Overview

The Tutte Polynomial and Applications

Bandana Bajaj, Zoe Zou

Directed Reading Program-Mentor Josephine Reynes

December 6th, 2023

Overview

Overview

- Background Graph Theory
- Tutte Polynomial and Flow Polynomial
- Applications

Background

Tutte Polynomial Flow Polynomial Applications Graphs Properties of Graphs Operations on Graphs

Background

Graphs Properties of Graphs Operations on Graphs

Graph

Definition

A graph G = (V, E) consists of a set of vertices, V and a set of edges denoted as two element subsets of V, E. For $u, v \in V(G)$ and (u, v) an edge we sometimes denote this uv.

Definition

The order of a graph G is the number of vertices it has, written as |G|. And so an empty graph, (\emptyset, \emptyset) is a graph of order 0.

Graphs Properties of Graphs Operations on Graphs

Example

Graphs Properties of Graphs Operations on Graphs

Adjaceny and Degree

Definition

Two vertices, x and y are *adjacent* or neighbours if xy is an edge of the graph.

Definition

The *degree of a vertex* v is the number of edges incident to v. This is equal to the number of neighbours of v, written as deg(v).

Graphs Properties of Graphs Operations on Graphs

Path and Cycle

Definition

A *path* is a non-empty graph P = (V, E), where $V = \{x_0, x_1, ..., x_k\}$ and $E = \{x_0x_1, x_1x_2, ..., x_{k-1}x_k\}$, where all the x_i are distinct.

Definition

A cycle is a path where $x_0 = x_k$ and every other vertex is distinct.

Bandana Bajaj, Zoe Zou

Graphs Properties of Graphs Operations on Graphs

Connected, Loops, and Bridges

Definition

A graph G is *connected* if there is path for every $u, v \in V$, that is there is a path that connects every vertex to another.

Definition

A *bridge* is an edge which when removed will disconnect the graph.

Definition

An edge *e* is a *loop* if e = xx for some vertex *x*.

Graphs Properties of Graphs Operations on Graphs

Subgraph

Definition

A subgraph H of G is the graph that $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$.

Graphs Properties of Graphs Operations on Graphs

Tree & Forest

Definition

A connected graph containing no cycles is a tree.

Definition

A forest is a graph whose components are trees.

Graphs Properties of Graphs Operations on Graphs

Spanning Tree & Maximal Spanning Forest

Definition

If H is a subgraph of G and V(H) = V(G), H is spanning.

Definition

A spanning tree of G is a spanning subgraph that is a tree.

Definition

A *maximal spanning forest* is a subgraph that is a forest with maximal possible edges.

Graphs Properties of Graphs Operations on Graphs

Vertex Deletion and Edge Deletion

Definition

For a graph G the *deletion* of $v \in V(G)$ or G - v is the graph obtained from G by removing v and all edges incident to v.

Definition

For a graph G the *deletion* of $e \in E(G)$ or G - e is the graph obtained from G by removing v and all edges incident to v.

Graphs Properties of Graphs Operations on Graphs

Edge Contraction

Definition

For a graph G the contraction of $e = uv \in E(G)$ results in a new graph G/e = (V - v - u + w, E - e) where w is adjacent to all neighbors of u and v.

Activity Definition Terminal Minor Versior

Tutte Polynomial

Activity Definition Terminal Minor Version

Example

 $T(G) = x^3 + 2x^1 + x + 2xy + y + y^2$

Activity Definition Terminal Minor Version

Activity Definitions

Definition

Let G be a graph and F a maximal spanning forest of G. If $e \notin E(F)$ then $F \cup \{e\}$ contains a cycle. This is the *fundamental cycle* of e with respect to F. If $e \in F$ and T is the tree in F that contains e then F - e disconnects T. The *fundamental bond* of e with respect to F is the set of all edges in G that reconnect T.

Definition

Let G be a graph and F a maximal spanning forest of G and $\overline{E} = (e_1, e_2, ..., e_m)$ a total ordering on the edges of G then

- *e_i* ∈ *F* is *internally active* with respect to *F* if *e_i* is maximal in its fundamental bond. (inactive otherwise)
- *e_i* ∉ *F* is *externally active* with respect to *F* if *e_i* is maximal in its fundamental cycle. (inactive otherwise)

Activity Definition Terminal Minor Version

Activity Version

Theorem

Let G = (V, E) be a graph with a fixed total ordering on the edges and \mathcal{F} be the set of all maximal spanning forests of G. For any $F \in \mathcal{F}$ let IA(F) be the set of internally active edges and EA(F)the set of externally active edges. Then the Tutte Polynomial of Gis:

$$T(x,y) = \sum_{F \in \mathcal{F}} x^{|IA(F)|} y^{|EA(F)|}$$

Activity Definition Terminal Minor Version

Example

Activity Definition Terminal Minor Version

Terminal Minor Version

Theorem

Let G be a graph the Tutte Polynomial is

$$T_{G}(x,y) = \begin{cases} 1, & \text{if } E = \emptyset \\ x^{n}y^{m}, & \text{if } G \text{ has } n \text{ bridge} \\ & \text{and } m \text{ loops} \\ T_{G \smallsetminus e}(x,y) + T_{G/e}(x,y) & \text{if } e \in E(G) \text{ is neither } a \\ & \text{bridge nor } a \text{ loop} \end{cases}$$

Flows The Flow Polynomial

Flow Polynomial

Flows The Flow Polynomial

Background

Definition

For a graph G with edge set E let *E* be an orientation of the edges where e = xy has orientation (e, x, y) and (e, y, x) describing moving from x to y and y to x respectively along e.

• A capacity function is
$$c: \overrightarrow{E} \to \mathbb{N}$$

Flows The Flow Polynomial

Flows

Definition

Let (G, c) be a graph with capacity function c. Then $f : \vec{E} \to \mathbb{R}$ is a *flow* if it satisfies the following

- (Energy Reversal) f(e, x, y) = -f(e, y, x) for all $(e, x, y) \in \vec{E}$ with $x \neq y$,
- **2** (Capacity Conservation) $f(\vec{e}) \leq c(\vec{e})$ for all $e \in \vec{E}$
- (Vertex Conservation) The flow into a vertex is equal to the flow out of a vertex for all vertices.

A flow is *nowhere zero* if no edges receives a zero flow value. A flow is a *k*-flow if every edge has $-k < f(\vec{e}) < k$.

Flows The Flow Polynomial

Example

Flows The Flow Polynomial

The Flow Polynomial

Definition

The Flow Polynomial of a graph G denoted F(G:k) is the polynomial that evaluated at k is the number of nowhere zero k-flows

Theorem

The flow polynomial of a graph G satisfies

$$F(G;k) = \begin{cases} 1, & \text{if } E = \emptyset \\ 0, & \text{if } e \text{ is a bridge} \\ (k-1)F(G \smallsetminus e;k), & \text{if } e \text{ is a loop} \\ F(G/e;k) - F(G \smallsetminus e;k) & \text{if } e \in E(G) \text{ is neither a} \\ & \text{bridge nor a loop} \end{cases}$$

Flows The Flow Polynomial

Relation to the Tutte Polynomial

Theorem

The flow polynomial is a specialization of the Tutte polynomial. For a graph G, $F(G;k) = (-1)^{n(G)}T(G;0,1-k)$ where $n(G) = |E(G)| - |V(G)| + |\{C \text{ is a connected component of } G\}|.$

Example

We found
$$T(G; x, y) = x^3 + 2x^2 + x + 2xy + y + y^2$$
 so
 $F(G; k) = (-1)^{5-4+1}T(G; 0, 1-k) = k^2 - 3k + 2.$
Thus G has two nowhere zero 3-flows

Applications

Maximum Flow Problem

Question

How to assign flows to edge as to

- Equalize inflow and outflow at every intermediate vertex.
- Maximize flow sent from s to t.

Airline Scheduling

Description:

- Manage flight crews by reusing them over multiple flights
- Consider each city as a vertices on the graph
- Flights time are flows

Running time:

- *O*(*k*) nodes
- $O(k^2)$ edges
- At most k crews needed \rightarrow Solve k max flow problems
- Overall time = $O(k^4)$

Augmenting Path Theorem

Definition

Augmenting path is the path in residual graph with capacity.

Theorem

A flow f is a max flow if and only if there are no augmenting paths.

Other Related Applications

- Network connectivity
- Bipartite matching
- Data mining
- Open-pit mining
- Image processing
- Project selection
- Baseball elimination
- Network reliability
- Security of statistical data
- Distributed computing
- Egalitarian stable matching
- Distributed computing

Reference

- Diestel, R. (2000). Graph Theory (Graduate Texts in Mathematics) Springer.
- Ellis-Monaghan Joanna A. , Moffatt Iain. Handbook of the Tutte Polynomial and Related topics Taylor & France Group
- Kevin, W. (2004). Max flow and Min cut. Princeton University.
- Kevin, W. (2001). Max flow Applications. Princeton University.

Thank you for listening!