Factoring and Primality Testing

Daniel Liu

April 8, 2024

Basic Algorithms

Sieve of Eratosthenes
List out all numbers up to n, and strike out all multiples of
2,3,5,... and so on. The left over numbers are primes.

= @ 3)| 4 @ 6 @ 8| 9|10
@ 12 @ 14 | 15 | 16 @ 18 ?
21 | 22 @ 2 [25| 26| 27 | 28 30
@ 32|33 | 34| 3|3 @ % | s | 0|
2 44 | a5 | 26 48 | 49 [0
51 | 52 @ 54 | 55 |56 | 57 | 58 60
62 | 63 | 64 | 65 | 66 68 | 69 | 70
@ 72 @ 74|75 |76 |77 | 78 80
81 | 82 84 | 85 | 86 | o7 | 88 %
91 | 92| 93 | 94| 95 | 96 ? s | 100 |

Trial Division
Repeatedly divide n by different primes up to v/n. If any prime
divides n, it is composite, if not, n is prime.

Algorithms - Fermat's Little Theorem

Fermat's Little Theorem
If p is prime, and a is not a multiple of p, then aP~1 =1 (mod p)

Fermat Test - Direct Application
If "1 1 (mod n) for some a who is not a multiple of n, then n
is not prime.

Miller-Rabin Test - Derived from Fermat’s

We write n — 1 = 2d, and check if a = 1 (mod n), or 8%’ = —1
(mod n) for some 0 < r < s. If none of these are true, n is not
prime.

Turns into probabilistic primality tests.

Galactic Algorithm - AKS

Based on Fermat's Theorem on Polynomials:

Theorem

(x+a)"=x"+a (mod n)

if and only if n is prime.

The algorithm saves time by only checking the equality for a small
but specific selection of polynomials — Fastest theoretical
deterministic primality test.

Miller-Rabin performs better in practice.

Factoring - Pollard’s p — 1 Algorithm

From earlier:

Fermat's Little Theorem
If pis prime, and a is not a multiple of p, then ak(p=1) = 1
(mod p) for all positive integers k

From here, if x =1 (mod p) for a factor p of n, then both x — 1
and n are multiples of p, so gcd(x — 1, n) would yield a multiple of
p. To maximize our odds of this happening, we choose x to be
generated from taking exponents of a random base, in hopes of x
looking like ak(P=1) for some factor p of n.

Quantum Factoring - Shor's Algorithm

Basic Idea:

Factor n
If a9 =1 (mod n), then by difference of squares,

(ag - 1) (ag + 1) =0 (mod n),

and we have a chance that one of the two terms contain a
non-trivial factor of n.

The task to find q is called the discrete logarithm, but Quantum
Computation makes this easy — We have a factoring algorithm:

1. Find a g with a random base a so that a? =1 (mod n)
2. Check ged(a? 41, n) to find a factor of n
3. Repeat if the last step returned n

