
Factoring and Primality Testing

Daniel Liu

April 8, 2024



Basic Algorithms

Sieve of Eratosthenes
List out all numbers up to n, and strike out all multiples of
2, 3, 5, . . . and so on. The left over numbers are primes.

Trial Division
Repeatedly divide n by different primes up to

√
n. If any prime

divides n, it is composite, if not, n is prime.



Algorithms - Fermat’s Little Theorem

Fermat’s Little Theorem
If p is prime, and a is not a multiple of p, then ap−1 = 1 (mod p)

Fermat Test - Direct Application

If an−1 ̸= 1 (mod n) for some a who is not a multiple of n, then n
is not prime.

Miller-Rabin Test - Derived from Fermat’s
We write n − 1 = 2sd , and check if ad = 1 (mod n), or a2

rd = −1
(mod n) for some 0 ≤ r < s. If none of these are true, n is not
prime.

Turns into probabilistic primality tests.



Galactic Algorithm - AKS

Based on Fermat’s Theorem on Polynomials:

Theorem

(x + a)n = xn + a (mod n)

if and only if n is prime.

The algorithm saves time by only checking the equality for a small
but specific selection of polynomials → Fastest theoretical
deterministic primality test.
Miller-Rabin performs better in practice.



Factoring - Pollard’s p − 1 Algorithm

From earlier:

Fermat’s Little Theorem
If p is prime, and a is not a multiple of p, then ak(p−1) = 1
(mod p) for all positive integers k

From here, if x = 1 (mod p) for a factor p of n, then both x − 1
and n are multiples of p, so gcd(x − 1, n) would yield a multiple of
p. To maximize our odds of this happening, we choose x to be
generated from taking exponents of a random base, in hopes of x
looking like ak(p−1) for some factor p of n.



Quantum Factoring - Shor’s Algorithm

Basic Idea:

Factor n
If aq = 1 (mod n), then by difference of squares,(

a
q
2 − 1

)(
a

q
2 + 1

)
= 0 (mod n),

and we have a chance that one of the two terms contain a
non-trivial factor of n.

The task to find q is called the discrete logarithm, but Quantum
Computation makes this easy → We have a factoring algorithm:

1. Find a q with a random base a so that aq = 1 (mod n)

2. Check gcd(a
q
2 ± 1, n) to find a factor of n

3. Repeat if the last step returned n


