§ Transferability

§ Evaluation Metrics

Statistical Data Depth

§ High Dimensionality
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§ Robustness

§ Choice of Depth Measure

§ Non-Euclidean Data

§ Interpretability

§ Computation of Depth Regions

§ Integration with Machine Learning Models
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AUTOENCODERS
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§ A representation learning algorithm 

§ Learn to map examples to low-dimensional representation
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VARIATIONAL AUTOENCODERS
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§ Variational autoencoders (VAEs), introduced by Kingma and Welling (2013), are a class of 
probabilistic models that find latent, low-dimensional representations of data. 

§ VAEs are thus a method for performing dimensionality reduction to reduce data down to 
their intrinsic dimensionality.
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VARIATIONAL AUTOENCODERS – DEMO
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§ Encoder with two linear layers that produce the mean and log-variance of the latent variables 

§ Reparameterization trick to ensure differentiability when sampling latent variables.
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VARIATIONAL AUTOENCODERS – DEMO
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§ Encoder with two linear layers that produce the mean and log-variance of the latent variables 

§ Reparameterization trick to ensure differentiability when sampling latent variables.

§ A combination of reconstruction loss (MSE) and KL divergence to regularize the latent space

§ VAE's effectiveness in data compression and latent space representation
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VARIATIONAL AUTOENCODERS – KEY ADVANTAGES
§ Data generation

§ Control of Latent Space

§ Modelling Complex Distributions
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SOLUTION OVERVIEW
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METHODOLOGY
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DATASET REVIEW
Fashion MNIST Dataset with 

where each example has 

and each label value corresponds to:
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Split Examples
test 10,000
train 60,000
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SOLUTION OVERVIEW
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We begin by training an encoder on the training dataset of 60000 points to reduce dimensionality.

STATISTICAL DATA DEPTH IN DEEP LEARNING



VARIATIONAL AUTOENCODERS – DEMO
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VARIATIONAL AUTOENCODERS – DEMO
§ Reparametrize function to sample from the 

latent space by introducing stochasticity.
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VARIATIONAL AUTOENCODERS – DEMO
§ Reparametrize function to sample from the 

latent space by introducing stochasticity.

§ The loss function uses a combination of the 
standard reconstruction loss and KL 
Divergence loss. 
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SOLUTION OVERVIEW
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Using the trained encoder, we obtain the latent space representation for each point in the test set.
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VARIATIONAL AUTOENCODERS – DEMO
§ Evaluate the trained model on the test 

dataset to obtain the latent representations 
and store them in a numpy array.
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SOLUTION OVERVIEW
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Finally, use the depth function to compute data depth for each point.
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VARIATIONAL AUTOENCODERS – DEMO
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§ Multivariate library to compute data depth 
using spatial depth (polynomial time).

§ Set a threshold to classify points as normal 
or anomalous.
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RESULTS AND ANALYSIS
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ANOMALY DISTRIBUTION
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ANOMALY DISTRIBUTION
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Most anomalies seem 
to away from the 
median of the data

The median would be 
somewhere around here
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CONVEX HULL PROGRESSION
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CONVEX HULL PROGRESSION
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CONVEX HULL PROGRESSION
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CONVEX HULL PROGRESSION
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CONVEX HULL PROGRESSION
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CONVEX HULL PROGRESSION
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CONVEX HULL PROGRESSION

PAGE  56STATISTICAL DATA DEPTH IN DEEP LEARNING



CONVEX HULL PROGRESSION
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CONVEX HULL PROGRESSION
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CONVEX HULL PROGRESSION
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CONVEX HULL PROGRESSION
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CONVEX HULL PROGRESSION
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CONVEX HULL PROGRESSION
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SOLUTION OVERVIEW
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We can also use the decoder to reconstruct the images and check whether they are actually anomalies.
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VISUALLY CHECKING ANOMALIES

PAGE  64STATISTICAL DATA DEPTH IN DEEP LEARNING



CONCLUSION

PAGE  65STATISTICAL DATA DEPTH IN DEEP LEARNING



VISUALLY CHECKING ANOMALIES
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IMPROVEMENTS
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§ Hyperparameter Tuning

§ Advanced VAE Architectures

§ Regularization Techniques

§ Alternative Depth Measures

§ Hybrid Approaches

§ Threshold Optimization

§ Quantitative Evaluation

§ Error Analysis

§ Experiment Tracking
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Q/A
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APPENDIX
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AUTOENCODERS
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2 main components : 

§ Encoder e(x): maps x to low-dimensional representation 𝑧̂

§ Decoder d(𝑧̂): maps 𝑧̂ to its original representation x

Autoencoder implements I𝑥 = 𝑑 𝑒(𝑥)

§ I𝑥 is the reconstruction of original input x.

§ Encoder and decoder learned such that 𝑧̂
contains as much information about x as 
needed to reconstruct it.

§ Minimize sum of squares of differences between input and prediction: 𝐸 = 	∑)(𝑥) 	− 𝑑(𝑒 𝑥) )*
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GITHUB REPOSITORY
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§ Please find all details of the implementations and the visualizations here. 
[https://github.com/ananya-k15/data-depth].

§ In case of any issues, contact Ananya Kumar (a327kuma@uwaterloo.ca).
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