The Tutte Polynomial and Applications

Bandana Bajaj, Zoe Zou

Directed Reading Program-Mentor Josephine Reynes
December 6th, 2023

Overview

- Background Graph Theory
- Tutte Polynomial and Flow Polynomial
- Applications

Background

Graph

Definition

A graph $G=(V, E)$ consists of a set of vertices, V and a set of edges denoted as two element subsets of V, E. For $u, v \in V(G)$ and (u, v) an edge we sometimes denote this $u v$.

Definition

The order of a graph G is the number of vertices it has, written as $|G|$. And so an empty graph, $(\varnothing, \varnothing)$ is a graph of order 0 .

Graphs
Properties of Graphs
Operations on Graphs

Example

$$
\begin{aligned}
V(G) & =\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\} \\
E(G) & =\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}, e_{7}\right\} \\
|G| & =5
\end{aligned}
$$

Adjaceny and Degree

Definition

Two vertices, x and y are adjacent or neighbours if $x y$ is an edge of the graph.

Definition

The degree of a vertex v is the number of edges incident to v. This is equal to the number of neighbours of v, written as $\operatorname{deg}(v)$.

Bandana Bajaj, Zoe Zou

Path and Cycle

Definition

A path is a non-empty graph $P=(V, E)$, where $V=\left\{x_{0}, x_{1}, \ldots, x_{k}\right\}$ and $E=\left\{x_{0} x_{1}, x_{1} x_{2}, \ldots x_{k-1} x_{k}\right\}$, where all the x_{i} are distinct.

Definition

A cycle is a path where $x_{0}=x_{k}$ and every other vertex is distinct.
Path from v_{1} to V_{5}
Cycle

Connected, Loops, and Bridges

Definition

A graph G is connected if there is path for every $u, v \in V$, that is there is a path that connects every vertex to another.

Definition

A bridge is an edge which when removed will disconnect the graph.

Definition

An edge e is a loop if $e=x x$ for some vertex x.

Loop

Bridge

Subgraph

Definition

A subgraph H of G is the graph that $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$.

G

H

Tree \& Forest

Definition

A connected graph containing no cycles is a tree.

Definition

A forest is a graph whose components are trees.

Spanning Tree \& Maximal Spanning Forest

Definition

If H is a subgraph of G and $V(H)=V(G), H$ is spanning.

Definition

A spanning tree of G is a spanning subgraph that is a tree.

Definition

A maximal spanning forest is a subgraph that is a forest with maximal possible edges.

G

T

F

Vertex Deletion and Edge Deletion

Definition

For a graph G the deletion of $v \in V(G)$ or $G-v$ is the graph obtained from G by removing v and all edges incident to v.

Definition

For a graph G the deletion of $e \in E(G)$ or $G-e$ is the graph obtained from G by removing v and all edges incident to v.

Edge Contraction

Definition

For a graph G the contraction of $e=u v \in E(G)$ results in a new graph $G / e=(V-v-u+w, E-e)$ where w is adjacent to all neighbors of u and v.

Tutte Polynomial

Example

$T(G)=x^{3}+2 x^{2}+x+2 x y+y+y^{2}$

Activity Definitions

Definition

Let G be a graph and F a maximal spanning forest of G. If $e \notin E(F)$ then $F \cup\{e\}$ contains a cycle. This is the fundamental cycle of e with respect to F. If $e \in F$ and T is the tree in F that contains e then F-e disconnects T. The fundamental bond of e with respect to F is the set of all edges in G that reconnect T.

Definition

Let G be a graph and F a maximal spanning forest of G and $\bar{E}=\left(e_{1}, e_{2}, \ldots, e_{m}\right)$ a total ordering on the edges of G then

- $e_{i} \in F$ is internally active with respect to F if e_{i} is maximal in its fundamental bond. (inactive otherwise)
- $e_{i} \notin F$ is externally active with respect to F if e_{i} is maximal in its fundamental cycle. (inactive otherwise)

Activity Version

Theorem

Let $G=(V, E)$ be a graph with a fixed total ordering on the edges and \mathcal{F} be the set of all maximal spanning forests of G. For any $F \in \mathcal{F}$ let $I A(F)$ be the set of internally active edges and $E A(F)$ the set of externally active edges. Then the Tutte Polynomial of G is:

$$
T(x, y)=\sum_{F \in \mathcal{F}} x^{|A A(F)|} y^{|E A(F)|}
$$

Example

Terminal Minor Version

Theorem

Let G be a graph the Tutte Polynomial is

$$
T_{G}(x, y)= \begin{cases}1, & \text { if } E=\varnothing \\ x^{n} y^{m}, & \text { if } G \text { has } n \text { bridge } \\ & \text { and } m \text { loops } \\ T_{G \backslash e}(x, y)+T_{G / e}(x, y) & \text { if } e \in E(G) \text { is neither a } \\ & \text { bridge nor a loop }\end{cases}
$$

Flow Polynomial

Bandana Bajaj, Zoe Zou

Background

Definition

- For a graph G with edge set E let \vec{E} be an orientation of the edges where $e=x y$ has orientation (e, x, y) and (e, y, x) describing moving from x to y and y to x respectively along e.
- A capacity function is $c: \vec{E} \rightarrow \mathbb{N}$

Flows

Definition

Let (G, c) be a graph with capacity function c. Then $f: \vec{E} \rightarrow \mathbb{R}$ is a flow if it satisfies the following
(1) (Energy Reversal) $f(e, x, y)=-f(e, y, x)$ for all $(e, x, y) \in \vec{E}$ with $x \neq y$,
(2) Capacity Conservation) $f(\vec{e}) \leq c(\vec{e})$ for all $e \in \vec{E}$

3 (Vertex Conservation) The flow into a vertex is equal to the flow out of a vertex for all vertices.
A flow is nowhere zero if no edges receives a zero flow value.
A flow is a k-flow if every edge has $-k<f(\vec{e})<k$.

Example

The Flow Polynomial

Definition

The Flow Polynomial of a graph G denoted $F(G: k)$ is the polynomial that evaluated at k is the number of nowhere zero k-flows

Theorem

The flow polynomial of a graph G satisfies

$$
F(G ; k)= \begin{cases}1, & \text { if } E=\varnothing \\ 0, & \text { if } e \text { is a bridge } \\ (k-1) F(G \backslash e ; k), & \text { if } e \text { is a loop } \\ F(G / e ; k)-F(G \backslash e ; k) & \text { if } e \in E(G) \text { is neither a } \\ & \text { bridge nor a loop }\end{cases}
$$

Relation to the Tutte Polynomial

Theorem

The flow polynomial is a specialization of the Tutte polynomial.
For a graph $G, F(G ; k)=(-1)^{n(G)} T(G ; 0,1-k)$ where $n(G)=|E(G)|-|V(G)|+\mid\{C$ is a connected component of $G\} \mid$.

Example

We found $T(G ; x, y)=x^{3}+2 x^{2}+x+2 x y+y+y^{2}$ so $F(G ; k)=(-1)^{5-4+1} T(G ; 0,1-k)=k^{2}-3 k+2$.
Thus G has two nowhere zero 3-flows.

Applications

Maximum Flow Problem

Question

How to assign flows to edge as to

- Equalize inflow and outflow at every intermediate vertex.
- Maximize flow sent from s to t.

Airline Scheduling

Description:

- Manage flight crews by reusing them over multiple flights
- Consider each city as a vertices on the graph
- Flights time are flows

Running time:

- $O(k)$ nodes
- $O\left(k^{2}\right)$ edges
- At most k crews needed \rightarrow Solve k max flow problems
- Overall time $=O\left(k^{4}\right)$

Augmenting Path Theorem

Definition

Augmenting path is the path in residual graph with capacity.

Theorem

A flow f is a max flow if and only if there are no augmenting paths.

Other Related Applications

- Network connectivity
- Bipartite matching
- Data mining
- Open-pit mining
- Image processing
- Project selection
- Baseball elimination
- Network reliability
- Security of statistical data
- Distributed computing
- Egalitarian stable matching
- Distributed computing

Reference

- Diestel, R. (2000). Graph Theory (Graduate Texts in Mathematics) Springer.
- Ellis-Monaghan Joanna A., Moffatt lain. Handbook of the Tutte Polynomial and Related topics Taylor \& France Group
- Kevin, W. (2004). Max flow and Min cut. Princeton University.
- Kevin, W. (2001). Max flow Applications. Princeton University.

Thank you for listening!

