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Basic Algorithms

Sieve of Eratosthenes
List out all numbers up to n, and strike out all multiples of
2,3,5,... and so on. The left over numbers are primes.
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Trial Division
Repeatedly divide n by different primes up to v/n. If any prime
divides n, it is composite, if not, n is prime.



Algorithms - Fermat's Little Theorem

Fermat's Little Theorem
If p is prime, and a is not a multiple of p, then aP~1 =1 (mod p)

Fermat Test - Direct Application
If "1 1 (mod n) for some a who is not a multiple of n, then n
is not prime.

Miller-Rabin Test - Derived from Fermat’s

We write n — 1 = 2d, and check if a = 1 (mod n), or 8%’ = —1
(mod n) for some 0 < r < s. If none of these are true, n is not
prime.

Turns into probabilistic primality tests.



Galactic Algorithm - AKS

Based on Fermat's Theorem on Polynomials:

Theorem

(x+a)"=x"+a (mod n)

if and only if n is prime.

The algorithm saves time by only checking the equality for a small
but specific selection of polynomials — Fastest theoretical
deterministic primality test.

Miller-Rabin performs better in practice.



Factoring - Pollard’s p — 1 Algorithm

From earlier:

Fermat's Little Theorem
If pis prime, and a is not a multiple of p, then ak(p=1) = 1
(mod p) for all positive integers k

From here, if x =1 (mod p) for a factor p of n, then both x — 1
and n are multiples of p, so gcd(x — 1, n) would yield a multiple of
p. To maximize our odds of this happening, we choose x to be
generated from taking exponents of a random base, in hopes of x
looking like ak(P=1) for some factor p of n.



Quantum Factoring - Shor's Algorithm

Basic Idea:

Factor n
If a9 =1 (mod n), then by difference of squares,

(ag - 1) (ag + 1) =0 (mod n),

and we have a chance that one of the two terms contain a
non-trivial factor of n.

The task to find q is called the discrete logarithm, but Quantum
Computation makes this easy — We have a factoring algorithm:

1. Find a g with a random base a so that a? =1 (mod n)
2. Check ged(a? 41, n) to find a factor of n
3. Repeat if the last step returned n



