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Can a Heart Transplant Save Lives?

Zeus is waiting for a heart
transplant. He dies five days
later after receiving a new heart.

Would Zeus have been alive if
he had not received the heart
transplant?

We want to know if receiving a
heart transplant improves
patients’ survival.

Our population of interest:
Zeus’s extended family.
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Definition

Definition of a causal effect for an individual:
The treatment A has a causal effect on an individual’s outcome Y if
Y a=1 ̸= Y a=0 for the individual.

The variables Y a=1 and Y a=0 are referred to as potential outcomes
or counterfactual outcomes.

Only one of the potential outcomes can be observed in reality.

Definition of average causal effect in the population:
An average causal effect of treatment A on outcome Y is
ACE = E[Y a=1]− E[Y a=0] in the population of interest.
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Identifiability conditions in Observational Studies

Exchangeability:
Y a ⊥ A|L = l for all a

Positivity:

P [A = a|L = l] > 0 for all values of l where P [L = l] ̸= 0

Consistency:

Y a = Y for all individuals with A = a
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Methods to estimate ACE - Standardization

By consistency and conditional exchangeability,
Pr[Y a = 1|L = l] = Pr[Y = 1|L = l, A = a]

Causal risk ratio = Pr[Y a=1=1]
Pr[Y a=0=1]

=
∑

l Pr[Y=1|L=l,A=1]Pr[L=l]∑
l Pr[Y=1|L=l,A=0]Pr[L=l] by

standardization

Christina, Sherry, Gengyang Final Presentation Dec. 4, 2023 5 / 23



Methods to estimate ACE - Inverse Probability Weighting

Weighting each individual by the inverse of the conditional probability
of receiving the treatment level to create a pseudo-population that
simulates what would have happened if all individuals in the
population had been untreated or treated.

Causal risk ratio Pr[Y a=1=1]
Pr[Y a=0=1]

can be calculated using

pseudo-pupulation under conditional exchangeability.
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Methods to estimate ACE - Stratification

Goal: To identify effect modification

Effect Modification: The average causal effect of A on Y varies
across levels of V .

Stratification: The causal effect of A on Y is computed in each
stratum of V . For dichotomous V , the stratified causal risk
differences are:
Pr[Y a=1 = 1|V = 1]− Pr[Y a=0 = 1|V = 1]
and
Pr[Y a=1 = 1|V = 0]− Pr[Y a=0 = 1|V = 0]

If the average causal effect differs between the two strata, we conclude
that there is effect modification by V of the causal effect of A on Y .
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Methods to estimate ACE - Matching

Goal: To construct a subset of the population in which the variables L
have the same distribution in both the treated and the untreated.

Matching: For each untreated individual in non critical condition
(A = 0, L = 0) randomly select a treated individual in non critical
condition (A = 1, L = 0), and for each untreated individual in critical
condition (A = 0, L = 1) randomly select a treated individual in
critical condition (A = 1, L = 1).

Often one chooses the group with fewer individuals and uses the other
group to find their matches.

Under the assumption of conditional exchangeability given L, the
result of this procedure is unconditional exchangeability of the treated
and the untreated in the matched population.

Matching needs not be one-to one (matching pairs), but it can be
one-to-many (matching sets).
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Comparison Between Methods

Standardization and Inverse Probability Weighting are used to
compute either marginal or conditional effects.

Stratification and Matching are used to compute conditional effects in
certain subsets of the population.
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About the paper

Kang, J. D. Y., & Schafer, J. L. (2007). Demystifying Double
Robustness: A Comparison of Alternative Strategies for Estimating a
Population Mean from Incomplete Data. Statistical Science, 22(4),
523–539. http://www.jstor.org/stable/27645858

Purpose: Investigating the practical behavior of the estimators under
different model specifications in terms of estimating a population
mean from an incomplete dataset.

Assumptions: The outcome yi’s are missing at random.
P (X,T, Y ) =

∏
i P (xi)P (ti|xi)P (yi|xi)
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Problem of interest
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π-model and y-model

π-model
▶ A π-model is a proposed functional form for

P (Ti = 1|xi) = πi(xi) = πi.
▶ πi is the propensity score.

▶ In the paper and our simulation, π̂i =
exp(xi

T α̂)
1+exp(xi

T α̂)
, where α̂ is the

maximum-likelihood estimate of the coefficients from the logistic
regression of T on X.

y-model
▶ Let us define E(yi|xi) = m(xi) = mi, so that yi = m(xi) + ϵi with

E(ϵi) = 0.
▶ A y-model is a functional form for m(xi).
▶ In the paper and our simulation, m̂i = xi

T β̂, where β̂ is the ordinary
least square estimates of the regression coefficients for Y .
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Setting

Sample size n = 200, 1000

Simulation rounds m = 1000

Let Y denote the outcome and T denote the treatment.
Y1 is the outcome under T = 1 and Y0 is the outcome under T = 0.

Y = TY1 + (1− T )Y0

Average causal effect (ACE): E[Y1]− E[Y0]

Compare the performance of each method based on:
- Bias = 1

m

∑m
i=1(µ̂i1 − µ̂i0 −ACE)

- MSE = 1
m

∑m
i=1(µ̂i1 − µ̂i0 −ACE)2

- Relative Bias = Bias / ACE
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Data Generation

Covariates: X1 ∼ N(0, 1), X2 ∼ Bin(1, 0.7), X3 ∼ Gamma(2, 2)

X = (X1, X2, X3)

Coefficients for Y1: β1 = (99, 66.6, 18.8,−52.1)

Coefficients for Y0: β0 = (19.9, 6.6, 2.33, 8.88)

Mechanism for Y1: Y1 = XTβ1 + ϵ1, ϵ1 ∼ N(0, 1)

Mechanism for Y0: Y0 = XTβ0 + ϵ0, ϵ0 ∼ N(0, 1)

Treatment: Ti ∼ Bernoulli(πi), where πi = expit(Xi
Tα) and

α = (0.1, 0.6, 0.07,−0.4)
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Model Misspecification

Let S be the sample we obtained, S1 be the data in the treatment
group and S0 be the data in the control group.

So the data in the treatment group is {(Y1j ,Xj , Tj = 1), j ∈ S1},
the data in the control group is {(Y0j ,Xj , Tj = 0), j ∈ S0}.
We only use two covariates X1 and X2 for the misspecification of
π-model and y-model, respectively.
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Method 1: Inverse-Propensity Weighting

π̂i = expit(xi
T α̂) = exp(xi

T α̂)
1+exp(xi

T α̂)

µ̂1 =
∑n

i=1 tiπ̂
−1
i yi∑n

i=1 tiπ̂
−1
i

µ̂0 =
∑n

i=1(1−ti)(1−π̂i)
−1yi∑n

i=1(1−ti)(1−π̂i)−1

IPW estimator: µ̂1 − µ̂0
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Method 2: Regression Estimation

µ̂1 =
1
n

∑n
i=1 xi

T β̂1

µ̂0 =
1
n

∑n
i=1 xi

T β̂0

Ordinary least-squares regression estimator: µ̂1 − µ̂0
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Method 3: Regression Estimation with Residual Bias
Correction (Doubly Robust Estimator)

Combine model-based predictions for yi with inverse-probability
weights.

IPW estimate can in turn be used to correct the OLS estimate for
bias arising from y-model failure.

µ̂1 = µ̂1,OLS + 1
n

∑n
i=1 tiπ̂

−1
i (yi − xi

T β̂1)

µ̂0 = µ̂0,OLS + 1
n

∑n
i=1(1− ti)(1− π̂i)

−1(yi − xi
T β̂0)

Bias-corrected regression estimator: µ̂1 − µ̂0
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Simulation result for Method 1

Sample Size π-model Bias Relative Bias MSE

200 Correct 0.474 0.016 52.547

200 Incorrect 4.812 0.162 67.432

1000 Correct -0.004 0.000 9.097

1000 Incorrect 4.644 0.157 29.072

Table 1: Performance of IPW estimators of ACE over 1000 samples
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Simulation result for Method 2

Sample Size y-model Bias Relative Bias MSE

200 Correct 0.008 0.000 27.744

200 Incorrect 4.531 0.153 54.149

1000 Correct -0.045 -0.002 4.998

1000 Incorrect 4.672 0.158 27.411

Table 2: Performance of ordinary least-squares regression estimators of ACE over
1000 samples
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Simulation result for Method 3

Sample Size π-model y-model Bias Relative Bias MSE

200 Correct Correct 0.007 0.000 27.743

200 Correct Incorrect 0.238 0.008 33.365

200 Incorrect Correct 0.007 0.000 27.742

200 Incorrect Incorrect 4.538 0.153 54.551

1000 Correct Correct -0.044 -0.001 4.999

1000 Correct Incorrect -0.057 -0.002 6.199

1000 Incorrect Correct -0.045 -0.002 4.999

1000 Incorrect Incorrect 4.665 0.157 27.416

Table 3: Performance of bias-corrected regression estimators of ACE over 1000
samples

.
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Performance Comparison

If both π- model and y-model are correct, doubly robust estimator
outperforms IPW and OLS estimator when n = 200; all three
estimators perform equally well when n = 1000.

IPW estimators are sensitive to misspecification of the π- model.

Regression estimators are sensitive to misspecification of the y- model.

Doubly robust estimator provides consistent estimate of the ACE even
if one of the models is misspecified.
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Thank you!
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